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Equivariant Giambelli formula for
the symplectic Grassmannians
— Pfaffian Sum Formula

Takeshi Ikeda1† and Tomoo Matsumura2‡

1Okayama University of Science, Okayama, Japan
2 KAIST, Daejeon, Korea

Abstract. We prove an explicit closed formula, written as a sum of Pfaffians, which describes each equivariant
Schubert class for the Grassmannian of isotropic subspaces in a symplectic vector space.

Résumé. On démontre une formule close explicite, écrite comme une somme de Pfaffiens, qui décrit toute classe de
Shubert équivariante pour la Grassmannienne des sous-espaces isotropes dans un espace vectoriel symplectique.

Keywords: symplectic Grassmannian, Schubert calculus, Giambelli formula, Pfaffian, signed permutation, k-strict
partition

1 Introduction
The classical Giambelli formula expresses a general Schubert class of the Grassmannian as the determi-
nant of a matrix whose entries are the so-called special Schubert classes. A special Schubert class is
defined by the locus of subspaces having excess intersection with a fixed linear subspace. These classes
also coincide with the Chern classes of the universal quotient bundle over the Grassmannian. Various
extensions of the formula have been obtained. The Giambelli problem consists in finding a “closed for-
mula” for a Schubert class in terms of those special classes, and in the torus equivariant setting it is closely
related to the theory of degeneracy loci of vector bundles (cf. [FP98], [Tam] and the references therein).

For the symplectic or orthogonal Grassmannians, there is a natural notion of special Schubert classes,
which takes into account the isotropic conditions arising from the symplectic or orthogonal form. For
the Grassmannian of maximal isotropic subspaces, the Giambelli formula, first found by Pragacz [Pra91],
expresses a general Schubert class as a Pfaffian whose entries are appropriate quadratic polynomials in
the special Schubert classes. Its natural equivariant version was obtained by Kazarian [Kaz00] in the
context of degeneracy loci, and later it was also proved in [Ike07] and [IN09] in terms of equivariant
cohomology by using more algebraic methods. Similarly to Pragacz’s formula, also Kazarian’s expression
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is given as a single Pfaffian. On the other hand, for the non-maximal isotropic Grassmannians, an answer
to the (non-equivariant) Giambelli problem was given by Buch, Kresch, and Tamvakis [BKTb, BKTa].
Their formula expresses an arbitrary Schubert class as a polynomial in the special Schubert classes, it is
defined by means of Young’s raising operators. We can regard this polynomial expression as a certain
“combinatorial interpolation” between the Jacobi-Trudi determinant and the Schur Pfaffian.

This paper is mainly concerned with the equivariant Giambelli problem for the non-maximal isotropic
Grassmannians in the symplectic case. In [Wil10] , Wilson employed the raising operators to define the
double theta polynomials, and proved that these polynomials satisfy the equivariant Chevalley formula for
the non-maximal symplectic Grassmannian. In [Wil10], it was further conjectured that the double theta
polynomials would be equal to the double Schubert polynomials in [IMN11], a distinguished family of
polynomials which are identified with the equivariant Schubert classes of the flag variety in the infinite
rank setting.

The main result of this paper provides a formula expressing each double Schubert polynomial as-
sociated to the isotropic Grassmannians as a sum of Pfaffians whose entries are Wilson’s double theta
polynomials corresponding to the special Schubert classes. This immediately leads to a proof of Wilson’s
conjecture, because the raising operator formula can be rewritten as a Pfaffian sum by a formal computa-
tion. Our method to prove the main result is to use the left divided difference operators that are essential
in the theory of (double) Schubert polynomials and exist only in its equivariant setup.

This article is a short version of the paper [IM15]. Detailed proofs are omitted. The only content which
is not included in [IM15] is about a combinatorial description of the Bruhat order on a certain parabolic
quotient of the type C Weyl group (Theorem 2.8).

2 Double Schubert polynomials of type C

We first recall the definition and fundamental properties of the double Schubert polynomials introduced
in [IMN11]. Then we discuss the correspondences among the k-strict partitions, the characteristic indices
and the parabolic quotients of the Weyl group.

