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Introduction

The primary motivation of this article is a specific example of the cyclic sieving phenomenon, as introduced by Reiner, Stanton and White [START_REF] Reiner | The cyclic sieving phenomenon[END_REF], concerning the set X(r, n) of (n + 1)-noncrossing perfect matchings of {1, . . . , 2r}. These are perfect matchings that do not contain any set of (n + 1) pairs (a 1 , b 1 ), . . . , (a n+1 , b n+1 ) with a

1 < • • • < a n+1 < b 1 < • • • < b n+1 .
A standard visualisation of a perfect matching is obtained by placing the numbers from 1 to 2r in this order on a circle and connecting two numbers by a straight edge if they form a pair in the matching. Using this visualisation, a perfect matching is (n + 1)-noncrossing if at most n edges cross mutually. The set X(r, n) carries a natural action of the cyclic group of order 2r, given by ρ : i → i (mod 2r) + 1, i.e., the rotation map.

With this definition we can state what might be taken as the main theorem of this article:

Theorem. Let P (q) = T q maj T ,
where the sum is over all n-symplectic oscillating tableaux of length 2r and weight 0 and maj T is the sum of the positions of the descents in T , as defined in [START_REF] Rubey | Descent sets for symplectic groups[END_REF].

Then the triple X(r, n), ρ, P (q) exhibits the cyclic sieving phenomenon.

However, we would like to stress that this is merely a by-product of the approach taken in this article to the invariant theory of the classical groups, aiming at tying together their representation theory and combinatorics in a concrete fashion.

In our main example we consider tensor powers of the defining representation V of the symplectic group Sp(2n), the group acting diagonally. The symmetric group S r also acts on ⊗ r V , by permuting tensor positions. This action is inherited by the subspace of ⊗ r V which is invariant under the action of Sp(2n).

An effective method to understand both the tensor powers ⊗ r V and their invariant subspaces is to use diagram categories. In the case at hand this is a specialisation D Sp(2n) of the Brauer category. The objects of this category are the natural numbers and Hom D Sp(2n) (r, s) is the vector space whose basis is the set of perfect matchings of {1, . . . , r + s}, with a natural composition, see Section 2.

The connection to the tensor powers of the defining representation of Sp(2n) is established by considering the category T Sp(2n) of invariant tensors of the defining representation of the symplectic group, and a certain functor ev Sp(2n) from the diagram category D Sp(2n) to T Sp(2n) , see Definition 2.1.

The first fundamental theorem, Weyl [21, Theorem (6.1A)], due to Brauer [START_REF] Brauer | On algebras which are connected with the semisimple continuous groups[END_REF], is equivalent to the statement that this functor is full, that is, surjective on morphisms. What is traditionally named second fundamental theorem is a description of the kernel of the linear map from Hom D Sp(2n) (r, s) to Hom T Sp(2n) (r, s) induced by ev Sp(2n) . We provide the following explicit formulation, which is also a key ingredient for the proof of Theorem 3.5.

Theorem. Let Pf ∈ Hom D Sp(2n) 0, 2(n + 1) be the sum of all perfect matchings of {1, . . . , 2(n + 1)} and let Pf (n) be the 'pivotal symmetric' † ideal generated by Pf. Then the categories D Sp(2n) /Pf (n) and T Sp(2n) are isomorphic. Moreover, the set X(r, n) is a basis of Hom D Sp(2n) /Pf (n) (0, 2r).

Remarkably, a well-known result due to Sundaram [START_REF] Sundaram | On the combinatorics of representations of the symplectic group[END_REF] states that the cardinality of X(r, n) equals the dimension of Hom Sp(2n) (C, ⊗ 2r V ). In fact, Sundaram also computed the Frobenius character of this representation, and, more generally, of Hom Sp(2n) W (µ), ⊗ r V for any irreducible representation W (µ) of the symplectic group Sp(2n).

