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Semi-pointed partition posets

Bérénice Delcroix-Oger1†

1Institut Camille Jordan, Lyon, France

Abstract. We present here a family of posets which generalizes both partition and pointed partition posets. After a
short description of these new posets, we show that they are Cohen-Macaulay, compute their Moebius numbers and
their characteristic polynomials. The characteristic polynomials are obtained using a combinatorial interpretation of
the incidence Hopf algebra associated to these posets.

Résumé. Nous introduisons ici une famille de posets qui généralise à la fois les poset de partitions et les posets de
partitions pointées. Après une description rapide de ces nouveaux posets, nous montrons qu’ils sont Cohen-Macaulay
et nous calculons leurs nombres de Moebius et leurs polynômes caractéristiques. Ces derniers sont obtenus grâce à
une interprétation combinatoire de l’algèbre de Hopf d’incidence associée à ces posets.

Keywords: Partition, Incidence Hopf Algebra, Moebius number, characteristic polynomial

The partition poset on a finite set V is the well-known poset of partitions of V , endowed with the
following partial order: a partition P is smaller than another partitionQ if the parts ofQ are unions of parts
of P . A variant of partition posets, called pointed partition posets, has been studied by F. Chapoton and
B. Vallette in [CV06] and [Val07]. A pointed partition of a set V is a partition of V , with a distinguished
element for each of its parts. The pointed partition poset on V is then the set of pointed partitions of V ,
where a pointed partition P is smaller than another pointed partition Q if and only if the parts of Q are
unions of parts of P and the set of pointed elements of Q is contained in the set of pointed elements of P .

We study here a generalisation of both partition posets and pointed partition posets, called semi-pointed
partition posets. These posets naturally arise in the study of pointed hypertree posets (cf. [DO14]). After
a short description of semi-pointed partition posets, we show that these posets are Cohen-Macaulay thanks
to total semi-modularity. Then, it is usual in that case to compute the Moebius numbers, which are equal,
up to a sign, to the dimension of their unique non trivial homology group. In the case of semi-pointed
partition posets, we obtain a closed formula for Moebius numbers, which factorizes nicely and incites us
to look further by computing a generalization of Moebius numbers: the characteristic polynomials.

These characteristic polynomials can be computed as characters on the incidence Hopf algebra associ-
ated to the hereditary family generated by maximal intervals in semi-pointed partition posets. This relies
on the combinatorial interpretation of the incidence Hopf algebra as a Hopf algebra of generating series.
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1 Semi-pointed partitions posets: presentation and
Cohen-Macaulayness

Let us first define semi-pointed partition posets and show that their homology is concentrated in maximal
degree.

1.1 Semi-pointed partitions posets
Definition 1.1 Let V = V1 t V2 be a set of cardinality n, with V1 of cardinality ` and V2 of cardinality
p (` + p = n). A semi-pointed partition of V = V1 t V2 is a partition of V such that each part in the
partition satisfies:

• If all elements in the part belong to V1, the part is pointed in one of its element,

• If all elements in the part belong to V2, the part is not pointed,

• If some elements in the part belong to V1 and others to V2, the part can be either not pointed or
pointed in one of its elements belonging to V1.

A (n, `)-semi-pointed partition is a semi-pointed partition of V = {1, . . . , n} with V1 = {1, . . . , `} and
V2 = {`+ 1, . . . , n}.

We will write a tilde over the pointed element in each part.

Example 1.2 There are 35 (4, 2)-semi-pointed partitions.

Remark 1.3 A structure of 2-coloured operad is hidden in the decoration of partitions described in the
definition of semi-pointed partitions.

Let V be a finite set. The set of semi-pointed partitions on V = V1 t V2 can be endowed with the
following partial order:

Definition 1.4 Let P and Q be two semi-pointed partitions. The partition P is smaller than the partition
Q if and only if the parts of Q are unions of parts of P and the pointing of parts of Q is "inherited" from
the ones of P , meaning that if a part q of Q is union of parts (p1, . . . , pn) of P , then the pointing of q
is chosen in those of the pi, given that if one of the pi is not pointed, the part q can be not pointed. We
denote by � the order on the posets.

