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A generalisation of two partition theorems of
Andrews

Jehanne Dousse1†

1LIAFA, Université Paris Diderot - Paris 7, 75205 Paris cedex 13, France

Abstract. In 1968 and 1969, Andrews proved two partition theorems of the Rogers-Ramanujan type which generalise
Schur’s celebrated partition identity (1926). Andrews’ two generalisations of Schur’s theorem went on to become two
of the most influential results in the theory of partitions, finding applications in combinatorics, representation theory
and quantum algebra. In this paper we generalise both of Andrews’ theorems to overpartitions. The proofs use a new
technique which consists in going back and forth from q-difference equations on generating functions to recurrence
equations on their coefficients.

Résumé. En 1968 et 1969, Andrews a prouvé deux identités de partitions du type Rogers-Ramanujan qui généralisent
le célèbre théorème de Schur (1926). Ces deux généralisations sont devenues deux des théorèmes les plus importants
de la théorie des partitions, avec des applications en combinatoire, en théorie des représentations et en algèbre quan-
tique. Dans ce papier, nous généralisons les deux théorèmes de Andrews aux surpartitions. Les preuves utilisent une
nouvelle technique qui consiste à faire des allers-retours entre équations aux q-différences sur les séries génératrices
et équations de récurrence sur leurs coefficients.

Keywords: integer partitions, overpartitions, q-difference equations, recurrences

1 Introduction
A partition of n is a non-increasing sequence of natural numbers whose sum is n. An overpartition of n
is a partition of n in which the first occurrence of a number may be overlined. For example, there are 14
overpartitions of 4: 4, 4, 3+1, 3+1, 3+1, 3+1, 2+2, 2+2, 2+1+1, 2+1+1, 2+1+1, 2+1+1,
1 + 1 + 1 + 1 and 1 + 1 + 1 + 1.

In 1926, Schur [Sch26] proved the following partition identity.

Theorem 1.1 (Schur) Let n be a positive integer. Let D1(n) denote the number of partitions of n into
distinct parts congruent to 1 or 2 modulo 3. Let E1(n) denote the number of partitions of n of the form
n = λ1+ · · ·+λs where λi−λi+1 ≥ 3 with strict inequality if λi+1 ≡ 0 mod 3. ThenD1(n) = E1(n).

For example, for n = 9, the partitions counted by D1(9) are 8 + 1, 7 + 2 and 5 + 4 and the partitions
counted by E1(9) are 9, 8 + 1 and 7 + 2. Thus D1(9) = E1(9) = 3.
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Several proofs of Schur’s theorem have been given using a variety of different techniques such as
bijective mappings [Bes91, Bre80], the method of weighted words [AG93], and recurrences [And67,
And68b, And71].

Schur’s theorem was subsequently generalised to overpartitions by Lovejoy [Lov05], using the method
of weighted words. The case k = 0 corresponds to Schur’s theorem.

Theorem 1.2 (Lovejoy) Let D1(k, n) denote the number of overpartitions of n into parts congruent to 1
or 2 modulo 3 with k non-overlined parts. Let E1(k, n) denote the number of overpartitions of n with k
non-overlined parts, where parts differ by at least 3 if the smaller is overlined or both parts are divisible
by 3, and parts differ by at least 6 if the smaller is overlined and both parts are divisible by 3. Then
D1(k, n) = E1(k, n).

Theorem 1.2 was then proved bijectively by Raghavendra and Padmavathamma [RP09], and using
q-difference equations and recurrences by the author [Dou14].