We note that the same categorical setup was employed by Lehrer and Zhang [START_REF] Lehrer | The Brauer Category and Invariant Theory[END_REF] to show that Pf (n) restricted to the Brauer algebra Hom D Sp(2n) (r, r) is in fact generated as a two-sided ideal by a single element.

Fundamental theorems

The theorems of this section connect the Brauer category with the invariant theory of the defining representation of the symplectic group by providing an explicit isomorphism of categories.

First we recall the definition of the Brauer category. Let D(r, s) be the set of perfect matchings on [r] [s]. In particular, D(r, s) = ∅ if r + s is odd. An element of D(r, s) is visualised as a set of (r + s)/2 strands drawn in a rectangle, with r endpoints on the top edge of the rectangle and s endpoints on the bottom edge.

The composition of two diagrams x ∈ D(r, s) and y ∈ D(s, t) is obtained by identifying the points on the bottom edge of x with the points on the top edge of y. Let c(x, y) be the number of closed loops in the resulting diagram and let x • y ∈ D(r, t) be the perfect matching obtained by removing all closed loops.

The Brauer category D Br has objects N. Its morphisms Hom D Br (r, s) are given by the free Z[δ]-module with basis D(r, s). The composition of morphisms is defined on basis elements by

x • y = δ c(x,y) x • y (1) 
and extended bilinearly. The endomorphism algebra Hom D Br (r, r) is the Brauer algebra, which will be denoted by D r from now on. Finally, let D Sp(2n) be the specialisation of D Br obtained by applying the homomorphism

Z[δ] → C, δ → -2n.
The Brauer category also has a tensor product. The tensor product x ⊗ y of two diagrams x and y is obtained by putting the diagrams side-by-side, identifying the right hand edge of x with the left hand edge of y.

We now turn to the definition of the category of invariant tensors T Sp(2n) . Recall that the symplectic group Sp(V ) is the group of linear transformations of a 2n-dimensional complex vector space V that preserve a non-degenerate skew-symmetric bilinear form , . However, the categorical machinery we use requires that a symmetric bilinear form is preserved. Therefore, we regard V as an odd vector space, which has precisely the desired effect. Among the further consequences we remark that in this convention the dimension of V is -2n and symmetric and exterior powers are interchanged.

Let {b 1 , . . . , b 2n } be a basis of V and let { b1 , . . . , b2n } be the dual basis, so bi , b j = δ i,j . Let T Sp(2n) be the category whose objects are again the natural numbers and whose morphisms Hom T Sp(2n) (r, s) are the equivariant maps

Hom Sp(2n) (⊗ r V, ⊗ s V ) = {φ : ⊗ r V → ⊗ s V | g • φ(v) = φ(g • v), g ∈ Sp(2n)}. Note that the invariant subspace of ⊗ r V is precisely Hom T Sp(2n) (0, r) = Hom Sp(2n) (C, ⊗ r V ).
The connection between D Sp(2n) and T Sp(2n) is established by a functor we now define:

Definition 2.1. Let ev Sp(2n) be the evaluation functor D Sp(2n) → T Sp(2n) . Explicitly, ev Sp(2n) sends the object r ∈ N to ⊗ r V . It is defined on the generators by

ev Sp(2n) = u ⊗ v → -v ⊗ u ev Sp(2n) = 1 → i b i ⊗ bi ev Sp(2n) = u ⊗ v → u, v .
and is then uniquely determined by the following three properties

• it is a functor, so ev Sp(2n) (x • y) = ev Sp(2n) (x) • ev Sp(2n) (y),
• it respects tensor products, so ev Sp(2n) (x ⊗ y) = ev Sp(2n) (x) ⊗ ev Sp(2n) (y),

• it is linear.

The first fundamental theorem for the symplectic group can now be stated as follows:

Theorem 2.2.

[1],[21, Theorem (6.1A)] For all n > 0 the functor ev Sp(2n) : D Sp(2n) → T Sp(2n) is full.