2.1 Double Schubert polynomials

Weyl group for type C LetW∞ be the infinite hyperoctahedral group which is defined by the generators
si, i = 0, 1, . . ., and the relations

s2
i = e (i ≥ 0), sisj = sjsi (|i− j| ≥ 2),

s0s1s0s1 = s1s0s1s0, sisi+1si = si+1sisi+1 (i ≥ 1).
(2.1)

We identify W∞ with the group of all permutations w of Z\{0} such that w(i) 6= i for only finitely
many i ∈ Z\{0}, and w(i) = w(̄i) for all i where ī := −i. The generators, often referred to as the
simple reflections, are identified with the transpositions s0 = (1, 1̄) and si = (i + 1, i)(i, i+ 1) for
i ≥ 1. Let Wn be the subgroup of W∞ generated by s0, s1, . . . , sn−1. Or equivalently, it consists of
elements w ∈ W∞ such that w(i) = i for all i > n. The one-line notation of an element w ∈ W∞ is
the sequence w = (w(1)w(2)w(3) · · · ). We often write the one-line notation of w ∈ Wn by the finite
sequence (w(1)w(2) · · ·w(n)). The length of w ∈W∞ is denoted by `(w).



Equivariant Giambelli formula for the Symplectic Grassmannians 311

The ring of Double Schubert Polynomials for type C Let x = (x1, x2, . . .) be a sequence of indeter-
minates. Let Qr(x) (r ≥ 0) be the functions defined by the generating function

∞∑
r=0

Qr(x)ur =

∞∏
i=1

1 + xiu

1− xiu
. (2.2)

Let Γ be the ring generated byQr(x) (r ≥ 0). LetR∞ be the polynomial ring Γ[t, z] in the indeterminates
t = (t1, t2, . . .), and z = (z1, z2, . . .) with the coefficients in Γ.

There is a distinguished Z[t]-basis Cw (w ∈ W∞) of R∞ called the double Schubert polynomials of
type C. To characterize this basis, we first define two actions of W∞ on R∞ (the right and left actions),
and then introduce the right and left divided difference operators.

The right action onR∞ as a Z[t]-algebra For each i ≥ 1, define the Z[t]-algebra automorphism szi of
R∞ by

szi (zi) = zi+1, s
z
i (zi+1) = zi, s

z
i (zj) = zj (j 6= i, i+ 1), and szi (Qr(x)) = Qr(x).

Also define the Z[t]-algebra automorphism sz0 ofR∞ by

sz0(z1) = −z1, sz0(zi) = zi (i ≥ 1), and sz0Qr(x1, x2, . . .) = Qr(z1, x1, x2, . . .).

These satisfy the Coxeter relations (2.1), and therefore define an action of W∞ onR∞ as a Z[t]-algebra.

The left action onR∞ as a Z[z]-algebra Consider the involution ω of the ringR∞:

ω(ti) = −zi, ω(zi) = −ti, ω(Qr(x)) = Qr(x).

For each i ≥ 0, we define the Z[z]-algebra automorphism sti of R∞ by sti := ωsziω. In particular, we
have

st0Qr(x1, x2, . . .) = Qr(−t1, x1, x2, . . .).

These satisfy the Coxeter relations (2.1), and therefore define an action of W∞ onR∞ as a Z[z]-algebra.

Divided difference operators We define the right and left divided difference operators respectively by

∂if =
f − szi f
ω(αi)

and δif =
f − stif
αi

(i ≥ 0, f ∈ R∞),

where αi (i ≥ 0) are the simple roots defined by α0 = 2t1 and αi = ti+1 − ti for all i ≥ 1.

Theorem 2.1 ([IMN11]) There exists a unique Z[t]-free basis {Cw(z, t;x) | w ∈W∞} ofR∞ satisfying
the equations

∂iCw =

{
Cwsi if `(wsi) < `(w)

0 otherwise
and δiCw =

{
Csiw if `(siw) < `(w)

0 otherwise
, (2.3)

for all i ≥ 0, and such that Cw has no constant term except Ce = 1.



312 Takeshi Ikeda and Tomoo Matsumura

2.2 The k-Grassmannian elements and the invariant subring R(k)
∞

Let W(k) be the subgroup of W∞ generated by all si, i 6= k. Let W (k)
∞ be the set of minimum length

coset representatives for W∞/W(k), and it is given by

W (k)
∞ = {w ∈W∞ | `(wsi) > `(w) for all i 6= k}.