Andrews extended the ideas of his proofs of Schur’s theorem to prove two much more general theorems
on partitions with difference conditions [And69, And68a]. But before stating these results in their full
generality we need to introduce some notation. Let A = {a(1), ..., a(r)} be a set of r distinct integers
such that

∑k−1
i=1 a(i) < a(k) for all 1 ≤ k ≤ r and the 2r − 1 possible sums of distinct elements of A are

all distinct. We denote this set of sums by A′ = {α(1), ..., α(2r − 1)}, where α(1) < · · · < α(2r − 1).
Let us notice that α(2k) = a(k + 1) for all 0 ≤ k ≤ r − 1 and that any α between a(k) and a(k + 1) has
largest summand a(k). Let N be a positive integer with N ≥ α(2r − 1) = a(1) + · · ·+ a(r). We further
define α(2r) = a(r + 1) = N + a(1). Let AN denote the set of positive integers congruent to some
a(i) mod N ,−AN the set of positive integers congruent to some−a(i) mod N , A′N the set of positive
integers congruent to some α(i) mod N and −A′N the set of positive integers congruent to some −α(i)
mod N. Let βN (m) be the least positive residue of m mod N . If α ∈ A′, let w(α) be the number of
terms appearing in the defining sum of α and v(α) the smallest a(i) appearing in this sum.

To illustrate these notations in the remainder of this paper, it might be useful to consider the example
where a(k) = 2k−1 for 1 ≤ k ≤ r and α(k) = k for 1 ≤ k ≤ 2r − 1.

We are now able to state Andrews’ generalisations of Schur’s theorem.

Theorem 1.3 (Andrews) Let F (−AN ;n) denote the number of partitions of n into distinct parts taken
from −AN . Let G(−A′N ;n) denote the number of partitions of n into parts taken from −A′N of the form
n = λ1 + · · ·+ λs, such that

λi − λi+1 ≥ Nw(βN (−λi)) + v(βN (−λi))− βN (−λi),

and λs ≥ N(w(βN (−λs)− 1). Then F (−AN ;n) = G(−A′N ;n).

Theorem 1.4 (Andrews) Let D(AN ;n) denote the number of partitions of n into distinct parts taken
from AN . Let E(A′N ;n) denote the number of partitions of n into parts taken from A′N of the form
n = λ1 + · · ·+ λs, such that

λi − λi+1 ≥ Nw(βN (λi+1)) + v(βN (λi+1))− βN (λi+1).

Then D(AN ;n) = E(A′N ;n).
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Not only have Andrews’ identities led to a number of important developments in combinatorics [All97,
CL06, Yee08] but they also play a natural role in group representation theory [AO91] and quantum alge-
bra [Oh15].

As Schur’s theorem generalises to overpartitions and the author was able to generalise the particular
case N = 7, r = 3, a(1) = 1, a(2) = 2, a(3) = 4 of Theorems 1.3 and 1.4 in [Dou14], it was interesting
to see whether it was possible to extend Andrews’ theorems in their full generality to overpartitions. We
answer this question by proving the following.

Theorem 1.5 Let F (−AN ; k, n) denote the number of overpartitions of n into parts taken from −AN ,
having k non-overlined parts. Let G(−A′N ; k, n) denote the number of overpartitions of n into parts
taken from −A′N of the form n = λ1 + · · ·+ λs, having k non-overlined parts, such that

λi − λi+1 ≥ Nw
(
βN (−λi)− 1 + χ(λi+1)

)
+ v(βN (−λi))− βN (−λi),

λs ≥ N(w(βN (−λs))− 1),

where χ(λi+1) = 1 if λi+1 is overlined and 0 otherwise. Then F (−AN ; k, n) = G(−A′N ; k, n).

Theorem 1.6 LetD(AN ; k, n) denote the number of overpartitions of n into parts taken fromAN , having
k non-overlined parts. Let E(A′N ; k, n) denote the number of overpartitions of n into parts taken from
A′N of the form n = λ1 + · · ·+ λs, having k non-overlined parts, such that

λi − λi+1 ≥ Nw
(
βN (λi+1)− 1 + χ(λi+1)

)
+ v(βN (λi+1))− βN (λi+1).

Then D(AN ; k, n) = E(A′N ; k, n).

Theorem 1.1 (resp. Theorem 1.2) corresponds to N = 3, r = 2, a(1) = 1, a(2) = 2 in Theorems 1.3
and 1.4 (resp. Theorems 1.5 and 1.6). Again, the case k = 0 of Theorem 1.5 (resp. Theorem 1.6) gives
Theorem 1.3 (resp. Theorem 1.4).