In the remainder of this section we provide an explicit description of the kernel of ev Sp(2n) as an ideal in the Brauer category. We will denote this ideal with Pf (n) because of its intimate connection to the Pfaffian. Moreover we obtain a simple basis for the vector space Hom D Sp(2n) /Pf (n) (0, r). This basis is preserved by rotation, which we will use in Section 3 to exhibit a cyclic sieving phenomenon.

The fundamental object involved is an idempotent E(n + 1) of the Brauer algebra D n+1 for which we have ev Sp(2n) E(n + 1) = 0. This element can be characterised as follows.

Let ρ be the one dimensional representation of D n+1 which on diagrams is given by

ρ(x) = 1 if pr(x) = n + 1 0 if pr(x) < n + 1,
where pr(x) is the propagating number of a diagram x, i.e., the number of strands connecting a point on the top edge with a point on the bottom edge.

The element E(n + 1) of D n+1 is determined, up to scalar multiple, by the properties

xE(n + 1) = ρ(x)E(n + 1) = E(n + 1)x. (2) 
It follows that E(n+1) can be scaled so that it is idempotent and these properties now determine E(n+1).

It is clear that E(n + 1) is a central idempotent and that its rank equals one. We will give two constructions of E(n + 1). The first is as a simple linear combination of diagrams.

Definition 2.3.

E(n + 1) = 1 (n + 1)! x∈D(n+1,n+1)
x Lemma 2.4. For δ = -2n, the element E(n + 1) in Definition 2.3 satisfies the properties (2).

Proof: If pr(x) = n + 1 then x acts as a permutation on the set of diagrams D(n + 1, n + 1), so this case is clear.

Let J r (p) be the ideal of the Brauer algebra D r generated by the diagrams with propagating number at most p. The elements u i , 1 ≤ i ≤ n generate the ideal J n+1 (n) so it is sufficient to show that u i E(n + 1) = 0 and E(n + 1)u i = 0 for 1 ≤ i ≤ n. We will now show that u i E(n + 1) = 0. The case

E(n + 1)u i = 0 is similar. It is clear that u i E(n + 1
) is a linear combination of diagrams which contain the pair (i, i + 1). Hence it is sufficient to show that the coefficient of each of these diagrams is 0. Let x be a diagram which contains the pair (i, i + 1). The set {y ∈ D(n + 1, n + 1) : u i y = x} has cardinality 2n and there is precisely one diagram z with u i z = δx. Therefore the coefficient of x is δ + 2n, which vanishes for δ = -2n.

The set of 2n diagrams is constructed as follows. The diagram x contains n pairs other than (i, i + 1). For each of these pairs we construct two elements of the set. Take the pair (u, v), and replace the two pairs (i, i + 1) and (u, v) by (i, u) and (i + 1, v) and by (i + 1, u) and (i, v) keeping all the remaining pairs. However it is not clear from this construction that ev Sp(2n) E(n+1) = 0. We now give an alternative construction which does make this clear. Definition 2.5. For 1 ≤ i ≤ n define u i ∈ D(n + 1, n + 1) to consist of the pairs (a, a ) for a / ∈ {i, i + 1} together with the pairs (i, i + 1) and (i , (i + 1) ) and define s i ∈ D(n + 1, n + 1) to consist of the pairs (a, a ) for a / ∈ {i, i + 1} together with the pairs (i, (i + 1) ) and (i , i + 1):

u i = i -1 n -i -1 s i = i -1 n -i -1 Definition 2.6. For k ∈ Z and 1 ≤ i ≤ n define R i (k) ∈ D n+1 by R i (k) = 1 k + 1 1 + ks i - 2k δ + 2k -2 u i
Proposition 2.7. These elements satisfy

R i (h)R i+1 (h + k)R i (k) = R i+1 (k)R i (h + k)R i+1 (h) R i (h)R j (k) = R j (k)R i (h) for |i -j| > 1 
Proof: The second relation is clear. The first relation is known as the Yang-Baxter equation and is checked by a direct calculation. This calculation can be carried out using generators and relations or by using a faithful representation.