We denote W (k)
∞ ∩Wn by W (k)

n . An element of W (k)
∞ is called k-Grassmannian and it is given by the

following one-line notation:

w = (v1 · · · vk|ζ1 · · · ζsu1u2 · · · );
0 < v1 < · · · < vk, ζ1 < · · · < ζs < 0 < u1 < u2 < · · · .

(2.4)

We insert a vertical line after vk to indicate that w is regarded as a k-Grassmannian element. For example,
(13|4̄256 · · · ) is a 2-Grassmannian element in W∞.

Lemma 2.2 Let w ∈W (k)
∞ . We have `(s0w) < `(w) if and only if

(L0) w = (· · · | · · · 1̄ · · · ), i.e., ζs = 1.

Suppose i ≥ 1. Then `(siw) < `(w) if and only if one of the following holds:

(L1) w = (· · · | · · · i+ 1 · · · i · · · ), i.e., ζp = i+ 1 and uq = i for some p and q;

(L2) w = (· · · i · · · | · · · i+ 1 · · · ), i.e., ζp = i+ 1 and vq = i for some p and q;

(L3) w = (· · · i+ 1 · · · | · · · i · · · ), i.e., up = i and vq = i+ 1 for some p and q.

In particular, for any i ∈ {0, 1, 2, . . . , }, `(siw) = `(w)− 1 implies siw ∈W (k)
∞ .

LetR(k)
∞ be the Z[t]-subalgebra ofR∞ fixed by the right action of W(k):

R(k)
∞ := {f ∈ R∞ | szi (f) = f (∀i 6= k)}.

We can show that R(k)
∞ =

⊕
w∈W (k)

∞
Z[t]Cw. Furthermore, the double Schubert polynomials Cw for the

k-Grassmannian elements w ∈W (k)
∞ are characterized in terms of the left divided difference operators as

follows. For f ∈ R∞, let f |∅ denote the polynomial in Z[t] obtained from f by the substitutions xi 7→ 0
and zi 7→ ti for all i.

Proposition 2.3 If a family Fw, w ∈W (k)
∞ of elements ofR(k)

∞ satisfies the following conditions

δiFw =

{
Fsiw if `(siw) < `(w)

0 if `(siw) > `(w)
; (2.5)

Fw|∅ = δw,e , (2.6)

then Fw = Cw for all w ∈W (k)
∞ .
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2.3 The k-strict partitions
A partition λ is a sequence of non-increasing non-negative integers (λ1, λ2, . . . ) where only finitely many
λi’s are positive. It is called k-strict if no part greater than k is repeated. Let P(k)

∞ be the set of all k-
strict partitions. Let P(k)

n ⊂ P(k)
∞ be the subset of all k-strict partitions whose Young diagrams fit in the

(n − k) × (n + k) rectangle. We often denote λ by a finite sequence (λ1, . . . , λr), assuming λi = 0 for
all i > r, and also denote the sum of the positive entries by |λ|.

Lemma 2.4 ([BKTb]) There is a bijection P(k)
∞ ∼= W

(k)
∞ (λ↔ w

(k)
λ ) such that |λ| = `(w

(k)
λ ).

We describe the bijection below. Let λ = (λ1, λ2, . . . ) ∈ P(k)
∞ . Let s be an index such that λs > k and

λs+1 ≤ k. Let ζi := λi − k for i ∈ {1, . . . , s}. Let µ = (µ1, . . . , µk) be the conjugate of the partition
(λs+1, λs+2, . . . ). For i ∈ {1, . . . , k}, define

vi = s+ µk+1−i + i− ]{p | ζp > s+ µk+1−i + i}.

The signed permutation wλ is given by the one-line notation (2.4) where u1, u2, . . . are the increasing
positive integers determined uniquely by v and ζ.

Conversely, let w ∈ W
(k)
∞ with the one-line notation (2.4). Define a partition ν = (ν1, ν2, . . . ) by

νi = ]{p | vp > ui}. Then a k-strict partition λ defined by setting λi = ζi+k if 1 ≤ i ≤ s and λi = νi−s
if s+ 1 ≤ i.

Remark 2.5 By the bijection in Lemma 2.4, the natural Bruhat order on W (k)
∞ does not correspond to

the order on P(k)
∞ defined by inclusions of Young diagrams. For example, consider 1-strict partitions

λ = (21) and µ = (4). The corresponding permutations are w(1)
λ = (31̄24) = s2s0s1 and w(1)

µ =

(13̄24) = s2s1s0s1 respectively. We see that w(1)
λ ≤ w

(1)
µ , while λ 6⊂ µ.