Let us illustrate Theorems 1.5 and 1.6 with examples where N = 7, r = 3, a(1) = 1, a(2) = 2,
a(3) = 4. For Theorem 1.5, the overpartitions of 8 counted byG(−A′7; k, 8) are 8, 8, 5+3 and 5+3. The
overpartitions of 8 into parts congruent to 3, 5 or 6 modulo 7 (counted by F (−A7; k, 8)) are 5 + 3, 5 + 3,
5 + 3 and 5 + 3. In both cases, we have 1 overpartition with 0 non-overlined parts, 2 overpartitions with
1 non-overlined part, and 1 overpartition with 2 non-overlined parts. For Theorem 1.6, the overpartitions
of 4 counted by E(A′7; k, 4) are 4, 4, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1 and
1+ 1+ 1+ 1. The overpartitions of 4 into parts congruent to 1,2 or 4 modulo 7 (counted by D(A7; k, 4))
are 4, 4, 2+ 2, 2+ 2, 2+ 1+ 1, 2+ 1+ 1, 2+ 1+ 1, 2+ 1+ 1, 1+ 1+ 1+ 1 and 1+ 1+ 1+ 1. In both
cases, we have 1 overpartition with 0 non-overlined parts, 3 overpartitions with 1 non-overlined part, 3
overpartitions with 2 non-overlined parts, 2 overpartitions with 3 non-overlined parts and 1 overpartition
with 4 non-overlined parts.

While the statements of Theorems 1.5 and 1.6 resemble those of Andrews’ theorems, the proofs are
considerably more intricate and involve a number of new ideas. The proof of Theorem 1.6 is presented
in its entirety in the paper [Dou15], while the present paper is devoted to an outline of the proof of
Theorem 1.5, which is stated here for the first time. Full details will appear in a future publication. First,
we give the recurrence equation satisfied by the generating function for overpartitions enumerated by
G(−A′N ; k, n) having their largest part ≤ m, using some combinatorial reasoning on the largest part.
Then we prove by induction on r that the limit when m goes to infinity of a function satisfying this
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recurrence equation is equal to
∏r
j=1

(−qN−a(j);qN )∞
(dqN−a(j);qN )∞

, which is the generating function for overpartitions

counted by F (−AN ; k, n). Here we use the classical notation (a; q)n =
∏n−1
j=0 (1− aqj).

The proof of Theorem 1.6 is somewhat similar. First, we give the q-differential equation satisfied by the
generating function for overpartitions enumerated by E(A′N ; k, n), using some combinatorial reasoning
on the smallest part of the overpartition. Then we prove by induction on r that a function satisfying this
q-difference equation is equal to

∏r
j=1

(−qa(j);qN )∞
(dqa(j);qN )∞

, which is the generating function for overpartitions
counted by D(AN ; k, n). However, we will not enter into further details here.

2 The recurrence equation
In this section, we establish the recurrence equation satisfied by the generating function for overpartitions
enumerated by G(−A′N ; k, n) having their largest part ≤ m.

Let n,m ∈ N∗, k ∈ N. Let πm(k, n) denote the number of overpartitions counted by G(−A′N ; k, n)
such that the largest part is≤ m and overlined. Let φm(k, n) denote the number of overpartitions counted
by G(−A′N ; k, n) such that the largest part is ≤ m and non-overlined. Then ψm(k, n) := πm(k, n) +
φm(k, n) is the number of overpartitions counted by G(−A′N ; k, n) with largest part ≤ m.

Lemma 2.1 We have

ψjN−α(m)(k, n)− ψjN−α(m+1)(k, n)

= ψjN−w(α(m))N−v(α(m))(k, n− jN + α(m))

+ψjN−(w(α(m))−1)N−v(α(m))(k − 1, n− jN + α(m)).

(1)

Proof: Let us first prove the following equation:

πjN−α(m)(k, n) = πjN−α(m+1)(k, n)

+ πjN−w(α(m))N−v(α(m))(k, n− jN + α(m))

+ φjN−(w(α(m))−1)N−v(α(m))(k, n− jN + α(m)).