Example 1.5 With V1 = {1, 2, 3} et V2 = {4, 5}, the semi-pointed partition {1̃, 2}{3, 4}{5} is smaller
than the semi-pointed partition {1̃, 2, 3, 4}{5} but cannot be compared to the semi-pointed partition
{1, 2, 3̃, 4}{5}.

We denote by ΠV,V1 the poset of semi-pointed partitions of V = V1 t V2 bounded by the addition
of a greatest element 1̂ and Πn,` the poset of (n, `)-semi-pointed partitions bounded by the addition of a
greatest element 1̂. The maximal intervals in Πn,`−1̂ whose greatest element is pointed are all isomorphic:
we write Π1

n,` for the maximal interval in Πn,` whose greatest element is pointed in 1. We also write Π0
n,`

for the maximal interval in Πn,` − 1̂ whose greatest element is not pointed.
On Figure 1 is represented the poset Π3,1. The least element of the poset ΠV,V1 , which is the partition

whose parts are of cardinality 1, endowed with the only possible pointing, will be denoted by πV,V1
.
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Remark 1.6 The poset Π0
n,0 is the poset of partitions of {1, . . . n}.

The posets Πn,n and Πn,n−1 are two posets isomorphic to the pointed partition poset on {1, . . . n}. It
is clear for the first poset from the definitions. For the second poset, it comes by identifying non pointed
parts with parts pointed in the last element n.

{1̃}{2}{3}

{1̃, 2, 3} {1, 2, 3}

{1̃, 2}{3} {1, 2}{3} {1̃, 3}{2} {1, 3}{2} {1̃}{2, 3}

1̂

Figure 1: The poset Π3,1.

1.2 Cohen-Macaulayness
We now introduce the first important property of semi-pointed partition posets. The reader can refer to
[Wac07] for an introduction to poset topology. A poset P is totally semi-modular if for any interval I in
P , and for any elements x, y in I which cover an element z in I , there exists an element t in I covering x
and y. It follows from the article of A. Björner and M. Wachs [BW83] that any bounded, graded totally
semi-modular poset is Cohen-Macaulay, i.e. has its homology concentrated in the highest degree. We
then prove the following proposition by total semi-modularity:

Proposition 1.7 The posets Πn,`, Π0
n,` and Π1

n,` are totally semi-modular and Cohen-Macaulay.

As a consequence of this proposition, the usual Moebius numbers on these posets are, up to a sign, the
dimension of the unique non vanishing homology group associated to the posets.

2 Moebius numbers of semi-pointed partition posets
The aim of this section is to compute the dimension of the unique non vanishing homology group of Πn,`,
which is, up to a sign, the Moebius number of the poset. We use the definition of the Euler characteristic
to link Moebius numbers with alternating sums of dimensions of spaces of strict chains. These alternating
sums are obtained by looking at the value in k = −1 of some polynomials counting the numbers of large
k-chains, for any non-negative integer k.

2.1 From strict to large chains (i)

Let us first describe how the computation of Moebius numbers can be reduced to the computation of large
k-chains. This reasoning is inspired by the reasoning of the article [Oge13] and can be adapted to many

(i)Here, "strict chains" means "strictly increasing chains" and "large chains" means "weakly increasing chains".
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cases of graded Cohen-Macaulay posets.
As the poset is Cohen-Macaulay, the absolute value of its Moebius number is the dimension of its only

homology group. It can be obtained as the alternating sum of the dimension of the vector space generated
by strict chains. After introducing some notations, we link that sum with large chains in the poset.

For a family of sets SV1,V2
depending on the pair (V1, V2), we introduce the following generating series:

FS =
∑

`≥0,p≥0

S{1,...,`},{`+1,...,`+p}
x`

`!

yp

p!
.

Let k be an integer and V = V1 t V2 a finite set. The set of strict k-chains of semi-pointed partitions
in ΠV,V1

is the set of k-tuples (a1, . . . , ak) where ai is a non extremal element of ΠV,V1
and ai ≺ ai+1.