Definition 2.8. The element E(n + 1) is defined recursively by

E(n + 1) = E(n)R n (n)E(n)
There are other equivalent definitions, for example,

E(n + 1) = E(n)R n (n)R n-1 (n -1) . . . R 1 (1) E(n + 1) = R 1 (1)R 2 (2) . . . R n (n)E(n)
The proof that these definitions are equivalent and the proof that for δ = -2n this element satisfies the properties (2) are both calculations using the Yang-Baxter equation Proposition 2.7.

Proposition 2.9.

ev Sp(2n) (E(n + 1)) = 0

Proof: Because ev Sp(2n) is a functor, ev Sp(2n) (E(n + 1)) is an idempotent in T Sp(2n) , too. Moreover, ev Sp(2n) preserves the trace of morphisms. Recall that the (diagrammatic) trace tr n of a diagram α in D n is defined as The rank of an idempotent is equal to its trace so it is sufficient to show that tr n+1 E(n + 1) = 0 for δ = -2n.

η 2n • (α ⊗ id n ) • η *
We now compute the trace by expanding R n (n) = 1 n+1 (1 + ns n + nu n ):

tr n+1 E(n + 1) = 1 n + 1 (δ + n + n) tr n+1 E(n).
Substituting -2n for δ gives tr n+1 E(n + 1) = 0.

We will now describe the kernel of ev Sp(2n) in terms of diagrammatic Pfaffians. Note that for r, s = n + 1 and f = ∅ we have, by Definition 2.3, E(n + 1) = 1 (n+1)! Pf(∅). Definition 2.11. For r, s ≥ 0, the subspace Pf (n) (r, s) in the ideal Pf (n) of D Sp(2n) is spanned by the set

Pf (n) (r, s) = {Pf(f ) : f a perfect matching of a subset of [r] [s] of cardinality r + s -2(n + 1) }.
Definition 2.12. Let ev Sp(2n) : D Sp(2n) /Pf (n) → T Sp(2n) be the functor that factors ev Sp(2n) through the quotient.

We can now state the main theorem of this section, also known as the second fundamental theorem for the symplectic group: Theorem 2.13. The functor ev Sp(2n) : D Sp(2n) /Pf (n) → T Sp(2n) is an isomorphism of categories.

Proof: Since ev Sp(2n) is obviously bijective on objects and full by the first fundamental theorem, it is sufficient to show dim Hom D Sp(2n) /Pf (n) (r, s) ≤ dim Hom T Sp(2n) (r, s).

This is achieved by combining Lemma 2.14, Lemma 2.16, Theorem 2.18 and Lemma 2.19 below.

We first restrict our attention to the invariant tensors:

Recall that if ρ : S r → End(U ) is a representation of S r then the Frobenius character ch(U ) is the homogeneous symmetric function of degree r given by

ch(U ) = 1 r! π∈Sr tr ρ(π)p λ(π)
where p λ is the power sum symmetric function and λ(π) is the cycle type of π.

The fake degree, fd, is a linear map from symmetric functions to polynomials in q. On the basis of Schur functions it is given by fd(s λ ) =

T q maj(T )
where the sum is over standard tableaux of shape T and maj(T ) is the major index of the tableau T .

A general technique to obtain a cyclic sieving polynomial P (q) is provided by the following result from [START_REF] Westbury | Invariant tensors and the cyclic sieving phenomenon[END_REF]: Theorem 3.2. Let U be a representation of S r and let X ⊂ U be a basis which is permuted by the long cycle c. Then X, c, P (q) exhibits the cyclic sieving phenomenon, where

P (q) = fd ch(U ).
The most straightforward application of this theorem is to permutation representations of S r . Here the representation and the basis are given so it remains to determine the Frobenius character and its fake degree polynomial. In general, the action of the symmetric group on the space of invariant tensors is not a permutation representation, that is, there is no basis of the space of invariant tensors that is permuted by the action of S r .