2.4 Characteristic index and Bruhat order on W
(k)
∞

The following indexing set for W (k)
∞ turns out to be useful for both the understanding of Bruhat order and

the computation in the left divided difference operators.

Definition 2.6 (Characteristic index) For each w ∈W (k)
∞ with the one-line notation (2.4), we define the

associated characteristic index by

χ = (χ1, χ2, . . . ) = (ζ1 − 1, ζ2 − 1, . . . , ζs − 1,−u1,−u2, . . . ).

In particular, if w ∈W (k)
n , then χi = −i− k for all i > n− k.

If χ and λ are the characteristic index and the k-strict partition associated to w respectively, then we
have χj = λj − k − j + ]{i | i < j, λi + λj > 2k + j − i}.

For a strictly decreasing sequence χ = (χ1, χ2, . . . ) of integers, let

bχi =

{
χi + 1 if χi ≥ 0

−χi if χi < 0,
for all i = 1, 2, . . . .
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Definition 2.7 Let Ξ
(k)
∞ be the set of all strictly decreasing sequences χ = (χ1, χ2, . . . ) of integers such

that bχi ’s are all distinct, {1, 2, . . . }\{bχi , i = 1, 2, . . . } is a finite set of cardinality k, and χi = −i−k for
sufficiently large i. Let Ξ

(k)
n be the subset of Ξ

(k)
∞ consisting of χ such that χi = −i− k for all i > n− k.

Define a partial order on Ξ
(k)
∞ by

χ ≤ χ′ if and only if χi ≤ χ′i all i = 1, 2, . . . .

Theorem 2.8 The map W (k)
∞ → Ξ

(k)
∞ associating the characteristic indices is an order preserving bijec-

tion. Furthermore this map also induces an order preserving bijection W (k)
n
∼= Ξ

(k)
n .

The proof of this theorem is postponed until Section 3.3.

Example 2.9 Let λ and µ be the partitions given in Remark 2.5. The corresponding characteristic indices
are χλ = (0,−2,−4) and χµ = (2,−2,−4) respectively. We find χλ ≤ χµ. This verifies Theorem 2.8
since we know wλ ≤ wµ from Remark 2.5.

3 Equivariant Schubert classes of symplectic Grassmannians
We explain the fact that the double Schubert polynomials represent the equivairant Schubert classes.

3.1 Flag varieties of type C

LetG = Sp2n(C) be the complex symplectic group of rank n. LetB be a Borel subgroup ofG, and T the
maximal torus contained in B (see [IMN11] for the precise conventions). The flag variety F ln is defined
as the quotient space G/B. The Weyl group NG(T )/T is identified with Wn. For each w ∈ Wn, there
is the point ew in F ln. Let B− be the Borel subgroup such that B ∩ B− = T . The Schubert variety Xw

is defined as the Zariski closure of B−-orbit of the point ew ∈ F ln. The codimension of Xw is precisely
the length `(w) of w. Since Xw is a T -stable subvariety of F ln it defines the fundamental class [Xw]T
in the integral T -equivariant cohomology ring H∗T (F ln). We call [Xw]T the equivariant Schubert class
associated to w ∈Wn. We regard H∗T (F ln) as a Z[t]-algebra by identifying H∗T (pt) = Z[t1, . . . , tn] and
defining the action of ti to be trivial for all i > n.

Theorem 3.1 ([IMN11]) There is a canonical Z[t]-algebra homomorphism πn : R∞ −→ H∗T (F ln)
such that πn sends Cw(z, t;x) to [Xw]T if w ∈Wn and to zero if w 6∈Wn.

3.2 Symplectic Grassmannian and its Schubert varieties
We fix a non-negative integer k. For any positive integer n ≥ k, let SGk

n denote the Grassmannian of
(n − k)-dimensional isotropic subspaces in C2n equipped with a symplectic form. There is a maximal
parabolic subgroup Pk of the symplectic group G = Sp2n(C) such that SGk

n can be realized as the
homogeneous space G/Pk.

