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We prove an explicit closed formula, written as a sum of Pfaffians, which describes each equivariant Schubert class for the Grassmannian of isotropic subspaces in a symplectic vector space.

Résumé. On démontre une formule close explicite, écrite comme une somme de Pfaffiens, qui décrit toute classe de Shubert équivariante pour la Grassmannienne des sous-espaces isotropes dans un espace vectoriel symplectique.

Introduction

The classical Giambelli formula expresses a general Schubert class of the Grassmannian as the determinant of a matrix whose entries are the so-called special Schubert classes. A special Schubert class is defined by the locus of subspaces having excess intersection with a fixed linear subspace. These classes also coincide with the Chern classes of the universal quotient bundle over the Grassmannian. Various extensions of the formula have been obtained. The Giambelli problem consists in finding a "closed formula" for a Schubert class in terms of those special classes, and in the torus equivariant setting it is closely related to the theory of degeneracy loci of vector bundles (cf. [START_REF] Fulton | Schubert varieties and degeneracy loci[END_REF], [Tam] and the references therein).

For the symplectic or orthogonal Grassmannians, there is a natural notion of special Schubert classes, which takes into account the isotropic conditions arising from the symplectic or orthogonal form. For the Grassmannian of maximal isotropic subspaces, the Giambelli formula, first found by Pragacz [START_REF] Pragacz | Algebro-geometric applications of Schur Sand Q-polynomials[END_REF], expresses a general Schubert class as a Pfaffian whose entries are appropriate quadratic polynomials in the special Schubert classes. Its natural equivariant version was obtained by Kazarian [Kaz00] in the context of degeneracy loci, and later it was also proved in [START_REF] Ikeda | Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian[END_REF] and [START_REF] Ikeda | Excited Young diagrams and equivariant Schubert calculus[END_REF] in terms of equivariant cohomology by using more algebraic methods. Similarly to Pragacz's formula, also Kazarian's expression is given as a single Pfaffian. On the other hand, for the non-maximal isotropic Grassmannians, an answer to the (non-equivariant) Giambelli problem was given by Buch, Kresch, and Tamvakis [BKTb, BKTa]. Their formula expresses an arbitrary Schubert class as a polynomial in the special Schubert classes, it is defined by means of Young's raising operators. We can regard this polynomial expression as a certain "combinatorial interpolation" between the Jacobi-Trudi determinant and the Schur Pfaffian.

This paper is mainly concerned with the equivariant Giambelli problem for the non-maximal isotropic Grassmannians in the symplectic case. In [START_REF] Wilson | Equivariant Giambelli Formulae for Grassmannians[END_REF] , Wilson employed the raising operators to define the double theta polynomials, and proved that these polynomials satisfy the equivariant Chevalley formula for the non-maximal symplectic Grassmannian. In [START_REF] Wilson | Equivariant Giambelli Formulae for Grassmannians[END_REF], it was further conjectured that the double theta polynomials would be equal to the double Schubert polynomials in [START_REF] Ikeda | Double Schubert polynomials for the classical groups[END_REF], a distinguished family of polynomials which are identified with the equivariant Schubert classes of the flag variety in the infinite rank setting.

The main result of this paper provides a formula expressing each double Schubert polynomial associated to the isotropic Grassmannians as a sum of Pfaffians whose entries are Wilson's double theta polynomials corresponding to the special Schubert classes. This immediately leads to a proof of Wilson's conjecture, because the raising operator formula can be rewritten as a Pfaffian sum by a formal computation. Our method to prove the main result is to use the left divided difference operators that are essential in the theory of (double) Schubert polynomials and exist only in its equivariant setup.

This article is a short version of the paper [START_REF] Ikeda | Pfaffian sum formula for symplectic Grassmannians[END_REF]. Detailed proofs are omitted. The only content which is not included in [START_REF] Ikeda | Pfaffian sum formula for symplectic Grassmannians[END_REF] is about a combinatorial description of the Bruhat order on a certain parabolic quotient of the type C Weyl group (Theorem 2.8).