As mentioned in the introduction, the Frobenius character of Hom Sp(V ) W (µ), ⊗ r V was obtained in [START_REF] Sundaram | On the combinatorics of representations of the symplectic group[END_REF] (using combinatorics) and in [START_REF] Tokuyama | Highest weight vectors associated with some branchings[END_REF] (using representation theory). For the special case of the invariant tensors, a geometric proof can be found in Procesi [START_REF] Procesi | Lie groups. Universitext. An approach through invariants and representations[END_REF]Equation 11.5.1.6].

Lemma 3.3.

ch Hom T Sp(2n) (0, 2r) = λ 2r columns of even length (λ)≤2n

s λ t .
Remark 3.4. The partitions indexing the Schur functions appearing in the Frobenius character are all transposed, since we defined V to be an odd vector space.

Theorem 3.5. Let X = X(r, n) be the set of (n + 1)-noncrossing perfect matchings on {1, . . . , 2r} and let ρ be the rotation map acting on X. Let

P (q) = λ 2r columns of even length (λ)≤2n fd s λ t
Then the triple X, ρ, P (q) exhibits the cyclic sieving phenomenon. The two extreme cases of Theorem 3.5, n = 1 and n ≥ r are known. Putting n = 1, X(r, 1) is the set of non-crossing perfect matchings. The corresponding cyclic sieving phenomenon can be found in [START_REF] Rhoades | Cyclic sieving, promotion, and representation theory[END_REF] and [START_REF] Petersen | Promotion and cyclic sieving via webs[END_REF]. For n ≥ r, X(r, n) is the set of all perfect matchings. The Frobenius character of this permutation representation was expanded by Littlewood into Schur functions. Using • for plethystic composition, we have h r • h 2 = λ 2r rows of even length s λ . Remark 3.6. Let T be an oscillating tableau. The descent set of T is defined in [START_REF] Rubey | Descent sets for symplectic groups[END_REF] and is denoted by Des(T ). The major index of T is

maj(T ) = i∈Des(T ) i
Then the main result of [START_REF] Rubey | Descent sets for symplectic groups[END_REF] is that

P (q) = T q maj(T )
where the sum is over n-symplectic oscillating tableaux of length 2r and weight 0.

Theorem 3.5 can be generalised. Informally, we consider the set of k-regular graphs (with loops prohibited but multiple edges allowed) on r vertices which are also (n + 1)-noncrossing. More precisely, consider {1, . . . kr} as a cyclically ordered set, partitioned into r blocks of k consecutive elements each. Let X = X(r, n, k) be the set of (n + 1)-noncrossing perfect matchings of {1, . . . kr} such that there is no pair contained in a block and if two pairs cross then the four elements are in four distinct blocks, see Figure 1 for an example. Finally, let ρ be rotation by k points, i.e., ρ(i) = i + k -1 (mod kr) + 1.

For n > kr, the set X(r, n, k) is independent of n and can be identified with the set of k-regular graphs with multiple edges allowed but loops prohibited. These k-regular graphs would normally be considered as a permutation representation of S r acting by permuting the vertices. Here the action of S r is a linear action on the space with basis X(r, n, k). Example 3.11 below shows that these actions are different. Lemma 3.7. The invariant tensors corresponding to the diagrams X(r, n, k) form a basis of the space of Sp(2n)-invariants in the r-th tensor power of the k-th symmetric power of the defining representation of Sp(2n).

The Frobenius character of this representation is given by an application of [START_REF] Westbury | On enumeration in classical invariant theory[END_REF]Theorem 1]. Lemma 3.8. The Frobenius character of the space of Sp(2n)-invariants in the r-th tensor power of the k-th symmetric power of the defining representation of Sp(2n) is

λ kr columns of even length (λ)≤2n h r X • e k (Y ) , s λ t (Y ) Y (3) 
where e k is the k-th elementary symmetric function and , Y denotes the scalar product of symmetric functions with respect to the alphabet Y .