Let e1, . . . , en, e
∗
1, . . . , e

∗
n be a standard symplectic basis of C2n, i.e., define the symplectic form by

〈ei, ej〉 = 〈e∗i , e∗j 〉 = 0, 〈ei, e∗j 〉 = δij . For 1 ≤ i ≤ n, define a complete flag

F • : Fn ⊂ · · · ⊂ F 1 ⊂ F 1̄ ⊂ · · · ⊂ F n̄ (3.1)
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by F i = 〈ei, . . . , en〉 and F i = 〈e∗i , . . . , e∗1〉 + F 1. For each λ ∈ P(k)
n , the corresponding Schubert

variety Ωλ with respect to F • can be defined as

Ωλ := {V ∈ SGk
n | dim(V ∩ Fw

(k)
λ (k+j)) ≥ j (1 ≤ j ≤ n− k)}. (3.2)

In particular, the special Schubert varieties are the ones associated to one-line k-strict partitions:

Ωr = {V ∈ SGk
n | dim(V ∩ F r−k−1) ≥ 1},

for 1 ≤ r ≤ n+ k. Their classes [Ωr]T are called the special Schubert classes. They are equal to the r-th
equivariant Chern classes cr(Q) of the universal quotient bundle Q over SGk

n. For 1 ≤ j ≤ n − k, we
have

dimFw
(k)
λ (k+j) = n− χj . (3.3)

This explains how naturally the characteristic index is defined.
There is the following commutative diagram :

R(k)
∞

π(k)
n

��

// R∞

πn

��
H∗T (SGk

n)
p∗

// H∗T (F ln)

where the horizontal arrow p∗ in the second row is the pullback of the natural projection p : F ln → SGk
n

and π(k)
n is obtained by restricting πn toR(k)

∞ . If λ ∈ P(k)
n , we have p∗[Ωλ]T = [X

w
(k)
λ

]T and

π(k)
n (C

w
(k)
λ

(z, t;x)) = [Ωλ]T .

In particular, the special Schubert class [Ωr]T of degree r is the image of C
w

(k)
r

(z, t;x) where w(k)
r is the

element of W (k)
∞ corresponding to the partition with r boxes in one row.

3.3 Proof of Theorem 2.8
By the definition of the characteristic index, it is clear that the map is a bijection. Choose n such that
w,w′ ∈ W (k)

n . Let χ and χ′ be the characteristic indices of w and w′ respectively. Let λ and λ′ be the
strict partitions corresponding to w and w′ respectively. We reindex the flag F • defined in (3.1), and
consider the complete flag U• : 0 = Un ⊂ · · ·Un−1 · · · ⊂ U0 ⊂ U−1 ⊂ · · · ⊂ U−n = C2n where for
each i ∈ {1, 2, . . . , n}, U−i = F ī and U i = F i−1. Note that dimU i = n − i for all −n ≤ i ≤ n by
(3.3). Then the Schubert variety Ωλ is given by

Ωλ = {V ∈ SGk
n | dim(V ∩ Uχi) ≥ i, i = 1, . . . , n− k}.

It is well-known that Ωλ ⊃ Ωλ′ if and only if w ≤ w′. Therefore w ≤ w′ if and only if, for all
i = 1, . . . , n− k, we have

Uχ
′
i ⊂ Uχi i.e. χi ≤ χ′i.
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4 Pfaffian sum formula for the equivariant Schubert classes
4.1 Double theta polynomials

Our goal is to give an explicit closed formula to describe Cw(z, t;x) (w ∈W (k)
∞ ) as a polynomial in terms

of the double Schubert polynomials Cwr (z, t;x) corresponding to the special classes [Ωr]T .

Definition 4.1 Define kϑ
(l)
r (x, z|t) for l, r ≥ 0 by

∞∑
r=0

kϑ
(l)
r (x, z|t) · ur =

∞∏
i=1

1 + xiu

1− xiu

k∏
i=1

(1 + ziu)

l∏
i=1

(1− tiu),

∞∑
r=0

kϑ
(−l)
r (x, z|t) · ur =

∞∏
i=1

1 + xiu

1− xiu

k∏
i=1

(1 + ziu)

l∏
i=1

1

1 + tiu
.