The associated generating series is denoted by Cs
k. The set of large k-chains of semi-pointed partitions in

ΠV,V1
is the set of k-tuples (a1, . . . , ak) where ai is an element in ΠV,V1

, different from 1̂ and ai � ai+1.
The associated generating series is denoted by Cg

k. The set of strict k-chains with multiplicity of semi-
pointed partitions in ΠV,V1

− 1̂ is the set of pairs ((a1, . . . , ak),m) made of a maximal element m in
ΠV,V1

− 1̂ (which is a semi-partition with only one part) and a k-tuple (a1, . . . , ak) where ai ∈]πV,V1
;m[,

∀i ∈ {0, . . . , k − 1}, and ai ≺ ai+1, ∀i ∈ {0, . . . , k − 1}. The associated generating series is denoted by
Csl
k . Finally, we call large k-chains with multiplicity the set of pairs ((a1, . . . , ak),m) made of a maximal

element m in ΠV,V1
− 1̂ and a large k-chain (a1, . . . , ak) in [πV,V1

;m], or equivalently, the set of large
k-chains in each maximal interval in Πn,`− 1̂, counted with multiplicity. The associated generating series
is denoted by Cl

k.

Example 2.1 In Π3,1 for instance, the longest strict chains are of length 2. An example of a strict 2-chain
is ({1̃, 2}{3}, {1̃, 2, 3}).

An example of a large 3-chain is ({1̃}{2}{3}, {1̃}{2}{3}, {1̃, 2}{3}).
An example of a strict 1-chain with multiplicity is (({1̃, 2}{3}), {1̃, 2, 3}), which means that we con-

sider the chain ({1̃, 2}{3}) as a chain of ]{1̃}{2}{3}; {1̃, 2, 3}[, different from the chain ({1̃, 2}{3}) as a
chain of ]{1̃}{2}{3}; {1, 2, 3}[.

An example of a large 4-chain with multiplicity is :((
{1̃}{2}{3}, {1̃}{2}{3}, {1̃, 2}{3}, {1̃, 2, 3}

)
, {1̃, 2, 3}

)
.

We link these generating series by using the set Mk,s of words on {0, 1} and of length k, containing s
letters "1". As this set has cardinality

(
k
s

)
, we obtain:

Proposition 2.2 Let k be a positive integer. The generating series Cg
k, Cl

k, Cs
k and Csl

k satisfy:

Cg
k
∼=
∑
i≥0

Cs
i ×

(
k

i

)
, (1)

and

Cl
k
∼=
∑
i≥1

Csl
i−1 ×

(
k

i

)
+
∑
i≥0

Csl
i ×

(
k

i

)
. (2)
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Proof: We encode repetitions in large chains thanks to words. If (a1, . . . , ak) is a large k-chain in Πn,`,
it is equivalent to the data of a strict s-chain (ai1 , . . . , ais), obtained by deleting repetitions and the least
element πV,V1 in (a1, . . . , ak) and a word u1 . . . uk of Mk,s such that:

• uk = 0 if ak = πV,V1
, 1 otherwise;

• uj = 0 if aj = aj+1, 1 otherwise, for 1 ≤ j ≤ k − 1.

If ((a1, . . . , ak),m) is a large k-chain with multiplicity, in [πV,V1 ,m], it is equivalent to the data of a
strict s-chain with multiplicity ((ai1 , . . . , ais),m) obtained by deleting repetitions, m and the least element
πV,V1

in (a1, . . . , ak) and a word of Mk−1,s if the chain contains πV,V1
and of Mk,s otherwise. 2

The length of a strict chain in Πn,` is at most n− 2: the series Cg
k et Cl

k are then polynomials in k. We
can thus evaluate these series at k = −1. Considering the Euler characteristic of the poset, we obtain:

Proposition 2.3 The dimension of the homology of Πn,` is given, up to a sign, by the value at k = −1

of Cg
k. The dimension of the direct sum of homologies of maximal intervals in Πn,` − 1̂ is given, up to a

sign, by the value at k = −2 of Cl
k.