Double Schubert polynomials of type C

We first recall the definition and fundamental properties of the double Schubert polynomials introduced in [START_REF] Ikeda | Double Schubert polynomials for the classical groups[END_REF]. Then we discuss the correspondences among the k-strict partitions, the characteristic indices and the parabolic quotients of the Weyl group.

Double Schubert polynomials

Weyl group for type C Let W ∞ be the infinite hyperoctahedral group which is defined by the generators s i , i = 0, 1, . . ., and the relations

s 2 i = e (i ≥ 0), s i s j = s j s i (|i -j| ≥ 2), s 0 s 1 s 0 s 1 = s 1 s 0 s 1 s 0 , s i s i+1 s i = s i+1 s i s i+1 (i ≥ 1).
(2.1)

We identify W ∞ with the group of all permutations w of Z\{0} such that w(i) = i for only finitely many i ∈ Z\{0}, and w(i) = w( ī) for all i where ī := -i. The generators, often referred to as the simple reflections, are identified with the transpositions s 0 = (1, 1) and s i = (i + 1, i)(i, i + 1) for i ≥ 1. Let W n be the subgroup of W ∞ generated by s 0 , s 1 , . . . , s n-1 . Or equivalently, it consists of elements w ∈ W ∞ such that w(i) = i for all i > n. The one-line notation of an element w ∈ W ∞ is the sequence w = (w(1)w(2)w(3) • • • ). We often write the one-line notation of w ∈ W n by the finite sequence (w(1)w(2)

• • • w(n)). The length of w ∈ W ∞ is denoted by (w).
The ring of Double Schubert Polynomials for type C Let x = (x 1 , x 2 , . . .) be a sequence of indeterminates. Let Q r (x) (r ≥ 0) be the functions defined by the generating function

∞ r=0 Q r (x)u r = ∞ i=1 1 + x i u 1 -x i u . (2.2)
Let Γ be the ring generated by Q r (x) (r ≥ 0). Let R ∞ be the polynomial ring Γ[t, z] in the indeterminates t = (t 1 , t 2 , . . .), and z = (z 1 , z 2 , . . .) with the coefficients in Γ.

There is a distinguished

Z[t]-basis C w (w ∈ W ∞ ) of R ∞ called the double Schubert polynomials of type C.
To characterize this basis, we first define two actions of W ∞ on R ∞ (the right and left actions), and then introduce the right and left divided difference operators.

The right action on R ∞ as a Z[t]-algebra For each i ≥ 1, define the Z[t]-algebra automorphism s z i of R ∞ by s z i (z i ) = z i+1 , s z i (z i+1 ) = z i , s z i (z j ) = z j (j = i, i + 1), and 
s z i (Q r (x)) = Q r (x). Also define the Z[t]-algebra automorphism s z 0 of R ∞ by s z 0 (z 1 ) = -z 1 , s z 0 (z i ) = z i (i ≥ 1), and s z 0 Q r (x 1 , x 2 , . . .) = Q r (z 1 , x 1 , x 2 , . . .).
These satisfy the Coxeter relations (2.1), and therefore define an action of W ∞ on R ∞ as a Z[t]-algebra.

The left action on R ∞ as a Z[z]-algebra Consider the involution ω of the ring R ∞ :

ω(t i ) = -z i , ω(z i ) = -t i , ω(Q r (x)) = Q r (x).
For each i ≥ 0, we define the Z[z]-algebra automorphism s t i of R ∞ by s t i := ωs z i ω. In particular, we have

s t 0 Q r (x 1 , x 2 , . . .) = Q r (-t 1 , x 1 , x 2 , .
. .). These satisfy the Coxeter relations (2.1), and therefore define an action of W ∞ on R ∞ as a Z[z]-algebra.

