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A combinatorial expression for the coefficient of the Schur function s λ in the expansion of the plethysm p d n/d • sµ is given for all d dividing n for the cases in which n = 2 or λ is rectangular. In these cases, the coefficient p d n/d •sµ, s λ is shown to count, up to sign, the number of fixed points of an s n µ , s λ -element set under the d th power of an order n cyclic action. If n = 2, the action is the Schützenberger involution on semistandard Young tableaux (also known as evacuation), and, if λ is rectangular, the action is a certain power of Schützenberger and Shimozono's jeu-de-taquin promotion.

This work extends results of Stembridge and Rhoades linking fixed points of the Schützenberger actions to ribbon tableaux enumeration. The conclusion for the case n = 2 is equivalent to the domino tableaux rule of Carré and Leclerc for discriminating between the symmetric and antisymmetric parts of the square of a Schur function. Résumé. Une expression combinatoire pour le coefficient de la fonction de Schur s λ dans l'expansion du pléthysme p d n/d •sµ est donné pour tous d que disent n, dans les cas où n = 2, ou λ est rectangulaire. Dans ces cas, le coefficient p d n/d • sµ, s λ se montre à compter, où l'on ignore le signe, le nombre des point fixés d'un ensemble de s n µ , s λ éléments sous la puissance d e d'une action cyclique de l'ordre n. Si n = 2, l'action est l'involution de Schützenberger sur les tableaux semi-standard de Young (aussi connu sous le nom des évacuations), et si λ est rectangulaire, l'action est une certaine puissance de l'avancement jeu-de-taquin de Schützenberger et Shimozono. Ce travail étend les résultats de Stembridge et Rhoades, liant les point fixés des actions de Schützenberger aux tableaux de ruban. Pour le cas n = 2, la conclusion est équivalent à la règle des tableaux de dominos de Carré et Leclerc, qui distingue entre les parties symétriques et asymétriques du carré d'une fonction de Schur.

Introduction

A principal concern of algebraic combinatorics is the identification of collections of combinatorial objects that occur in algebraically significant multiplicities. Perhaps the most celebrated success in this endeavor is the Littlewood-Richardson rule, which gives a combinatorial description for the coefficient of each Schur function arising in the expansion of a product of Schur functions on the Schur basis. For the case of a Schur function s µ raised to the n th power, there is a natural order n cyclic action on the objects specified by the Littlewood-Richardson rule for the coefficient of s λ , provided that n = 2 or λ is rectangular. In 2, . . . , (k + 1)m} for all 0 ≤ k ≤ n -1. Let j act on PYTab(λ, µ n ) by m iterations of jeu-de-taquin promotion. Then, for all positive integers d dividing n, |{T ∈ PYTab(λ, µ n ) : j d (T ) = T }| = ± p d n/d • s µ , s λ .

From Theorems 3.1 and 3.2 in [START_REF] Lascoux | Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties[END_REF], we see that the Hall-Littlewood symmetric function Q 1 n (q) specializes (up to sign) at q = e 2πi n to p gcd(n, )

n/gcd(n, ) . Therefore, we may interpret Theorem 1.2 as analogous to exhibiting an instance of the cyclic sieving phenomenon.

Corollary 1.3. Let λ be a rectangular partition. Let j act on PYTab(λ, µ n ) by m iterations of jeu-detaquin promotion. Then, for all integers ,