Let us remark that the same reasoning can be applied to maximal intervals in the poset.

2.2 Dimension of the homology of the semi-pointed partition poset
Thanks to the previous subsection, the problem has moved from computing Moebius numbers to comput-
ing large k-chains, for a positive integer k. Once found the polynomial P (X) such that P (k) corresponds
to the number of large k-chains in the chosen poset, the Moebius number of the poset will be given by
P (−1). In an abuse of notation, we will always keep the same notations for series, even when evaluated
in negative integers.

Let us fix a positive integer k. To obtain relations between generating series, we also need the generating
series C•k (resp. C×k ) of sets of large k-chains in ΠV1∪V2,V1 , whose maximal element is a partition with
only one part, which is pointed (resp. non pointed). The generating series then satisfy:

Proposition 2.4 For all integers k, the generating series C•k, C×k , Cg
k and Cl

k satisfy the following rela-
tions:

C•k = C•k−1 × eC
•
k−1+C×

k−1 , (3)

C×k = eC
•
k−1

(
eC

×
k−1 − 1

)
, (4)

Cg
k = e(C

•
k+C×

k ) − 1, (5)

Cl
k−1 = C•k + C×k . (6)

We prove this proposition in a combinatorial way for positive integers and the proposition is extended
by polynomiality to any integers.

Thanks to these relations, we can now compute closed formulas for the dimension of the homology of
semi-pointed partition posets. We first determine closed formulas for these series:
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Proposition 2.5 The series C•−1 and Cg
−1 are linked by:

x = C•−1
(
1 + Cg

−1
)
, (7)

y = Cg
−1 + 1− eC

•
−1 . (8)

Proof: The coefficient of x`yp

`!p! in C•1 (resp. C×1 ) corresponds to the number of large 1-chains whose
greatest element has only one pointed (resp. non pointed) part, with the set of possibly pointed element
of size ` and the set of non pointed elements of size p. There are ` such chains in the pointed case and 1
in the non pointed case if p 6= 0, 0 otherwise. We thus obtain C•1 = xex+y and C×1 = ex+y − ex.

Using the previous relations between series, (3) and (4), for k = 1 gives:{
xex+y = C•0e

C•
0+C×

0 ,

ex+y − ex = eC
•
0+C×

0 − eC•
0 .

Solving this system gives C•0 = x and C×0 = y. Replacing these values in Equations (3), (4) and (5) for
k = 0 implies the result. 2

Remark 2.6 The coefficient of x`yn−` in Cg
1 gives the number of semi-pointed partitions in Πn,`. This

series satisfies:
Cg

1 = exp
(
(x+ 1)ex+y − ex

)
− 1.

Equations (7) and (8) enable us to obtain the following implicit equation:

x = C•−1

(
y + eC

•
−1

)
. (9)

Now we have equations for the series, we can compute closed formulas for their coefficients.

Theorem 2.7 The generating series C•−1, corresponding to the dimension of the only homology group
of maximal intervals in semi-pointed partition posets, whose greatest element has only one pointed part,
Cg
−1, corresponding to the dimension of the homology of the augmented poset, and Cl

−2, corresponding
to the sum of the dimensions of the unique homology group of maximal intervals, satisfy:

C•−1 =
∑

`≥1,p≥0

(−1)`+p−1
(`+ p− 1)!

(`− 1)!
(`+ p)`−1

x`yp

`!p!
, (10)

Cg
−1 =

∑
`≥1,p≥0

(−1)`+p−1
(`+ p− 1)!

(`− 1)!
(`+ p− 1)`−1

x`yp

`!p!
, (11)

Cl
−2 =

∑
`≥0,p≥0
`+p≥1

(−1)`+p−1
(`+ p− 1)!

`!
(`+ p)`

x`yp

`!p!
. (12)

Proof:
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• To compute coefficients of C•−1 and Cg
−1, we apply Lagrange inversion theorem respectively to

Equation (9) and Equation (8).

