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Affine charge and the k-bounded Pieri rule

Jennifer Morse1 † and Anne Schilling2 ‡

1Department of Mathematics, Drexel University, Philadelphia, PA 19104, U.S.A
2Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616-8633, U.S.A.

Abstract. We provide a new description of the Pieri rule of the homology of the affine Grassmannian and an affine
analogue of the charge statistics in terms of bounded partitions. This makes it possible to extend the formulation of
the Kostka–Foulkes polynomials in terms of solvable lattice models by Nakayashiki and Yamada to the affine setting.

Résumé. Nous proposons une nouvelle description de la règle de Pieri de l’homologie de la variété Grassmannienne
affine et un analogue affine de la statistique de charge en termes de partitions bornées . Il est ainsi possible d’étendre
au cas affine la formulation due à Nakayashiki et Yamada des polynômes de Kostka–Foulkes en termes de modèles
de réseaux résolubles.
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1 Introduction
Our study concerns an affine generalization of the Kostka–Foulkes polynomials. Kostka-Foulkes polyno-
mials comprise a fascinating family of polynomials in a single parameter t that arises in diverse contexts
such as cohomology of Springer fibers [25, 6], representation theory of GLn(Fq) [21, Ch. IV], affine
Kazhdan–Lusztig theory [20], solvable lattice models and crystal base theory [23], the Bethe Ansatz and
rigged configurations [8], and the study of subgroups of finite abelian groups [1]. They also encode the
irreducible decomposition of the Garsia–Procesi graded Sn-modules [5].

In symmetric function theory, the Kostka–Foulkes polynomials appear as Schur transition coefficients
with Macdonald’s P -functions, defined by

Pλ(x; t) =
1

vλ(t)

∑
w∈Sn

w
(
xλ
∏
i<j

xi − txj
xi − xj

)
, (1)

where λ is a partition of length ≤ n (with allowable zero parts), vλ(t) =
∏
j≥0

∏mj
i=1

1−ti
1−t for mj the

multiplicity of j in λ, and Sn is the symmetric group on n elements. The set {Pλ} forms a basis of the
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ring of symmetric functions Λ over Q(t) and Pλ(x; t) reduces to the monomial symmetric function mλ

when t = 1. Kostka–Foulkes polynomials are inscribed in its transition with the Schur basis:

sλ(x) =
∑
µ

Kλµ(t)Pµ(x; t) . (2)

Lascoux and Schützenberger [17, 1] proved that the Kostka–Foulkes polynomials can be expressed as the
generating function of the set SSYT(λ, µ) of semi-standard Young tableaux of shape λ and content µ
graded by the (non-negative integer) charge statistic

Kλµ(t) =
∑

T∈SSYT(λ,µ)

tcharge(T ) . (3)

Subsequently, Nakayashiki and Yamada [23] showed that the Kostka-Foulkes polynomials can instead
be interpreted as the partition function of an exactly solvable lattice model in statistical mechanics. In
particular, Kλµ(t) is expressed in terms of tensor products of type A Kirillov–Reshetikhin (KR) crystals
graded by the energy function. KR crystals Br,s are labeled by r ∈ {1, 2, . . . , n} and an integer s ≥ 1. In
typeA(1)

n , Br,s can be considered as the set of all semi-standard Young tableaux of rectangular shape (sr)
over the alphabet {1, 2, . . . , n+ 1}. The classical crystal operators f̃i and ẽi for 1 ≤ i ≤ n are defined in
terms of certain bracketing rules involving the letters i and i + 1. The affine Kashiwara operators ẽ0 and
f̃0 are defined as ẽ0 = pr−1 ◦ ẽ1 ◦ pr and ẽ0 = pr−1 ◦ ẽ1 ◦ pr, where pr is the promotion operator. See
for example [4].

For any partition µ = (µ1, µ2, . . . , µN ), let Bµ = B1,µN ⊗ · · · ⊗ B1,µ1 be a tensor product of sin-
gle row KR crystals and let E : Bµ → Z be the (right) energy function (see for example [23, 19]).
Here we use the opposite of Kashiwara’s convention for tensor products of crystals. Since the ele-
ments of B1,s are single row-shaped tableaux, each factor bN ⊗ · · · ⊗ b1 ∈ Bµ can be associated (by
RSK column-insertion) to a recording tableau; it is obtained by placing the letter i into the boxes of
shape(bi . . . b1)/shape(bi−1 . . . b1). For highest weight vectors b ∈ Bµ (that is ẽi(b) = 0 for i =
1, 2, . . . , n), this is equivalent to placing a letter i in row j of the recording tableau if j occurs in bi. It was
proven in [23] that the energy function is equal to the charge of the recording tableau and consequently,