|{T ∈ PYTab(λ, µ n ) : j (T ) = T }| = ± Q 1 n (e 2πi n ) • s µ , s λ .
Remark 1.4. The signs appearing in Theorems 1.1 and 1.2 are predictable, and depend upon λ, d, and n only. Consult section 4 (or [START_REF] David | Cyclic sieving and plethysm coefficients[END_REF] itself), for more details. [START_REF] David | Cyclic sieving and plethysm coefficients[END_REF] is by no means the first attempt at computing the coefficients in the expansions of power-sum plethysms. In [START_REF] Carré | Splitting the square of a Schur function into its symmetric and antisymmetric parts[END_REF], a rule for splitting the square of a Schur function into its symmetric and antisymmetric parts was devised, the crux of which was a demonstration that the coefficient p 2 • s µ , s λ counted, up to sign, the number of domino tableaux of shape λ and content µ with Yamanouchi reading words. Two years later, [START_REF] Lascoux | Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties[END_REF] introduced a new family of symmetric functions, today referred to as LLT functions, and proposed that the plethysm p d n/d • s µ could be expressed as the specialization of an LLT function at an appropriate root of unity (as indeed p d n/d is the specialization of a Hall-Littlewood function). However, the Lascoux-Leclerc-Thibon conjecture remains unproven, and the Carré-Leclerc rule has not been generalized to cases beyond n = 2, for the concept of Yamanouchi reading words has not been extended to n-ribbon tableaux for n ≥ 3.

Thus, Theorem 1.1 does not give the first combinatorial expression for the coefficient p 2 • s µ , s λ , but it distinguishes itself from the existing Carré-Leclerc formula by its natural compatibility with the Littlewood-Richardson rule. It is sufficiently robust that the techniques involved in its derivation are applicable to a whole class of plethysm coefficients with n > 2, addressed in Theorem 1.2, which is new in content and in form. Furthermore, the author has shown in unpublished work that a bijection of [START_REF] Berenstein | Domino tableaux, Schützenberger involution, and the symmetric group action[END_REF] between domino tableaux and tableaux stable under evacuation restricts to a bijection between those tableaux specified in the Carré-Leclerc rule and in Theorem 1.1, respectively. It follows that Theorem 1.1 actually recovers the Carré-Leclerc result.

To prove Theorems 1.1 and 1.2, we turn to the theory of Lusztig canonical bases, which provides an algebraic setting for the Schützenberger actions evacuation and promotion. In particular, we consider an irreducible representation of GL mn (C) for which there exists a basis indexed by the semistandard tableaux of shape λ with entries in {1, 2, . . . , mn} such that, if n = 2, the long element w 0 ∈ S mn → GL mn permutes the basis elements (up to sign) by evacuation, and, if λ is rectangular, the long cycle c mn ∈ S mn → GL mn permutes the basis elements (up to sign) by promotion.

With a suitable basis in hand, we proceed to compute the character of the representation at a particular element of GL mn . If n = 2, we compute where the block diag(y 1 , y 2 , . . . , y d ) occurs n/d times along the main diagonal, and y i in turn represents the block diag(y i,1 , y i,2 , . . . , y i,m ) for all 1 ≤ i ≤ d. These character evaluations pick out the fixed points of the relevant order n cyclic actions. Furthermore, they may be calculated by diagonalization of the indicated elements, for characters are class functions, and the values of the irreducible characters of GL mn at diagonal matrices are well known. A careful inspection of the resulting formulae yields the desired identities.

χ(w 0 • diag(x 1 , x 2 , . . . , x m , x m , . . . , x 2 , x 1 )),
The relationship between w 0 and evacuation was first discovered in [START_REF] Berenstein | Canonical bases for the quantum group of type A r and piecewise-linear combinatorics[END_REF], in the context of a basis dual to Lusztig's canonical basis. Herein we opt for an essentially equivalent basis constructed in [START_REF] Skandera | On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231-avoiding permutations[END_REF], which was used by Rhoades to detect the analogous relationship between c mn and promotion. From the observations that w 0 and c mn lift the actions of evacuation and promotion, respectively, with respect to the dual canonical basis (or something like it), [START_REF] Stembridge | Canonical bases and self-evacuating tableaux[END_REF] and [START_REF] Rhoades | Cyclic sieving, promotion, and representation theory[END_REF] deduced correspondences between fixed points of Schützenberger actions and ribbon tableaux. These theorems inspired our results.

Theorem 1.5 ([18], Corollary 4.2). Let Tab(λ, µµ) be the set of all semistandard tableaux of shape λ and content µµ, and let ξ act on Tab(λ, µµ) by the Schützenberger involution. Then

|{T ∈ Tab(λ, µµ) : ξ(T ) = T }|
is the number of domino tableaux of shape λ and content µ.