(2)

We break the overpartitions counted by πjN−α(m)(k, n) into two sets : those with largest part < jN −
α(m) and those with largest part equal to jN −α(m). The first set is counted by πjN−α(m+1)(k, n), and
the second by

πjN−w(α(m))N−v(α(m))(k, n− jN + a(m)) + φjN−(w(α(m))−1)N−v(α(m))(k, n− jN + a(m)).

To see this, let us consider an overparition n = λ1 + λ2 + · · · + λs counted by πjN−α(m)(k, n) with
largest part equal to jN − α(m). Now remove its largest part λ1 = jN − α(m). The number partitioned
becomes n− jN + α(m). The largest part was overlined so the number of non-overlined parts is still k.
If λ2 was overlined, then we have

λ2 ≤ λ1 − w(α(m))N − v(α(m)) + α(m)

≤ jN − w(α(m))N − v(α(m)),
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and we obtain an overpartition counted by πjN−w(α(m))N−v(α(m))(k, n − jN + a(m)). If λ2 was not
overlined, then we have

λ2 ≤ λ1 − (w(α(m))− 1)N − v(α(m)) + α(m)

≤ jN − (w(α(m))− 1)N − v(α(m)),

and we obtain an overpartition counted by φjN−(w(α(m))−1)N−v(α(m))(k, n− jN + a(m)).
In the same way we can prove the following

φjN−α(m)(k, n) = φjN−α(m+1)(k, n)

+ πjN−w(α(m))N−v(α(m))(k − 1, n− jN + α(m))

+ φjN−(w(α(m))−1)N−v(α(m))(k − 1, n− jN + α(m)).

(3)

Adding equations (2) and (3) and noting that for all m,n, k, πm(k − 1, n) = φm(k, n) (we can either
overline the largest part or not), we obtain equation (1). 2

We define, for m ≥ 1, |q| < 1, |d| < 1,

gm = gm(q, d) := 1 +

∞∑
n=1

∞∑
k=0

ψm(k, n)qndk,

and for all 0 ≤ k ≤ r − 1, we set g−m(q, d) = (−d)k for all kN ≤ m ≤ (k + 1)N . This definition is
consistent with (1) and the condition that λs ≥ N(w(βN (−λs))− 1).

Thus equation (1) leads to the following recurrence for (gm):

gjN−α(m) = gjN−α(m+1)+q
jN−α(m)gjN−w(α(m))N−v(α(m))

+dqjN−α(m)gjN−(w(α(m))−1)N−v(α(m)).
(4)

Let 1 ≤ k ≤ r+ 1. Adding equations (4) together for 1 ≤ m ≤ 2k−1 − 1, using the fact that α
(
2k−1

)
=

a(k), and after some manipulations in the sums, we obtain the following recurrence(
1− dqjN−a(k)

)
gjN−a(k) = gjN−a(k+1)+q

N−a(k)g(j−1)N−a(1)

+qN−a(k)
(
1− q(j−1)N

)
g(j−1)N−a(k).

(5)

We want to find the recurrence equation satisfied by (g`N−a(1))`∈N. Before doing so, we must recall
some facts about q-binomial coefficients defined by[

m

r

]
q

:=

{
(1−qm)(1−qm−1)...(1−qm−r+1)

(1−q)(1−q2)...(1−qr) if 0 ≤ r ≤ m,
0 otherwise.

They are q-analogues of the binomial coefficients and satisfy q-analogues of the Pascal triangle iden-
tity [Gas90].
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Proposition 2.2 For all integers 0 ≤ r ≤ m,[
m

r

]
q

= qr
[
m− 1

r

]
q

+

[
m− 1

r − 1

]
q

, (6)

[
m

r

]
q

=

[
m− 1

r

]
q

+ qm−r
[
m− 1

r − 1

]
q

. (7)

As q → 1 these equations become Pascal’s identity.
Now by induction on k and using equation (5) we can prove the following.