For r < 0, we set kϑ
(l)
r (x, z|t) = 0. We omit k when it is made clear by the context. Under πn, the

indeterminates zi correspond to the Chern roots of the tautological bundles and those theta polynomials

kϑ
(l)
r (x, z|t) map to Chern classes of certain virtual bundles. In particular, Wilson in [Wil10, Prop. 6]

proved
Cwr (z, t;x) = kϑ

(r−k−1)
r (x, z|t). (4.1)

Although the above definition of the double theta polynomials appears slightly different from the one in
Wilson’s thesis [Wil10], one recovers Wilson’s definition after applying appropriate changes of indices.
See [IM15] for details. We can prove the following lemma from the definitions by direct computations.

Lemma 4.2 (a) For all i ≥ 0, we have δiϑ
(l)
r = 0 if l 6= ±i and δiϑ

(l)
r = ϑ

(l−1)
r−1 if l = ±i.

(b) For i 6= 0, we have δi(ϑ
(i)
r · ϑ(−i)

s ) = ϑ
(i−1)
r−1 · ϑ

(−i−1)
s + ϑ

(i−1)
r · ϑ(−i−1)

s−1 .

4.2 Multi Schur-Pfaffian
For each i ≥ 1, let c(i) be an infinite sequence of indeterminates c(i)r , r ∈ Z. Consider the polynomial
ring Z[c] := Z[c

(i)
r , i ≥ 1, r ∈ Z]. The multi Schur-Pfaffian

Pf[c(1)
r1 . . . c

(m)
rm ] ∈ Z[c]

is defined as follows:

• for m = 1 we set Pf[c
(1)
r ] = c

(1)
r .

• for m = 2, we set Pf[c
(1)
r1 c

(2)
r2 ] = c

(1)
r1 c

(2)
r2 + 2

∑r2
s=1(−1)sc

(1)
r1+sc

(2)
r2−s.

• for any odd m ≥ 3, we set Pf[c
(1)
r1 · · · c

(m)
rm ] =

∑m
s=1(−1)s−1c

(s)
rs · Pf[c

(1)
r1 · · · ĉ

(s)
rs · · · c

(m)
rm ].

• for any even m ≥ 4, we set Pf[c
(1)
r1 . . . c

(m)
rm ] =

∑m
s=2(−1)sPf[c

(1)
r1 c

(s)
rs ] · Pf[c

(2)
r2 . . . ĉ

(s)
rs · · · c

(m)
rm ].

The following properties follow from the above definition of Pfaffian by the induction on m.
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Proposition 4.3

(1) If Pf[c
(l)
r c

(l)
r ] = 0, then we have Pf[c

(l1)
r1 · · · c

(l)
r c

(l)
r · · · c(lm)

rm ] = 0.

(2) If Pf[c
(l)
r c

(l)
s ] + Pf[c

(l)
s c

(l)
r ] = 0, then we have

Pf[c(l1)
r1 . . . c(l)r c

(l)
s · · · c(im)

rm ] + Pf[c(l1)
r1 . . . c(l)s c

(l)
r · · · c(lm)

rm ] = 0.

4.3 Pfaffian sum formula (Main Theorem)
Definition 4.4 For all (r1, . . . , rm), (l1, . . . , lm) ∈ Zm, let

Pf
[
ϑ(l1)
r1 ϑ(l2)

r2 · · ·ϑ
(lm)
rm

]
:= Pf

[
c(1)
r1 c

(2)
r2 · · · c

(m)
rm

]∣∣∣
c=ϑ(l)

where |c=ϑ(l) means that we substitute ϑ(li)
s for c(i)s for all i ∈ {1, . . . ,m} and s ∈ Z.

Let ∆ = {(i, j) | 1 ≤ i < j ≤ n−k}. Define a subset D(λ) of ∆ by D(λ) := {(i, j) ∈ ∆ | χi+χj <
0}. The main result of this paper is the following.

Theorem 4.5 (Main Theorem) Let λ be a k-strict partition in P(k)
n . We have

C
w

(k)
λ

=
∑

I⊂D(λ)

Pf
[
ϑ

(χ1)

λ1+aI1
· · ·ϑ(χn−k)

λn−k+aIn−k

]
, (4.2)

where I runs over all subsets of D(λ) and aIs = #{j | (s, j) ∈ I} −#{i | (i, s) ∈ I}.