Theorem 1.6 ( [START_REF] Rhoades | Cyclic sieving, promotion, and representation theory[END_REF], proof of Theorem 1.5). Let λ be a rectangular partition, and let Tab(λ, µ n ) be the set of all semistandard tableaux of shape λ and content µ n . Let j act on Tab(λ, µ n ) by m iterations of jeu-de-taquin promotion. Then, for all positive integers d dividing n,

|{T ∈ Tab(λ, µ n ) : j d (T ) = T }|
is the number of (n/d)-ribbon tableaux of shape λ and content µ d .

Unfortunately, the proofs of Theorems 1.5 and 1.6 cannot be directly adapted to obtain Theorems 1.1 and 1.2. In order for the Yamanouchi restrictions on our tableaux sets to be made to appear in our character evaluations, an additional point of subtlety is needed. We find relief in the insights offered us by the theory of Kashiwara crystals, which provides a framework not only for the study of the Schützenberger actions, but also for the reformulation of the Yamanouchi restrictions in terms of natural operators on semistandard tableaux.

Let g be a complex semisimple Lie algebra with weight lattice W , and choose a set of simple roots ∆ = {α 1 , α 2 , . . . , α t }. A g-crystal is a finite set B equipped with a weight map wt : B → W and a pair of raising and lowering operators e i , f i :

B → B {0} for each i that obey certain conditions. Most notably, for all b ∈ B, if e i • b is nonzero, then wt(e i • b) = wt(b) + α i , and if f i • b is nonzero, then wt(f i • b) = wt(b) -α i .
If g = sl mn , then W is a quotient of Z mn , and we may choose for our simple roots the images of the vectors i -i+1 for 1 ≤ i ≤ mn-1, where i denotes the i th standard basis vector for all 1 ≤ i ≤ mn. In this case, we may take B to be the set of semistandard tableaux of shape λ with entries in {1, 2, . . . , mn}, with the weight of each tableau encoded in its content. As we see in section 3, there exists a suitable choice of operators e i and f i so that B assumes the structure of a g-crystal, and that the word of a tableau b ∈ B is Yamanouchi with respect to the letters i and i + 1 if and only if e i vanishes at b, and anti-Yamanouchi with respect to i and i + 1 if and only if f i vanishes at b. Furthermore, evacuation and promotion act on the set of crystal operators by conjugation (essentially), which explains why they act on the tableaux sets indicated in our main theorems.

We close the introduction with an outline of the rest of the article. In section 2, we introduce plethysms, and we recall the observation of [START_REF] Lascoux | Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties[END_REF] that the classical relationship between tableaux and Schur functions evinces a more general relationship between ribbon tableaux and power-sum plethysms of Schur functions. In section 3, we define Kashiwara crystals for a complex semisimple Lie algebra, before specializing to the sl mn setting, where we show how to assign a crystal structure to the pertinent tableaux sets. We also examine how the Schützenberger actions interact with the raising and lowering crystal operators. Finally, in section 4, we sketch proofs of Theorems 1.1 and 1.2.

Background on Plethysms

In this extended abstract, we assume familiarity with the basic facts about Young tableaux and symmetric functions. (Accounts of the fundamentals can be found in [START_REF] Fulton | Young tableaux[END_REF], Chapters 1-6; for a treatment specific to our needs, see [START_REF] David | Cyclic sieving and plethysm coefficients[END_REF].) We start, then, with the rudiments of plethysms, following [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF].

Definition 2.1. Let f, g ∈ Λ, and let g be written as a sum of monomials, so that g = η u η x η , where η ranges over an infinite set of compositions. Let {y i } ∞ i=1 be a collection of proxy variables defined by

∞ i=1 (1 + y i t) = η (1 + x η t) uη .
The plethysm of f and g, which we denote by f • g, is the symmetric function f (y 1 , y 2 , . . .).