Divided difference operators

We define the right and left divided difference operators respectively by

∂ i f = f -s z i f ω(α i )
and

δ i f = f -s t i f α i (i ≥ 0, f ∈ R ∞ ),
where α i (i ≥ 0) are the simple roots defined by α 0 = 2t 1 and α i = t i+1 -t i for all i ≥ 1.

Theorem 2.1 ([IMN11]

) There exists a unique

Z[t]-free basis {C w (z, t; x) | w ∈ W ∞ } of R ∞ satisfying the equations ∂ i C w = C wsi if (ws i ) < (w) 0 otherwise and δ i C w = C siw if (s i w) < (w) 0 otherwise , (2.3)
for all i ≥ 0, and such that C w has no constant term except C e = 1.

The k-Grassmannian elements and the invariant subring

R (k) ∞ Let W (k) be the subgroup of W ∞ generated by all s i , i = k. Let W (k)
∞ be the set of minimum length coset representatives for W ∞ /W (k) , and it is given by

W (k) ∞ = {w ∈ W ∞ | (ws i ) > (w) for all i = k}. We denote W (k) ∞ ∩ W n by W (k) n . An element of W (k)
∞ is called k-Grassmannian and it is given by the following one-line notation:

w = (v 1 • • • v k |ζ 1 • • • ζ s u 1 u 2 • • • ); 0 < v 1 < • • • < v k , ζ 1 < • • • < ζ s < 0 < u 1 < u 2 < • • • .
(2.4)

We insert a vertical line after v k to indicate that w is regarded as a k-Grassmannian element. For example,

(13| 4256 • • • ) is a 2-Grassmannian element in W ∞ . Lemma 2.2 Let w ∈ W (k)
∞ . We have (s 0 w) < (w) if and only if

(L0) w = (• • • | • • • 1 • • • ), i.e., ζ s = 1.
Suppose i ≥ 1. Then (s i w) < (w) if and only if one of the following holds:

(L1) w = (• • • | • • • i + 1 • • • i • • • ), i.e.
, ζ p = i + 1 and u q = i for some p and q;

(L2) w = (• • • i • • • | • • • i + 1 • • • ), i.e.
, ζ p = i + 1 and v q = i for some p and q;

(L3) w = (• • • i + 1 • • • | • • • i • • • ), i.e.
, u p = i and v q = i + 1 for some p and q.

In particular, for any i ∈ {0, 1, 2, . . . , }, (s i w) = (w) -1 implies

s i w ∈ W (k) ∞ . Let R (k) ∞ be the Z[t]-subalgebra of R ∞ fixed by the right action of W (k) : R (k) ∞ := {f ∈ R ∞ | s z i (f ) = f (∀i = k)}.
We can show that R

(k) ∞ = w∈W (k) ∞ Z[t]C w . Furthermore, the double Schubert polynomials C w for the k-Grassmannian elements w ∈ W (k)
∞ are characterized in terms of the left divided difference operators as follows. For f ∈ R ∞ , let f | ∅ denote the polynomial in Z[t] obtained from f by the substitutions x i → 0 and z i → t i for all i.

Proposition 2.3 If a family F w , w ∈ W (k) ∞ of elements of R (k)
∞ satisfies the following conditions

δ i F w = F siw if (s i w) < (w) 0 if (s i w) > (w) ;
(2.5)

F w | ∅ = δ w,e , (2.6 
)

then F w = C w for all w ∈ W (k)
∞ .

The k-strict partitions

A partition λ is a sequence of non-increasing non-negative integers (λ 1 , λ 2 , . . . ) where only finitely many

λ i 's are positive. It is called k-strict if no part greater than k is repeated. Let P (k)
∞ be the set of all kstrict partitions. Let P (k)

n ⊂ P (k)
∞ be the subset of all k-strict partitions whose Young diagrams fit in the (n -k) × (n + k) rectangle. We often denote λ by a finite sequence (λ 1 , . . . , λ r ), assuming λ i = 0 for all i > r, and also denote the sum of the positive entries by |λ|.