Theorem 3.9. Let X = X(r, n, k) and let ρ be the rotation map. Define P (q) to be the fake degree of the symmetric function [START_REF] Gavarini | A Brauer algebra-theoretic proof of Littlewood's restriction rules[END_REF]. Then (X, ρ, P ) exhibits the cyclic sieving phenomenon.

The case k = 1 is Theorem 3.5 and the case k = 2 is related to the invariant tensors of the adjoint representation in [START_REF] Hanlon | On the decomposition of the tensor algebra of the classical Lie algebras[END_REF]. The case n = 1 is implicit in [START_REF] Frenkel | Canonical bases in tensor products and graphical calculus for U q (sl 2 )[END_REF] and the case n = 2 is related to the C 2 webs in [START_REF] Kuperberg | Spiders for rank 2 Lie algebras[END_REF].

Instead of the k-th symmetric power of V we can also consider the k-th fundamental representation of Sp(2n). Again using [20, Theorem 1] we obtain the following expression for the Frobenius character of its tensor powers.

Lemma 3.10. The Frobenius character of the space of Sp(2n)-invariants in the r-th tensor power of the k-th fundamental representation of Sp(2n) is

|λ|≤kr columns of even length (λ)≤2n h r X • (h k -h k-2 )(Y ) , s λ t (Y ) Y (4) 
Note that in general, this space cannot have a basis invariant under cyclic rotation. For example, for n = 1, k = 3 and r = 2 its Frobenius character evaluates to s 1,1 with fake degree polynomial equal to q, which is not a cyclic sieving polynomial.

However, let us compare the two Frobenius characters for n > kr.

Setting H = 1 + h 1 + h 2 + • • • we obtain for the symmetric powers h r X • e k (Y ) , H(h 2 (Y )) Y (5) 
whereas for the fundamental representation the expression becomes

h r X • (h k -k k-2 )(Y ) , H(h 2 (Y )) Y (6) 
For n > kr, the set X(r, n, k) is independent of n and can be identified with the set of k-regular graphs with multiple edges allowed but loops prohibited. This is a species whose Frobenius character is given by equation ( 6), see Travis [START_REF] Travis | Graphical enumeration: A species-theoretic approach[END_REF].

The action of the symmetric group in the first case is defined using a sign and is therefore not a permutation representation, as illustrated by the following example. 

Partitions and directed matchings

The discussion in the previous sections has been about the Brauer category and the categories of invariant tensors for the vector representation of Sp(2n). In this section we discuss two other examples where we have a diagram category which is related to a sequence of categories of invariant tensors.

In the first example we consider the linear representation V of the symmetric group S n associated to its defining representation. The diagram category in this case is the partition category studied in [START_REF] Halverson | Partition algebras[END_REF].

Let I(r, n) = Hom Sn (C, ⊗ r V ) be the space of invariant tensors with the action of S r and let X(r, n) be the set of set partitions of {1, . . . , r} into at most n blocks. Then there is a map X(r, n) → I(r, n) such that the image is a basis. Furthermore this basis is preserved by the action of S r . It follows that the Frobenius character is the homogeneous component of degree r in h n • H, where

H = 1 + h 1 + h 2 + • • • .
As in the case of the Brauer category, this result can be generalised, by considering the tensor powers of the k-th symmetric power of the defining representation. The resulting set X(r, n, k) is then the set of multiset partitions into at most n blocks of the multiset {1, . . . , 1, 2, . . . , 2, . . . , r, . . . , r}, each label occuring precisely k times. The symmetric group S r acts on this set by permuting the labels. The Frobenius character can be obtained using [START_REF] Westbury | On enumeration in classical invariant theory[END_REF]Theorem 1] or alternatively with the calculus of species and is given by h r X • h k (Y ) , h n (H(Y )) Y .