Remark 2.2. Although the relation

∞ i=1 (1 + y i t) = η (1 + x η t) uη
only determines the elementary symmetric functions in the variables y 1 , y 2 , . . . (viz., e 1 (y 1 , y 2 , . . .) = y 1 + y 2 + • • • , e 2 (y 1 , y 2 , . . .) = y 1 y 2 + y 1 y 3 + y 2 y 3 + • • • , etc.), it is well known that the ring of symmetric functions is generated as a Z-algebra by the elementary symmetric functions, so the plethysm f • g = f (y 1 , y 2 , . . .) is indeed well-defined.

The following observation follows immediately from Definition 2.1.

Proposition 2.3. For all f ∈ Λ, the map Λ → Λ given by g → g • f is a ring homomorphism.

There exists a family of symmetric functions for which the other choice of map given by plethysm, i.e. g → f • g, is also a ring homomorphism, for all f belonging to this family. Definition 2.4. For all positive integers k, the k th power-sum symmetric function in the variables x 1 , x 2 , . . .

is p k := x k 1 + x k 2 + • • • . Proposition 2.5. Let g ∈ Λ, and let k be a positive integer. Then p k • g = g • p k = g(x k
1 , x k 2 , . . .). We may conclude that the map given by g → p k • g is a ring homomorphism for all positive integers k. We are therefore permitted to introduce an adjoint operator, which we denote by ϕ k , given by f → κ f, p k •s κ s κ , where the sum ranges over all partitions κ. Clearly, the equality ϕ k (f ), g = f, p k •g holds for all f, g ∈ Λ, which explains the nomenclature.

Let κ be a partition. Just as the ordinary tableaux of shape κ index the monomials of the Schur function s κ , the k-ribbon tableaux of shape κ index the monomials of the symmetric function ϕ k (s κ ).

Theorem 2.6. Let κ be a partition, and suppose that the k-core of κ is empty. For all compositions η of |κ| k , we denote the monomial x η1 1 x η2 2 • • • by x η , and, for all k-ribbon tableaux T of shape κ and content η, we write x T for x η . Then ϕ k (s κ ) = k (κ) T x T , where the sum ranges over all k-ribbon tableaux of shape κ, and k (κ) denotes the k-sign of κ.

Proof. Let κ (1) , κ (2) , . . . , κ (k) be the k-quotient of κ. Since the k-core of κ is empty, it follows from a result of [START_REF] Littlewood | Modular representations of symmetric groups[END_REF] 

that ϕ k (s κ ) = k (κ)s κ (1) s κ (2) • • • s κ (k)
. However, from Equation 24 in [START_REF] Lascoux | Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties[END_REF], we see that

s κ (1) s κ (2) • • • s κ (k) = T x T ,
where the sum ranges over all k-ribbon tableaux of shape κ, as desired.

In view of Theorem 2.6, it is natural to ask if there is an analogue of the Littlewood-Richardson rule that describes the expansion coefficients of the power-sum plethysms p n •s µ , or, more generally, p d n/d •s µ , for d dividing n. In the following sections, we outline how [START_REF] David | Cyclic sieving and plethysm coefficients[END_REF] provides a partial affirmative answer.

Crystal Structure on Tableaux

For a complex semisimple Lie algebra g, Kashiwara's g-crystals constitute a class of combinatorial models patterned on representations of g. If g is simply laced, there exists a set of axioms, enumerated in [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF], that characterize the crystals arising directly from g-representations, which he calls regular. Given a partition κ with at most s positive parts, we may consider κ as a partition with s parts. The combinatorics of the weight space decomposition of the irreducible sl s -representation with highest weight encoded in κ is captured in the regular sl s -crystal structure assigned to the semistandard tableaux of shape κ with entries in {1, 2, . . . , s}.