• The last equation is obtained using the following lemma:

Lemma 2.8 The generating series Cl
−2 and C•−1 satisfy the following differential equation:

x
∂Cl
−2

∂x
= x

∂C•−1
∂x

+ y
∂C•−1
∂y

.

The value of the coefficient of x0 in the generating series Cl
−2 is moreover given by the Moebius

numbers of partition posets.

This differential equation is obtained by deriving Equation (9) with respect to x and y and Equation
(8) with respect to x, and then using Equations (6), (7) and (8). The result immediately follows.

2

A consequence of this theorem is the following corollary, whose proof uses methods from the article of
D. Zvonkine [Zvo04]:

Corollary 2.9 Let us define the following family of generating series, for i ≥ 1:

fi(x, y) =
∑

`≥1,p≥0

(`+ p− 1)!

(`− i)!
(`+ p)`−i

x`yp

`!p!
,

This families then satisfy the relation f i1 = i× fi.
This relation can be rewritten, for n, ` ≥ 1 as:

∑
∑i

j=1 nj=n,

nj≥1

∑
∑i

j=1 `j=`,

`j≥1

i∏
j=1

(
nj
`j

)
n
`j−2
j

(`j − 1)!
= i×

(
n

`

)
n`−i−1

(`− i)!
.

Proof of Lemma 2.9: We prove this lemma by induction on I . This is trivially true for i = 1. Let us first
remark that f1(x, y) = −C•−1(−x,−y), due to expression of Theorem 2.7. Then Equation (9) gives the
following functional equation for f1:

(x+ yf1)ef1 = f1. (13)

No generating series in the family has non-zero constant term. We introduce the following operators for
all generating series f in variables x and y:

Dxf = x
∂f

∂x
, Dyf = y

∂f

∂y
and Df = Dxf +Dyf.
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Let us now show the equality for i = 2. Looking at coefficients in the series, we obtain Df2 =
Dxf1 − f1. To show the theorem, we thus have to show that D(f21 ) = 2 (Dxf1 − f1) . The derivative of
Equation (13) with respect to x and y gives:

Dxf1 =f1Dxf1 + (x+ yDxf1) ef1 ,

Dyf1 =f1Dyf1 + yf1e
f1 + yDyf1e

f1 .

These equations imply xDyf1 = yf1Dxf1.
Then, we obtain successively:

1

2
D(f21 ) =f1Dxf1 + f1Dyf1 = f1Dxf1

(
1 +

f1
x
y

)
=
(
Dxf1 − xef1 − yDxf1e

f1
)(

1 +
f1
x
y

)
.

This expression reduces to Dxf1 − f1 using Equation (13).
Let us now consider i ≥ 2. Suppose that for all p < i, fp1 = p× fp. Looking at the coefficients of the

derivative D of fi − fi−1, we obtain:

D(fi − fi−1) = −(i− 1)fi−1 −Dyfi−1.

Using the induction hypothesis, we have:

D(fi) = f i−21 Dxf1 − f i−11

and, on the other side,

D(
f i1
i

) = f i−11 Df1.

Hence, the result is equivalent to the equation Dxf1 − f1 = f1Df1 which was proven in the case i = 2.
2

We have seen in this section that Moebius numbers can be described by pretty closed formulas (10),
(11) and (12). This encourages us to look at a generalization of these Moebius numbers: characteristic
polynomials.

3 Incidence Hopf algebra and characteristic polynomials of semi-
pointed partition posets

In this section, we apply to the posets of semi-pointed partitions the construction of W. Schmitt, presented
in his article [Sch94], of an incidence Hopf algebra associated to a family of posets satisfying some
axioms. After computing the coproduct in this Hopf algebra, we identify the Hopf algebra with an Hopf
algebra of generating series. This identification enables us to compute the characteristic polynomials.
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3.1 Description of the incidence Hopf algebra
We briefly describe in this subsection the construction of the incidence Hopf algebra.