Lemma 2.4 ([BKTb]

) There is a bijection

P (k) ∞ ∼ = W (k) ∞ (λ ↔ w (k) λ ) such that |λ| = (w (k) λ ).
We describe the bijection below. Let λ = (λ 1 , λ 2 , . . . ) ∈ P (k) ∞ . Let s be an index such that λ s > k and λ s+1 ≤ k. Let ζ i := λ i -k for i ∈ {1, . . . , s}. Let µ = (µ 1 , . . . , µ k ) be the conjugate of the partition (λ s+1 , λ s+2 , . . . ). For i ∈ {1, . . . , k}, define

v i = s + µ k+1-i + i -{p | ζ p > s + µ k+1-i + i}.
The signed permutation w λ is given by the one-line notation (2.4) where u 1 , u 2 , . . . are the increasing positive integers determined uniquely by v and ζ.

Conversely, let w ∈ W (k)

∞ with the one-line notation (2.4). Define a partition ν = (ν 1 , ν 2 , . . . ) by (1) µ = (1 324) = s 2 s 1 s 0 s 1 respectively. We see that w 

ν i = {p | v p > u i }. Then a k-strict partition λ defined by setting λ i = ζ i + k if 1 ≤ i ≤ s and λ i = ν i-s if s + 1 ≤ i.

Characteristic index and Bruhat order on W (k) ∞

The following indexing set for W (k) ∞ turns out to be useful for both the understanding of Bruhat order and the computation in the left divided difference operators.

Definition 2.6 (Characteristic index) For each w ∈ W (k)
∞ with the one-line notation (2.4), we define the associated characteristic index by

χ = (χ 1 , χ 2 , . . . ) = (ζ 1 -1, ζ 2 -1, . . . , ζ s -1, -u 1 , -u 2 , . . . ). In particular, if w ∈ W (k) n , then χ i = -i -k for all i > n -k.
If χ and λ are the characteristic index and the k-strict partition associated to w respectively, then we have

χ j = λ j -k -j + {i | i < j, λ i + λ j > 2k + j -i}.
For a strictly decreasing sequence χ = (χ 1 , χ 2 , . . . ) of integers, let

b χ i = χ i + 1 if χ i ≥ 0 -χ i if χ i < 0, for all i = 1, 2, . . . . Definition 2.7 Let Ξ (k)
∞ be the set of all strictly decreasing sequences χ = (χ 1 , χ 2 , . . . ) of integers such that b χ i 's are all distinct, {1, 2, . . . }\{b χ i , i = 1, 2, . . . } is a finite set of cardinality k, and

χ i = -i -k for sufficiently large i. Let Ξ (k) n be the subset of Ξ (k) ∞ consisting of χ such that χ i = -i -k for all i > n -k. Define a partial order on Ξ (k) ∞ by χ ≤ χ if and only if χ i ≤ χ i all i = 1, 2, . . . . Theorem 2.8 The map W (k) ∞ → Ξ (k)
∞ associating the characteristic indices is an order preserving bijection. Furthermore this map also induces an order preserving bijection

W (k) n ∼ = Ξ (k) n .
The proof of this theorem is postponed until Section 3.3.

Example 2.9 Let λ and µ be the partitions given in Remark 2.5. The corresponding characteristic indices are χ λ = (0, -2, -4) and χ µ = (2, -2, -4) respectively. We find χ λ ≤ χ µ . This verifies Theorem 2.8 since we know w λ ≤ w µ from Remark 2.5.

Equivariant Schubert classes of symplectic Grassmannians

We explain the fact that the double Schubert polynomials represent the equivairant Schubert classes.