In this section, we review the crystal structure on tableaux, and we observe that it offers a natural setting for the consideration of evacuation and promotion, due to the relationship between these actions and the raising and lowering crystal operators. We also see that the crystal perspective facilitates a recasting of the Yamanouchi conditions on tableaux reading words in terms of the vanishing or nonvanishing of the raising and lowering operators at the corresponding tableaux, viewed as crystal elements. We begin with the definition of a crystal, following [START_REF] Joseph | Quantum groups and their primitive ideals[END_REF]. Definition 3.1. Let g be a complex semisimple Lie algebra with weight lattice W . Let {α 1 , α 2 , . . . , α t } be a choice of simple roots, and let {α ∨ 1 , α ∨ 2 , . . . , α ∨ t } be the corresponding simple coroots. A g-crystal is a finite set B equipped with a map wt : B → W and a pair of operators e i , f i : B → B {0} for each 1 ≤ i ≤ t that satisfy the following conditions:

(i) max{ : f i • b = 0} -max{ : e i • b = 0} = wt(b), α ∨ i for all b ∈ B; (ii) e i • b = 0 implies wt(e i • b) = wt(b) + α i and f i • b = 0 implies wt(f i • b) = wt(b) -α i for all b ∈ B; (iii) b = e i • b if and only if b = f i • b for all b, b ∈ B.
We refer to e i as the raising operator associated to α i , and we refer to f i as the lowering operator associated to α i . We write i (b) := max{ : e i • b = 0} for the maximum number of times the raising operator e i may be applied to b without vanishing, and we write φ i (b) := max{ : f i • b = 0} for the maximum number of times the lowering operator f i may be applied to b without vanishing. If a g-crystal B satisfies the additional conditions (P4), (P5), (P6), (P5'), and (P6') of [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF], we say that B is regular. Definition 3.2. Let B and B be g-crystals. A map of sets π : B → B is a morphism of crystals if πe i = e i π and πf i = f i π for all 1 ≤ i ≤ t. (Here we tacitly stipulate π(0) := 0.) If π is bijective, we say π is an isomorphism. Specializing to the case g = sl s , we take as our Cartan subalgebra h the subspace of traceless diagonal matrices, and we identify h * with the quotient space C s /( 1 + 2 + • • • + s )C, where i denotes the i th standard basis vector for all 1 ≤ i ≤ s. Writing E i for the image of i in h * for all i, we note that the weight lattice W is generated over Z by {E 1 , E 2 , . . . , E s }, and we choose the set of simple roots {α 1 , α 2 , . . . , α s-1 } in accordance with the rule α i := E i -E i+1 for all 1 ≤ i ≤ s -1.

Proposition 3.8 ([6]

). Let κ and ι be partitions, each with s parts, such that ι i ≤ κ i for all positive parts ι i of ι. Let B κ/ι be the set of semistandard skew tableaux of shape κ/ι with entries in {1, 2, . . . , s}.

Let the maps

wt : B κ/ι → Z s /( 1 + 2 + • • • + s )Z h i,j , k i,j : B κ/ι → Z e i , f i : B κ/ι → B κ/ι {0}
be given for all 1 ≤ i ≤ s -1 and j ∈ N by stipulating, for all T ∈ B κ/ι :

• wt(T ) to be the image in

Z s /( 1 + 2 + • • • + n )Z of the content of T ;
• h i,j (T ) to be the number of occurrences of i + 1 in the j th column of T or to the right minus the number of occurrences of i in the j th column of T or to the right;

• k i,j (T ) to be the number of occurrences of i in the j th column of T or to the left minus the number of occurrences of i + 1 in the j th column or to the left;

• e i (T ) to be the skew tableau with an i in place of an i + 1 in the rightmost column for which h i,j (T ) is maximal and positive if such a column exists, and 0 otherwise;

• f i (T ) to be the skew tableau with an i + 1 in place of an i in the leftmost column for which k i,j (T ) is maximal and positive if such a column exists, and 0 otherwise.

Then the set B κ/ι equipped with the map wt and the operators e i , f i for all 1 ≤ i ≤ s-1 is an sl s -crystal.