We consider maximal intervals in Πn,`− 1̂. Using the notations introduced in the first section, we write
Πθ
n,` for Π0

n,` or Π1
n,`. We denote by πn,` the least element of Πθ

n,` (whose parts are of size 1) and Mθ
n,`

the greatest element (with only one part).
The following proposition ensures that the family F of direct products of maximal intervals in a semi-

pointed partition poset is an hereditary family:

Proposition 3.1 (Intervals in semi-pointed partition posets) Let P be a semi-pointed partition in the
poset Πθ

n,`. The interval [p;Mθ
n,`] in Πθ

n,` is isomorphic to a poset of semi-pointed partitions Πθ
j,l, where

j is the number of parts in P and l is the number of pointed parts in P .
The interval [πn,`; p] is isomorphic to a product of semi-pointed partitions poset with a factor Π1

nj ,`j

for every pointed part of P of size nj with `j elements pointed in πn,` and a factor Π0
nj ,`j

for every
non-pointed part of P of size nj with `j elements pointed in πn,`.

We consider the equivalence relation ≡ generated by P ≡ P × U if |U | = 1 and P ≡ Q if there
exists four sets V P1 , V P2 , V Q1 , V Q2 , such that the elements of P (resp. Q) are semi-pointed partitions of
ΠV P

1 ∪V P
2 ,V P

1
(resp. of ΠV Q

1 ∪V
Q
2 ,V Q

1
) and such that there exists a poset isomorphism between P and Q

sending pointed elements of parts of elements of P , V P1 , on pointed elements of parts of elements of Q,
V Q1 .

This relation is a Hopf relation. Considering the hereditary family F and the Hopf relation ≡, we can
apply the construction of W. Schmitt presented in [Sch94] to obtain an incidence Hopf algebra I. This
Hopf algebra is generated as an algebra by the set of equivalence class of maximal intervals in semi-
pointed partition posets, Πθ

n,`, according to Proposition 3.1.

3.2 Computation of the coproduct
We would like to give a more precise description of the coproduct in the incidence Hopf algebra I. Using
the decomposition of intervals described in Proposition 3.1, we obtain the following description of the
coproduct:

∆(Πθ
n,`) =

n∑
j=1

∑
n1,...,nj≥1,∑j

i=1 ni=n

∑
`1,...,`j≥0∑j

i=1 `i=`

∑
θ1,...,θj∈{0;1}

θi≤`i,
θ≤

∑j
i=1 θi≤j−1+θ

cθn,`

j∏
i=1

Πθi
ni,`i
⊗Πθ

j,
∑j

i=1 θi

where cθn,` is the number of partitions having j parts, of size n1, . . . , nj , with in each part `1, . . . , `j
elements pointed in πn,` and with the ith part pointed if θi is 1 and non pointed otherwise.

Counting the number of partitions cθn,` gives the following theorem:

Theorem 3.2 The coproduct in the incidence Hopf algebra I of semi-pointed partition poset is given by:

∆

(
Πθ
k+l,k

l!(k − θ)!

)
=
∑
p+q≥1

∑
(li,ki)

p∏
i=1

Π1
li+ki,ki

li!(ki − 1)!

p+q∏
i=p+1

Π0
li+ki,ki

li!ki!
⊗

Πθ
p+q,p

q!(p− θ)!
, (14)
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where the second sum runs over the p+ q-tuples (l1, . . . , lp+q) and (k1, . . . , kp+q) satisfying l1, . . . , lp ≥
0, lp+1, . . . , lp+q ≥ 1, k1, . . . , kp ≥ 1, kp+1, . . . , kp+q ≥ 0,

∑p+q
i=1 ki = k and

∑p+q
i=1 li = l.

Proof (sketch): In the non pointed case (θ = 0), the coefficient cθn,` is given by:

k!l!
∏p
i=1 ki∏p+q

i=1 ki!li!p!q!
.

Indeed, we make p+ q packets of elements and the first p packets have to be pointed. For the pointed case
(θ = 1), to ensure that the greatest part is pointed, for instance in 1, we fix that the first packet is pointed
in 1. The coefficient cθn,` is then given by:

(k − 1)!l!
∏p
i=2 ki

(k1 − 1)!
∏p+q
i=2 ki!li!p!q!