Lemma 2.3 For 1 ≤ k ≤ r + 1, we have

k−1∏
j=1

(
1− dq`N−a(j)

)
g`N−a(1) = g`N−a(k)

+

k−1∑
j=1

k−j−1∑
m=0

dm
∑

α<a(k)
w(α)=j+m

q`N−α

(
(−1)m−1q`(m−1)N

[
j +m− 1

m− 1

]
q−N

+ (−1)mq`mN
[
j +m

m

]
q−N

)
×
j−1∏
h=1

(
1− q(`−h)N

)
g(`−j)N−a(1).

(8)

Writing u` := g`N−a(1) and setting k = r+1 in Lemma 2.3, we obtain the desired recurrence equation

r∏
j=1

(
1− dq`N−a(j)

)
u` = u`−1

+

r∑
j=1

 r−j∑
m=0

dm
∑

α<a(r+1)
w(α)=j+m

q`N−α

(
(−1)m−1q`(m−1)N

[
j +m− 1

m− 1

]
q−N

+ (−1)mq`mN
[
j +m

m

]
q−N

)
×
j−1∏
h=1

(
1− q(`−h)N

)
u`−j ,

(recN,r)
with the initial conditions u−k = (−d)k for all 0 ≤ k ≤ r − 1.

3 Evaluating lim
`→∞

u` by induction

In this section, we evaluate lim
`→∞

u`, which is the generating function for partitions counted byG(−A′N ; k, n).

To do so, we prove the following theorem by induction on r. The idea of the proof is to start from a func-
tion satisfying (recN,r) and to do some transformations to obtain a function satisfying (recN,r−1) in order
to use the induction hypothesis.
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Theorem 3.1 Let r be a positive integer. Then for every N ≥ α(2r − 1), for every sequence (um)m∈N
satisfying (recN,r) and the initial condition u0 = 1, we have

lim
`→∞

u` =

r∏
k=1

(−qN−a(k); qN )∞
(dqN−a(k); qN )∞

.

Proof: Let us start by the initial case r = 1. Let N ≥ a(1) and (um) such that u0 = 1 and(
1− dq`N−a(1)

)
u` =

(
1 + q`N−a(1)

)
u`−1. (recN,1)

Then

u` =
(−qN−a(1); qN )`
(dqN−a(1); qN )`

.

Taking the limit as ` goes to infinity gives the desired result.
Now assume that Theorem 3.1 is true for some r− 1 ≥ 1. We want to show that it is true for r too. Let

N ≥ α(2r − 1), and (um)m∈N satisfy (recN,r) and the initial condition u0 = 1.
For all m, let

βm := um

m∏
j=1

1− dqjN−a(r)

1− qjN
.

Then β0 = 1 and after some calculation we can show that (βm) satisfies1 +

r∑
j=1

dj−1 ∑
α<a(r)

w(α)=j−1

q−α + dj
∑

α<a(r)
w(α)=j

q−α

 (−1)jqj`N

β`

= β`−1 +

r∑
j=1

r∑
h=1

min(j−1,h−1)∑
k=0

ck,jbh−k,j(−1)h+1qh`Nβ`−j ,

(rec′N,r)

where

ck,j := q−N
k(k+1)

2 −ka(r)
[
j − 1

k

]
q−N

dk,

and

bm,j :=

dm−1 ∑
α<a(r+1)

w(α)=j+m−1

q−α + dm
∑

α<a(r+1)
w(α)=j+m

q−α

[j +m− 1

m− 1

]
q−N

.

Now let us define for all |x| < 1,

f(x) :=

∞∑
m=0

βmx
m.
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Then f(0) = 1 and

(1− x) f(x) =
r∑

m=1

dm−1 ∑
α<a(r)

w(α)=m−1

q−α + dm
∑

α<a(r)
w(α)=m

q−α

+

r∑
j=1

min(j−1,m−1)∑
k=0

ck,jbm−k,jx
jqjmN)

 (−1)m+1f(xqmN ).

(eqN,r)

After some calculation and using properties of q-binomial coefficients we can show that this can be rewrit-
ten as

(1− x) f(x) =
r∑

m=1

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

q−α + dm
∑

α<a(r)
w(α)=j+m

q−α

[j +m− 1

m− 1

]
q−N

× (−1)m+1xjqjmN
m∏
k=1

(
1 + xqkN−a(r)

)
f(xqmN ).