Proposition 3.9 ( [START_REF] Stembridge | A local characterization of simply-laced crystals[END_REF]). Let κ be a partition with s parts. The sl s -crystal B κ := B κ/∅ defined in Proposition 3.8 is a regular connected crystal of highest weight κ

+ ( 1 + 2 + • • • + s )Z.
The highest weight element is the unique tableau of shape κ and content κ.

We now observe that Schützenberger's jeu de taquin respects the crystal structure on tableaux in the sense that jeu-de-taquin slides commute with the raising and lowering operators. Since evacuation and promotion may be defined via jeu de taquin (cf. [START_REF] Schützenberger | Promotion des morphismes d'ensembles ordonnés[END_REF] and [START_REF] Shimozono | Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties[END_REF]), it should be no surprise that they inherit this compatibility. Proposition 3.10 ( [START_REF] Lascoux | Keys & standard bases[END_REF]). Let κ and ι be nonempty partitions such that ι i ≤ κ i for all positive parts ι i of ι, and let C be an inside corner of κ/ι. For all semistandard skew tableaux T of shape κ/ι, let jdt(T ) be the result of a jeu-de-taquin slide on T starting from C, and set jdt(0) := 0. Then e i • jdt(T ) = jdt(e i • T ) and

f i • jdt(T ) = jdt(f i • T ) for all T ∈ B κ/ι and 1 ≤ i ≤ s -1.
Proposition 3.11 ([7]). Let κ be a partition with s parts, and let ξ : B κ → B κ be the Schützenberger involution. Set ξ(0) := 0. Then, for all T ∈ B κ :

(i) wt(ξ(T )) = w 0 • wt(T ); (ii) ξ(e i • T ) = f s-i • ξ(T ) and ξ(f i • T ) = e s-i • ξ(T ) for all 1 ≤ i ≤ s -1.
Proposition 3.12 ( [START_REF] Shimozono | Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties[END_REF]). Let κ be a partition with s parts, and let pr : B κ → B κ be jeu-de-taquin promotion. Set pr(0) := 0. Then, for all T ∈ B κ :

(i) wt(pr(T )) = c s • wt(T ); (ii) pr(e i • T ) = e i+1 • pr(T ) and pr(f i • T ) = f i+1 • pr(T ) for all 1 ≤ i ≤ s -1.
The following theorem reveals the reason why we restrict our attention to rectangular partitions in the statement of Theorem 1.2. Theorem 3.13 ([16]). Let κ be a partition with s parts, and let pr : B κ → B κ be jeu-de-taquin promotion. Then pr s acts as the identity if and only if κ is rectangular.

To close the section, as promised, we reinterpret the Yamanouchi conditions on reading words as vanishing conditions on crystal operators. Proposition 3.14. Let κ be a partition with s parts, and let T be a tableau of shape κ. For all 1 ≤ i < i ≤ s -1, the word of T is Yamanouchi (anti-Yamanouchi) in the subset {i, i + 1, . . . , i } if and only if the raising operators e i , e i+1 , . . . , e i -1 (lowering operators f i , f i+1 , . . . , f i -1 ) all vanish at T .

Proofs of Theorems 1.1 and 1.2

In this section, we sketch proofs of our main theorems. We start by delineating the properties of the basis of Kazhdan-Lusztig immanants constructed in [START_REF] Skandera | On the dual canonical and Kazhdan-Lusztig bases and 3412-, 4231-avoiding permutations[END_REF]. For κ a partition with at most s positive parts, we consider κ as a partition with s parts. We note that the action of the long element w 0 ∈ S s ⊂ GL s (C) on the immanants generating a GL s (C)-representation associated to κ lifts (up to sign) the Schützenberger involution on the tableaux in the sl s -crystal B κ , and, analogously, that the action of the long cycle c s ∈ S s ⊂ GL s (C) on immanants lifts (up to sign) jeu-de-taquin promotion if κ is rectangular. Theorem 4.1 ([13], [START_REF] David | Cyclic sieving and plethysm coefficients[END_REF]). Let κ be a partition of t with s parts, and let V κ,s be the dual of the irreducible polynomial GL s (C)-representation with highest weight κ. For all compositions η of t with s parts and semistandard tableaux U of shape κ and content η, let I η (U ) ∈ V s be the Kazhdan-Lusztig immanant associated to η and U . Set I η := {I η (U ) : U is a semistandard tableau of shape κ and content η}.