In the second example we consider the adjoint representation V of the general linear group GL(n). In this case the diagrams are Brauer diagrams in which every edge is directed.

For n ≥ 2r let X(r) be the set of permutations with the conjugation action of S r . Its Frobenius character is obtained in [START_REF] Stanley | The stable behavior of some characters of SL(n, C)[END_REF] using character calculations. Our methods give a simple proof. The Frobenius character is Let I(r, n) = Hom GL(n) (C, ⊗ r V ) be the space of invariant tensors with the action of S r . Considering the diagrams we obtain the new result that the Frobenius character of this representation is λ r (λ)≤n s λ * s λ However, for n < 2r it is an open problem to determine a set X(r, n) with a map X(r, n) → I(r, n) such that the image is a basis and is preserved by the action of the long cycle. So we are not able to exhibit an example of the cyclic sieving phenomenon in this case.

2n

  where η 2n ∈ D(0, 2n) is the diagram that consists of n nested arcs. The following properties are easily verified. tr n+1 (α ⊗ id 1 ) = δ tr n α tr n+1 αs n β = tr n αβ tr n+1 αu n β = tr n αβ for α, β diagrams on n strings.
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† We define pivotal and symmetric ideals in[START_REF] Rubey | A combinatorial approach to classical representation theory[END_REF], and restrict ourselves here to down-to-earth language in Definitions 2.10 and 2.11.

Lemma 2.14. We have isomorphisms of vector spaces Hom D Sp(2n) /Pf (n) (r, s) ∼ = Hom D Sp(2n) /Pf (n) (0, r + s) Hom T Sp(2n) (r, s) ∼ = Hom T Sp(2n) (0, r + s).

Let us recall an indexing set for the basis of Hom T Sp(2n) (0, r): Definition 2.15. An n-symplectic oscillating tableau of length r (and final shape ∅) is a sequence of partitions

such that the Ferrers diagrams of two consecutive partitions differ by exactly one cell and every partition µ i has at most n non-zero parts.

Lemma 2.16. Hom T Sp(2n) (0, ⊗ r V ) has a basis indexed by n-symplectic oscillating tableaux.

Proof: This follows immediately from the branching rule for tensoring the defining representation with an irreducible representation of Sp(2n), see [START_REF] Littlewood | Products and plethysms of characters with orthogonal, symplectic and symmetric groups[END_REF]Theorem II].

Next we exhibit a set of diagrams that span Hom D Sp(2n) /Pf (n) (0, r). In fact, this is the key observation.

Definition 2.17. Let d be a diagram in D(0, r). Then an n-crossing in d is a set of n distinct strands such that every pair of strands crosses, i.e., d contains strands

Theorem 2.18. The (n + 1)-noncrossing diagrams form a basis of Hom D Sp(2n) /Pf (n) (0, r).

Proof: We only need to show that the set spans. For each f we write Pf(f ) as a rewrite rule. The term that is singled out is the perfect matching of S in which every pair of strands crosses. The diagrams which cannot be simplified using these rewrite rules are the (n + 1)-noncrossing diagrams. The procedure terminates because the number of pairs of strands which cross decreases.

We can now use a bijection due to Sundaram [START_REF] Sundaram | On the combinatorics of representations of the symplectic group[END_REF]Lemma 8.3] to finish the proof of our main theorem.

Lemma 2.19. For all n and r there is a bijection between the set of n-symplectic oscillating tableaux of length r and the set of (n + 1)-noncrossing diagrams in D(0, r).

Cyclic sieving phenomenon

We now use the results obtained so far to exhibit instances of the cyclic sieving phenomenon: Definition 3.1. Let X be a finite set and let ρ be a cyclic group of order r acting on X. Let P (q) be a polynomial with non-negative integer coefficients such that

where ζ is a primitive r-th root of unity. Then the triple X, ρ, P (q) exhibits the cyclic sieving phenomenon.