It is thus natural to consider the function

g(x) :=
f(x)∏∞

k=1

(
1 + xqkN−a(r)

) .
We obtain that g(0) = 1 and

(1− x) g(x) =
r∑

m=1

r−1∑
j=0

dm−1 ∑
α<a(r)

w(α)=j+m−1

q−α + dm
∑

α<a(r)
w(α)=j+m

q−α

[j +m− 1

m− 1

]
q−N

× (−1)m+1xjqjmNg(xqmN ).

Now let us turn back to recurrence equations again by writing g(x) =:
∑∞
k=0 skx

k. Then s0 = 1 and

(
1− q`N

) r−1∏
j=1

(
1− dq`N−a(j)

)
s` = s`−1

+

r−1∑
j=1

r−j−1∑
m=0

dm
∑

α<a(r)
w(α)=j+m

q`N−α

(
(−1)m−1q`(m−1)N

[
j +m− 1

m− 1

]
q−N

+ (−1)mq`mN
[
j +m

m

]
q−N

) s`−j .

We are now able to get back to (recN,r−1). Let us define

µ` :=
∏̀
k=1

(
1− qkN

)
s`.
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Then µ0 = 1 and (µ`) satisfies

r−1∏
j=1

(
1− dq`N−a(j)

)
µ` = µ`−1

+

r−1∑
j=1

r−j−1∑
m=0

dm
∑

α<a(r)
w(α)=j+m

q`N−α

(
(−1)m−1q`(m−1)N

[
j +m− 1

m− 1

]
q−N

+ (−1)mq`mN
[
j +m

m

]
q−N

)
×
j−1∏
h=1

(
1− q(`−h)N

)
µ`−j .

(recN,r−1)
We can now use the induction hypothesis. As µ0 = 1 and (µm) satisfies (recN,r−1), we know that

lim
`→∞

µ` =

r−1∏
k=1

(−qN−a(k); qN )∞
(dqN−a(k); qN )∞

.

Therefore by definition of (s`),

lim
`→∞

s` =
1

(qN ; qN )∞

r−1∏
k=1

(−qN−a(k); qN )∞
(dqN−a(k); qN )∞

.

We have
∞∑
m=0

βmx
m = f(x) =

∞∏
k=1

(
1 + xqkN−a(r)

)
g(x) =

∞∏
k=1

(
1 + xqkN−a(r)

) ∞∑
m=0

smx
m. (9)

We multiply both sides of (9) by (1 − x) and we apply Appell’s Comparison Theorem [Die57, p. 101].
We obtain

lim
`→∞

β` =

∞∏
k=1

(
1 + qkN−a(r)

)
lim
`→∞

s` =
(−qN−a(r); qN )∞

(qN ; qN )∞

r−1∏
k=1

(−qN−a(k); qN )∞
(dqN−a(k); qN )∞

.

Thus by definition of (β`), we have

lim
`→∞

u` =

∞∏
j=1

1− qjN

1− dqjN−a(r)
lim
`→∞

β` =
(−qN−a(r); qN )∞
(dqN−a(r); qN )∞

r−1∏
k=1

(−qN−a(k); qN )∞
(dqN−a(k); qN )∞

.

Theorem 3.1 is proved. 2

Thus lim
`→∞

u`, which is the generating function for partitions counted by G(−A′N ; k, n), is equal to∏r
k=1

(−qN−a(k);qN )∞
(dqN−a(k);qN )∞

, which is the generating function for partitions counted by F (−AN ; k, n). This
completes the proof of Theorem 1.5.
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4 Ideas for future research
In [CL06], Corteel and Lovejoy proved an even more general theorem of which both of Andrews’ theo-
rems are particular cases. It would be interesting to generalise it to overpartitions too, but new techniques
might be necessary.

It would also be interesting to see if Theorems 1.5 and 1.6 have connections with representation theory
and quantum algebra like Theorem 1.3 and 1.4.
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