Flag varieties of type C

Let G = Sp 2n (C) be the complex symplectic group of rank n. Let B be a Borel subgroup of G, and T the maximal torus contained in B (see [START_REF] Ikeda | Double Schubert polynomials for the classical groups[END_REF] for the precise conventions). The flag variety Fl n is defined as the quotient space G/B. The Weyl group N G (T )/T is identified with W n . For each w ∈ W n , there is the point e w in Fl n . Let B -be the Borel subgroup such that B ∩ B -= T . The Schubert variety X w is defined as the Zariski closure of B --orbit of the point e w ∈ Fl n . The codimension of X w is precisely the length (w) of w. Since X w is a T -stable subvariety of Fl n it defines the fundamental class [X w ] T in the integral T -equivariant cohomology ring H * T (Fl n ). We call [X w ] T the equivariant Schubert class associated to w ∈ W n . We regard H * T (Fl n ) as a Z[t]-algebra by identifying H * T (pt) = Z[t 1 , . . . , t n ] and defining the action of t i to be trivial for all i > n.

Theorem 3.1 ([IMN11]) There is a canonical Z[t]-algebra homomorphism π n : R ∞ -→ H * T (Fl n ) such that π n sends C w (z, t; x) to [X w ] T if w ∈ W n and to zero if w ∈ W n .

Symplectic Grassmannian and its Schubert varieties

We fix a non-negative integer k. For any positive integer n ≥ k, let SG k n denote the Grassmannian of (n -k)-dimensional isotropic subspaces in C 2n equipped with a symplectic form. There is a maximal parabolic subgroup P k of the symplectic group G = Sp 2n (C) such that SG k n can be realized as the homogeneous space G/P k .

Let e 1 , . . . , e n , e * 1 , . . . , e * n be a standard symplectic basis of C 2n , i.e., define the symplectic form by e i , e j = e * i , e * j = 0, e i , e * j = δ ij . For 1 ≤ i ≤ n, define a complete flag

F • : F n ⊂ • • • ⊂ F 1 ⊂ F 1 ⊂ • • • ⊂ F n (3.1)
by F i = e i , . . . , e n and F i = e * i , . . . , e * 1 + F 1 . For each λ ∈ P (k)

n , the corresponding Schubert variety Ω λ with respect to F • can be defined as

Ω λ := {V ∈ SG k n | dim(V ∩ F w (k) λ (k+j) ) ≥ j (1 ≤ j ≤ n -k)}. (3.2)
In particular, the special Schubert varieties are the ones associated to one-line k-strict partitions:

Ω r = {V ∈ SG k n | dim(V ∩ F r-k-1 ) ≥ 1}, for 1 ≤ r ≤ n + k. Their classes [Ω r ]
T are called the special Schubert classes. They are equal to the r-th equivariant Chern classes c r (Q) of the universal quotient bundle

Q over SG k n . For 1 ≤ j ≤ n -k, we have dim F w (k) λ (k+j) = n -χ j . (3.3)
This explains how naturally the characteristic index is defined. There is the following commutative diagram :

R (k) ∞ π (k) n / / R ∞ πn H * T (SG k n ) p * / / H * T (Fl n )
where the horizontal arrow p * in the second row is the pullback of the natural projection p :

Fl n → SG k n and π (k) n is obtained by restricting π n to R (k) ∞ . If λ ∈ P (k) n , we have p * [Ω λ ] T = [X w (k) λ ] T and π (k) n (C w (k) λ (z, t; x)) = [Ω λ ] T .
In particular, the special Schubert class [Ω r ] T of degree r is the image of C w (k) r (z, t; x) where w

(k) r is the element of W (k)
∞ corresponding to the partition with r boxes in one row.