Example 4.6 Let k = 1, n = 5. Let λ = (5, 3, 2, 1) be a k-strict partition. Then w(1)
λ = 5|4̄2̄1̄3 and

D(λ) = {(2, 4), (3, 4)}. We have

C
w

(1)
λ

= Pf[ϑ
(3)
5 ϑ

(1)
3 ϑ

(0)
2 ϑ

(−3)
1 ] + Pf[ϑ

(3)
5 ϑ

(1)
4 ϑ

(0)
2 ϑ

(−3)
0 ] + Pf[ϑ

(3)
5 ϑ

(1)
3 ϑ

(0)
3 ϑ

(−3)
0 ].

Once we read the formula in terms of raising operators, the following corollary is immediate.

Corollary 4.7 If D(λ) = ∆, in particular, if λ is contained in the (n − k) × k rectangle, then C
w

(k)
λ

is a single determinant det(ϑ
(χi)
λi+j−i)1≤i,j≤n−k ([Tam, §1]). If D(λ) = ∅, in particular, if λ is a strict

partition containing the (n− k)× k rectangle, then C
w

(k)
λ

is a single Pfaffian Pf[ϑ
(χ1)
λ1
· · ·ϑ(χn−k)

λn−k
].

In the case when λ is contained in the (n− k)× k rectangle, the result was proved by Wilson [Wil10].

4.4 Related results
Anderson and Fulton [AF] defined a notion of vexillary signed permutation in type B,C, and D. They
showed the double Schubert polynomials associated to vexillary signed permutations are given by explicit
Pfaffian formulas. Naruse [Nar] also independently proved a formula that expresses the corresponding
double Schubert polynomials as a specialization of the factorial Q- and P -functions. Since our formula
also expresses some Schubert classes as single Pfaffians, there is an overlap between our results and the
results of [AF]. However, not all k-Grassmannian permutations are vexillary and there are non-vexillary
k-Grassmannian permutations whose corresponding classes are written as single Pfaffians, e.g. 13|5̄4̄2 is
not vexillary but C13|5̄4̄2 is a single Pfaffian as above.
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5 Proof of Main Theorem

5.1 Key results on multi Schur-Pfaffian with entries ϑ
(l)
r

The proof of our main theorem is essentially based on the following two propositions. We can show them
by using the inductive definition of the multi Schur-Pfaffian together with Lemma 4.2.

Proposition 5.1 Suppose l ≥ 0 and r > k + l. Then Pf[ϑ
(l1)
r1 · · ·ϑ

(l)
r ϑ

(l)
r · · ·ϑ(lm)

rm ] = 0.

Proposition 5.2 (a) Let i ≥ 0. If lp 6= ±i for all p ∈ {1, . . . ,m}, then δiPf[ϑ
(l1)
r1 · · ·ϑ

(lm)
rm ] = 0.

(b) Let i ≥ 0. Suppose that lp ∈ {±i} for some p ∈ {1, . . . ,m} and that lq 6∈ {±i} for all q 6= p.

δiPf[ϑ(l1)
r1 · · ·ϑ

(lp)
rp · · ·ϑ

(lm)
rm ] = Pf[ϑ(l1)

r1 · · ·ϑ
(lp−1)
rp−1 · · ·ϑ(lm)

rm ].

(c) Let i > 0. Suppose that lp = i and lq = −i for some p < q and that ls 6= ±i for all s 6∈ {p, q}.
Then we have

δiPf[ϑ(l1)
r1 · · ·ϑ

(i)
rp · · ·ϑ

(−i)
rq · · ·ϑ(lm)

rm ]

= Pf[ϑ(l1)
r1 · · ·ϑ

(i−1)
rp−1 · · ·ϑ(−i−1)

rq · · ·ϑ(lm)
rm ] + Pf[ϑ(l1)

r1 · · ·ϑ
(i−1)
rp · · ·ϑ(−i−1)

rq−1 · · ·ϑ(lm)
rm ].

5.2 Key lemma

For w ∈W (k)
n , we denote the corresponding function of the right hand side of (4.2) by Θ

(n,k)
w . The group

W
(k)
n has a unique longest element denoted by w(n,k)

max , which is known to be of order two. Then we can
define an involution W (k)

n → W
(k)
n (w 7→ w∨) by w∨ = ww

(n,k)
max . For w ∈ W∞, let δw := δsi1 · · · δsi`

where w = si1 · · · si` is a reduced word expression.