Then the following claims hold.

(i) The set η I η , where η ranges over all compositions of t with s parts, constitutes a basis for V κ,s .

(ii) For all compositions η of t with s parts, the set I η constitutes a basis for the weight space of V T,s corresponding to the weight -η, which we denote by V κ,s,η .

(iii) Let w 0 be the long element in S s , and let ξ be the Schützenberger involution. Then

w 0 • I η (U ) = (-1) v(κ) • I w0•η (ξ(U )).
(iv) Let c s be the long cycle in S s , and let pr be jeu-de-taquin promotion. If κ is rectangular with exactly a positive parts, then

c s • I η (U ) = (-1) ηs(a-1) I cs•η (pr(U )).

Proof of Theorem 1.1

Let λ be a partition with 2m parts. Suppose that 2 divides |λ|, and let µ = (µ 1 , µ 2 , . . . , µ m ) be a partition of |λ|/2. Let B λ be the set of semistandard tableaux of shape λ, endowed with an sl 2m -crystal structure by the sets of raising and lowering operators {e i } 2m-1 i=1 and {f i } 2m-1 i=1 , respectively. The key to our proof is the assignment of an (sl m ⊕ sl m )-crystal structure to B λ that allows us to inspect the action of ξ on its connected components. This process provides a combinatorial model for the decomposition into irreducible components of the restriction to GL m (C) × GL m (C) of the irreducible GL 2m (C)-representation with highest weight λ, which underlies our character evaluation.

Recall that we chose {E 1 -E 2 , E 2 -E 3 , . . . , E 2m-1 -E 2m } as the set of simple roots for sl 2m . Here we choose {E

2 -E 1 , E 3 -E 2 , . . . , E m -E m-1 , E m+1 -E m+2 , E m+2 -E m+3 , . . . , E 2m-1 -E 2m }
as the set of simple roots for sl m ⊕ sl m . Proposition 4.2. The set B λ equipped with the map wt, the set of raising operators {f i } m-1 i=1 ∪{e i+m } m-1 i=1 , and the set of lowering operators {e i } m-1 i=1 ∪ {f i+m } m-1 i=1 is a regular (sl m ⊕ sl m )-crystal. Proposition 4.3. Let β and γ be partitions, each with m parts. Equip the set B (β,γ) := B β × B γ with the map wt × wt. For all 1 ≤ i ≤ m -1, let e i and f i act as the sl m -crystal operators e i and f i , respectively, on B β and as the identity on B γ . For all m + 1 ≤ i ≤ 2m -1, let e i and f i act as the identity on B β and as the sl m -crystal operators e i-m and f i-m , respectively, on B γ . Then B (β,γ) , together with the set of raising operators {f 1 , f 2 , . . . , f m-1 , e m+1 , e m+2 , . . . , e 2m-1 } and the set of lowering operators {e 1 , e 2 , . . . , e m-1 , f m+1 , f m+2 , . . . , f 2m-1 }, is a regular connected (sl m ⊕ sl m )-crystal. Identifying the coefficients of s µ (x -2 1 , x -2 2 , . . . , x -2 m ) in our two expressions, we may conclude that

|EYTab ξ (λ, µµ)| = 2 (λ) • s λ , p 2 • s µ .

Proof of Theorem 1.2

Let λ be a rectangular partition with mn parts. Suppose that n divides |λ|, and let µ = (µ 1 , µ 2 , . . . , µ m ) be a partition of |λ|/n. Let B λ be the set of semistandard tableaux of shape λ, endowed with a sl mn -crystal

Definition 3 . 3 .