Proof of Theorem 2.8

By the definition of the characteristic index, it is clear that the map is a bijection. Choose n such that w, w ∈ W (k) n . Let χ and χ be the characteristic indices of w and w respectively. Let λ and λ be the strict partitions corresponding to w and w respectively. We reindex the flag F • defined in (3.1), and consider the complete flag U

• : 0 = U n ⊂ • • • U n-1 • • • ⊂ U 0 ⊂ U -1 ⊂ • • • ⊂ U -n = C 2n where for each i ∈ {1, 2, . . . , n}, U -i = F ī and U i = F i-1 . Note that dim U i = n -i for all -n ≤ i ≤ n by (3.3). Then the Schubert variety Ω λ is given by Ω λ = {V ∈ SG k n | dim(V ∩ U χi ) ≥ i, i = 1, . . . , n -k}.
It is well-known that Ω λ ⊃ Ω λ if and only if w ≤ w . Therefore w ≤ w if and only if, for all i = 1, . . . , n -k, we have

U χ i ⊂ U χi i.e. χ i ≤ χ i .
4 Pfaffian sum formula for the equivariant Schubert classes

Double theta polynomials

Our goal is to give an explicit closed formula to describe C w (z, t; x) (w ∈ W 

(l) r (x, z|t) for l, r ≥ 0 by ∞ r=0 k ϑ (l) r (x, z|t) • u r = ∞ i=1 1 + x i u 1 -x i u k i=1 (1 + z i u) l i=1 (1 -t i u), ∞ r=0 k ϑ (-l) r (x, z|t) • u r = ∞ i=1 1 + x i u 1 -x i u k i=1 (1 + z i u) l i=1 1 1 + t i u .
For r < 0, we set k ϑ (l) r (x, z|t) = 0. We omit k when it is made clear by the context. Under π n , the indeterminates z i correspond to the Chern roots of the tautological bundles and those theta polynomials Although the above definition of the double theta polynomials appears slightly different from the one in Wilson's thesis [START_REF] Wilson | Equivariant Giambelli Formulae for Grassmannians[END_REF], one recovers Wilson's definition after applying appropriate changes of indices. See [START_REF] Ikeda | Pfaffian sum formula for symplectic Grassmannians[END_REF] for details. We can prove the following lemma from the definitions by direct computations. 

Multi Schur-Pfaffian

For each i ≥ 1, let c (i) be an infinite sequence of indeterminates c is defined as follows:

• for m = 1 we set Pf[c

r ] = c

(1) r .

• for m = 2, we set Pf[c

(1) r1 c

(2) r2 ] = c

(1) r1 c

(2) r2 + 2 r2 s=1 (-1) s c

(1) r1+s c

(2) r2-s .

• for any odd m ≥ 3, we set Pf[c The following properties follow from the above definition of Pfaffian by the induction on m.

Remark 2. 5

 5 By the bijection in Lemma 2.4, the natural Bruhat order on W (k) ∞ does not correspond to the order on P (k) ∞ defined by inclusions of Young diagrams. For example, consider 1-strict partitions λ = (21) and µ = (4). The corresponding permutations are w (1) λ = (3 124) = s 2 s 0 s 1 and w

µ

  , while λ ⊂ µ.

∞

  ) as a polynomial in terms of the double Schubert polynomials C wr (z, t; x) corresponding to the special classes [Ω r ] T . Definition 4.1 Define k ϑ

  r (x, z|t) map to Chern classes of certain virtual bundles. In particular, Wilson in [Wil10, Prop. 6] proved C wr (z, t; x) = k ϑ (r-k-1) r (x, z|t). (4.1)

Lemma 4. 2

 2 (a) For all i ≥ 0, we have δ i ϑ(l) r = 0 if l = ±i and δ i ϑ if l = ±i.(b) For i = 0, we have δ i (ϑ

r

  , r ∈ Z. Consider the polynomial ring Z[c] := Z[c (i) r , i ≥ 1, r ∈ Z]. The multi Schur-Pfaffian Pf[c (1) r1 . . . c (m) rm ] ∈ Z[c]

•

  for any even m ≥ 4, we set Pf[c
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Pfaffian sum formula (Main Theorem)

Definition 4.4 For all (r 1 , . . . , r m ), (l 1 , . . . , l m ) ∈ Z m , let

rm c=ϑ (l) where | c=ϑ (l) means that we substitute ϑ (li) s for c

s for all i ∈ {1, . . . , m} and s ∈ Z.