Lemma 5.3 Let w ∈W (k)
n and w(n,k)

max the longest element in W (k)
n . We have Θ

(n,k)
w = δw∨Θ

(n,k)

w
(n,k)
max

.

Proof: Let λ ∈ P(k)
n be the k-strict partition corresponding to w ∈W (k)

n .We proceed by the induction on
`(w∨). The claim obviously holds if `(w∨) = 0. Suppose `(w∨) ≥ 1. Then there is i ∈ {0, 1, . . . , n− 1}
such thatw = siwλ′ ∈W (k)

n for some λ′ ∈ P(k)
n satisfying `(λ′) = `(λ)+1. By the induction hypothesis

we have

δw∨
λ′

Θ
(n,k)

w
(n,k)
max

=
∑

I⊂D(λ′)

Pf
[
ϑ

(χ′1)

λ′1+aI1
· · ·ϑ(χ′n−k)

λ′n−k+aIn−k

]
, (5.1)

where χ′ = (χ′1, . . . , χ
′
n−k) is the characteristic index of λ′. Lemma 2.2 gives the 4 possible cases of the

characteristic index χ′ in terms of χ. In each case, we apply δi to the right hand side of (5.1) by using
Proposition 5.2 and obtain Θ

(n,k)
w . Since δw∨ = δiδw∨

λ′
, the desired formula holds. 2
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5.3 Proof of Main Theorem
First note that the polynomial defined by Θ

(n,k)
w is independent of n, i.e., for all m ≥ n, and w ∈W (k)

n ⊂
W

(k)
m , we have Θ

(m,k)
w = Θ

(n,k)
w . We can see this fact from the definition of the multi-Schur Pfaffian.

Thus, for each w ∈W (k)
∞ , we can define Θw to be Θ

(n,k)
w by choosing an n so such that w ∈W (k)

n . Proof
of the main theorem is completed if we prove the following.

Proposition 5.4 Let w ∈W (k)
∞ . We have Θw = Cw.

Proof: By Proposition 2.3, it suffices to show that the family of functions Θw (w ∈ W (k)
∞ ) satisfies (2.5)

and (2.6).
By observing that `(siw) = `(w) − 1 implies δiδw∨ = δ(siw)∨ , the first half of the condition (2.5)

follows from Lemma 5.3. For the second half of the condition (2.5), first we see that δjΘw
(n,k)
max

= 0 for
all j 6= k from Proposition 5.1 and Proposition 5.2 (a). Now the claim follows from

• If `(siw) = `(w) + 1 and siw ∈W (k)
∞ , then δiδw∨ = 0.

• If `(siw) = `(w) + 1 and siw 6∈W (k)
∞ , then there exists j 6= k such that δiδw∨ = δw∨δj .

It remains to show that the condition (2.6) holds. It is obvious that Θe|e = 1. For w 6= 0, we expand
Θw as a polynomial in terms of the ϑ-functions ϑ(l)

r by using the definition of Pfaffian. Note that each
monomial contains ϑ(χ1)

λ1+aI1+j
as its first factor. We finish the proof by showing the substitution makes this

factor vanish by using the following easy observation: ϑ(l)
m |∅ = 0 if max{l + k, 0} < m. 2

5.4 An alternative proof of Main Theorem
Let wn,0 be the longest element in Wn. In [IMN11, Theorem 1.2], the authors proved that Cwn,0 can be
obtained from the (factorial) Q-function by a certain specialization of variables. In terms of Pfaffian and
the theta polynomials kϑlr := kϑ

l
r(x, z|t), we have

Cwn,0(x, z|t) = Pf
[
n−1ϑ

(n−1)
2n−1 n−2ϑ

(n−2)
2n−3 · · · 1ϑ

(1)
3 0ϑ

(0)
1

]
.

Proposition 5.2 and Proposition 5.1 are valid even when the values of k of ϑ’s are distinct in the Pfaffian.
It turns out that the following extra relation of kϑlr allows us to derive the Pfaffian sum formula of C

w
(n,k)
max

by consecutively applying divided difference operators to Cwn,0 : if l ≥ 0 and k > 0,

kϑ
(l)
r = k−1ϑ

(l+1)
r + (tl+1 + zk) · k−1ϑ

(l)
r−1.

Thus Lemma 5.3 implies the main theorem by Theorem 2.1. See [IM15, Section 8]) for the detail.
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