 33 A g-crystal B is connected if the underlying graph, in which elements b and b are joined by an edge if there exists i such that e i • b = b or e i • b = b, is connected. We refer to the connected components of the underlying graph as the connected components of B. Remark 3.4. Regular connected g-crystals should be thought of in analogy with irreducible representations of g. Definition 3.5. Let B be a g-crystal. An element b ∈ B is a highest weight element if e i vanishes at b for all i. If b is the unique highest weight element of B, then B is a highest weight crystal of highest weight wt(b). Proposition 3.6 ([19]). Let g be simply laced, and let B be a regular connected g-crystal. Then B is a highest weight crystal. Proposition 3.7 ([19]). Let B and B be regular connected g-crystals with highest weight elements b and b , respectively. If φ i (b) = φ i (b ) for all 1 ≤ i ≤ t, then B and B are isomorphic.

Theorem 4 . 4 . 2 • 2 ,= 2

 44222 Let C be a connected component of the (sl m ⊕ sl m )-crystal B λ . Let b be the unique highest weight element of C. Then there exist partitions β and γ, each with m parts, such that b is of content βγ, and C is isomorphic to B (β,γ) . Corollary 4.5. Let C be a connected component of the (sl m ⊕ sl m )-crystal B λ , and let b be the unique highest weight element of C. If ξ(b) = b, then {T ∈ C : ξ(T ) = T } is empty. Otherwise, there exists a partition β = (β 1 , β 2 , . . . , β m ) such that b is of content ββ, and the isomorphism of crystals C ∼ -→ B (β,β) restricts to a bijection of sets{T ∈ C : ξ(T ) = T } ∼ -→ {(U, U ) ∈ B (β,β) : ξ(U ) = U }.We proceed to the proof of Theorem 1.1 itself. Taking characters in the GL 2m (C)-representation V λ,2m , we note thatχ(w 0 • diag(x 1 , x 2 , . . . , x m , x m , . . . , x 2 , x 1 )) = (-1) v(λ) • T ∈B λ :ξ(T )=T • • x -2Tm m = (-1) v(λ) • θ |λ|/2 |EYTab ξ (λ, θθ)| • s θ (x -2 1 , x -2 2 , . . . , x -2 m ),where the first equality follows from Theorems 4.1, and the second equality follows from Corollary 4.5. Since χ : GL 2m (C) → C is a class function, we see also thatχ(w 0 • diag(x 1 , x 2 , . . . , x m , x m , . . . , x 2 , x 1 )) = χ(diag(x 1 , x 2 , . . . , x m , -x m , . . . , -x 2 , -x 1 )) = s λ (x -1 1 , x -1 2 , . . . , x -1 m , -x -1 m , . . . , -x -1 ranges over all semistandard domino tableaux of shape λ with entries in {1, 2, . . . , m}. (Here the second equality follows from Theorem 4.1, and the third from Remark 3.2 of [18](λ) • φ 2 (s λ )(x -2 1 , x -2 2 , . . . , x -2 m ) = 2 (λ) • θ |λ|/2 s λ , p 2 • s θ s θ (x -2 1 , x -2 2 , . . . , x -2 m ).

  and, if λ is rectangular, we compute χ(c md mn • diag(y 1 , y 2 , . . . , y d , y 1 , y 2 , . . . , y d , . . . , y 1 , y 2 , . . . , y d )),
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structure by the sets of raising and lowering operators {e i } mn-1 i=1 and {f i } mn-1 i=1 , respectively. The key to our proof is the assignment of an (sl m ⊕n )-crystal structure to B λ that allows us to inspect the action of j on its connected components. This process provides a combinatorial model for the decomposition into irreducible components of the restriction to GL m (C) ×n of the irreducible GL mn (C)-representation with highest weight λ, which underlies our character evaluation.

Recall that we chose {E 1 -E 2 , E 2 -E 3 , . . . , E mn-1 -E mn } as the set of simple roots for sl mn . Here we choose The remainder of the proof of Theorem 1.2 follows from a character evaluation in the GL mn (C)representation V λ,mn . In the interest of brevity, we suppress the details, but they can be found in [START_REF] David | Cyclic sieving and plethysm coefficients[END_REF].