The main result of this paper is the following.

Theorem 4.5 (Main Theorem) Let λ be a k-strict partition in P (k) n . We have

where I runs over all subsets of D(λ) and

Once we read the formula in terms of raising operators, the following corollary is immediate.

In the case when λ is contained in the (n -k) × k rectangle, the result was proved by Wilson [START_REF] Wilson | Equivariant Giambelli Formulae for Grassmannians[END_REF].

Related results

Anderson and Fulton [AF] defined a notion of vexillary signed permutation in type B,C, and D. They showed the double Schubert polynomials associated to vexillary signed permutations are given by explicit Pfaffian formulas. Naruse [Nar] also independently proved a formula that expresses the corresponding double Schubert polynomials as a specialization of the factorial Qand P -functions. Since our formula also expresses some Schubert classes as single Pfaffians, there is an overlap between our results and the results of [AF]. However, not all k-Grassmannian permutations are vexillary and there are non-vexillary k-Grassmannian permutations whose corresponding classes are written as single Pfaffians, e.g. 13| 54 2 is not vexillary but C 13| 54 2 is a single Pfaffian as above. The proof of our main theorem is essentially based on the following two propositions. We can show them by using the inductive definition of the multi Schur-Pfaffian together with Lemma 4.2.

Proof of Main Theorem

Proposition 5.1 Suppose l ≥ 0 and r > k + l. Then Pf[ϑ

(b) Let i ≥ 0. Suppose that l p ∈ {±i} for some p ∈ {1, . . . , m} and that l q ∈ {±i} for all q = p.

(c) Let i > 0. Suppose that l p = i and l q = -i for some p < q and that l s = ±i for all s ∈ {p, q}.

Then we have

Key lemma

For w ∈ W n . We proceed by the induction on (w ∨ ). The claim obviously holds if

n satisfying (λ ) = (λ)+1. By the induction hypothesis we have

where χ = (χ 1 , . . . , χ n-k ) is the characteristic index of λ . Lemma 2.2 gives the 4 possible cases of the characteristic index χ in terms of χ. In each case, we apply δ i to the right hand side of (5.1) by using Proposition 5.2 and obtain Θ

(n,k) w

. Since δ w ∨ = δ i δ w ∨ λ , the desired formula holds.

Proof of Main Theorem

First note that the polynomial defined by Θ

(n,k) w is independent of n, i.e., for all m ≥ n, and w ∈ W

. We can see this fact from the definition of the multi-Schur Pfaffian. Thus, for each w ∈ W By observing that (s i w) = (w) -1 implies δ i δ w ∨ = δ (siw) ∨ , the first half of the condition (2.5) follows from Lemma 5.3. For the second half of the condition (2.5), first we see that δ j Θ w (n,k) max = 0 for all j = k from Proposition 5.1 and Proposition 5.2 (a). Now the claim follows from

∞ , then there exists j = k such that δ i δ w ∨ = δ w ∨ δ j .

It remains to show that the condition (2.6) holds. It is obvious that Θ e | e = 1. For w = 0, we expand Θ w as a polynomial in terms of the ϑ-functions ϑ (l) r by using the definition of Pfaffian. Note that each monomial contains ϑ (χ1) λ1+a I 1 +j as its first factor. We finish the proof by showing the substitution makes this factor vanish by using the following easy observation: ϑ

An alternative proof of Main Theorem

Let w n,0 be the longest element in W n . In [IMN11, Theorem 1.2], the authors proved that C wn,0 can be obtained from the (factorial) Q-function by a certain specialization of variables. In terms of Pfaffian and the theta polynomials k ϑ l r := k ϑ l r (x, z|t), we have