.

2

This expression of the coproduct enables us to give a combinatorial interpretation of the incidence Hopf
algebra I.

3.3 Computation of characteristic polynomials
The aim of this part is the computation of the characteristic polynomial.

Definition 3.3 The characteristic polynomial of a bounded poset P with minimum 0̂ and maximum 1̂ is
given by:

χP =
∑
x∈P

µ([0̂, x])trk(1̂)−rk(x)

We now give an interpretation of the computation of the coproduct in the previous subsection. This
interpretation will help us computing characteristic polynomials.

Proposition 3.4 The incidence Hopf algebra I of semi-pointed partition posets is isomorphic to the Hopf
algebra structure on the polynomial algebra in the variables (aok,l)k,l≥1,o∈{0,1} given by the composition
of pairs (F,G) of formal series of the following shape:{

F = x+
∑
l,k≥1 a

0
k,l

xk

k!
yl

l! ,

G = y +
∑
l,k≥1 ka

1
k,l

xk

k!
yl

l! .

As a corollary, the Moebius numbers of the intervals Π0
n,` and Π1

n,` are respectively the coefficients of
A and B, where A and B satisfy: {

(eB − 1)eA = x,
AeA+B = y.

By comparison with the equations of Proposition 2.4, we obtain another proof of the expressions for
Moebius numbers computed in the first section : A = C•−1 and B = C×−1.
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The characteristic polynomials χ• and χ× of Π1
n,` and Π0

n,` are then given by:{
χ• = (e

tC
×
−1−1)etC

•
−1

t ,

χ× = C•−1e
t(C•

−1+C×
−1).

These relations implies the following proposition:

Proposition 3.5 The characteristic polynomial of the interval Π1
n,` is given by:

(t− 1) (t− `− p)`−2
`+p∏
i=`+1

(t− i) . (15)

The characteristic polynomial of the poset Πn,` − 1̂ is given by:

(t− `− p)`−1
`+p∏
i=`+1

(t− i) . (16)

The characteristic polynomial of the poset Πn,` is given by:

t× (t− `− p)`−1
`+p∏
i=`+1

(t− i)− (1− `− p)`−1
`+p∏
i=`+1

(1− i) . (17)

Remark 3.6 The characteristic polynomial of the poset Π1
n,` does not factorize.

Proof:

• We use the following relation between C•−1 and C×−1 obtained from Proposition 2.4:

eC
•
−1+C×

−1 = y + eC
•
−1 .

Then, the coefficient of xlyp in χ• is given by the following residue:

I =

∫∫
C•−1(y + eC

•
−1)t

dx

xl+1

dy

yp+1
.

We use the substitution z = C•−1 to obtain:

I =

∫∫
z(y + ez)t

(y + ez)l+1
((y + ez) + zez)

dz

zl+1

dy

yp+1

I =

∫∫
z(y + ez)t−l

dz

zl+1

dy

yp+1
+

∫∫
z2(y + ez)t−l−1ez

dz

zl+1

dy

yp+1
.

We expand (y+ez)t−l and (y+ez)t−l−1 and take the coefficient of yp. The integral I is then given
by:

I =

∫ (
t− l
p

)
e(t−l−p)z

dz

zl
+

∫ (
t− l − 1

p

)
e(t−l−p)z

dz

zl−1

As
∫
eaz dzzn = an−1

(n−1)! , this gives the result.
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• The generating series S of such characteristic polynomials can be seen as a generating series in
t whose coefficients are generating series in x and y. Then, the coefficient of tp−1 is the sum of
Moebius numbers of partitions of Πn,` in p parts, weighted by x`yn−`. We thus obtain the relation:

S =
et(C

•
−1+C×

−1) − 1

t
.

The result is obtained by applying Lagrange inversion formula to this relation.

• The characteristic polynomial of Πn,` is divisible by (t − 1), as the poset is bounded, and only
differs from tS by its constant term.

2
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