Kλµ(t) =
∑

b∈Bµ,weight(b)=λ

ẽi(b) = 0 for i = 1, 2, . . . , n

tE(b) . (4)

Example 1.1 For µ = (2, 2, 1), the highest weight crystal elements in B1,1 ⊗B1,2 ⊗B1,2 are

3 ⊗ 2 2 ⊗ 1 1 , 3 ⊗ 1 2 ⊗ 1 1 , 1 ⊗ 2 2 ⊗ 1 1 , 2 ⊗ 1 2 ⊗ 1 1 ,

1 ⊗ 1 2 ⊗ 1 1 , 2 ⊗ 1 1 ⊗ 1 1 , 1 ⊗ 1 1 ⊗ 1 1 ,

with energies 0, 1, 1, 2, 2, 3, 4, respectively. Inserting the factors from right to left, recording the i-th factor
with the letter i yields the following corresponding tableaux:

3
2 2
1 1 ,

3
2
1 1 2 ,

2 2
1 1 3 ,

2 3
1 1 2 , (5)
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2
1 1 2 3 ,

3
1 1 2 2 , 1 1 2 2 3 .

The charge of each recording tableau agrees with the energy of the corresponding tensor.

Note that the Kostka–Foulkes polynomials can also be related to tensor products of column KR crystals
Br,1 [23, 18].

Yet another direction ties Kostka–Foulkes polynomials to affine Schubert calculus. The algebraic nil-
Hecke ring construction of Kostant and Kumar [7] and the work of Peterson [24] developed the study of
Schubert bases associated to Schubert cells of the affine Grassmannian Gr for type SLn:

{ξλ ∈ H∗(Gr,Z) | λ ∈ Pn} and {ξλ ∈ H∗(Gr,Z) | λ ∈ Pn} ,

indexed by the subset Pn of partitions with all parts shorter than n. Separately, distinguished k-Schur and
dual k-Schur bases for certain symmetric function spaces which are isomorphic to H∗(Gr) and H∗(Gr)
were introduced and connected to Gromov–Witten invariants (quantum cohomology of Grassmannians)
in [14, 15]. The approaches merged with Lam’s proof [9] that these bases are sets of representatives for
the Schubert classes of H∗(Gr) and H∗(Gr) (hereafter, k = n− 1).

Recently, a t-generalization for the dual k-Schur basis was introduced in [3] using a construction in the
spirit of (2) and (3). A non-negative statistic called kcharge is associated to certain chains in the Bruhat
order on the type-A affine Weyl group. The generating functions

K(k)
λµ (t) =

∑
T∈T (λ,µ)

tkcharge(T ) (6)

are used to define polynomials, for λ ∈ Pn, by

Sλ(x; t) =
∑
µ∈Pn

K(k)
λµ (t)Pµ(x; t) . (7)

These form a basis for the subspace Λt(n) = span{Pλ(x; t)}λ1<n which reduces to a set of representatives
for the Schubert cohomology classes {ξλ}λ∈Pn when t = 1.

To complement their geometric interpretation, our goal in this paper is to connect the affine Kostka-
Foulkes polynomials of (6) with Kirillov–Reshetikhin (KR) crystals. Our approach gives a new formula-
tion for the Pieri rule for the homology of Gr in terms of partitions with restricted part sizes. From this, we
use a description of kcharge given by Lapointe and Pinto in [16] in their study of the branching rules for
k-Schur functions and also reformulate it in the k-bounded setting. In this setup, the Nakayashiki–Yamada
correspondence with exactly solvable lattice models (or Kirillov–Reshetikhin crystals) is immediate. An-
other application of this new point of view is the pursuit of a combinatorial description of Gromov–Witten
invariants (k-Schur structure constants). The Schur structure constants can be described by counting skew
tableaux with charge zero. The combinatorics presented here is in the same vein as classical tableaux
combinatorics and should be useful in approaching the k-Schur constants.

2 Affine Pieri rule
The ring structure in homologyH∗(Gr) is determined by a refinement of the Pieri rule for Schur functions.
The main ingredient used in [13, Section 9] to formulate the rule is an involution on Pn which refines
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partition conjugation. It is naturally defined through a bijection p between n-cores (partitions that have
no hooks of length n) and bounded partitions:

p (γ) = (λ1, . . . , λ`)

where λi is the number of cells with a k-bounded hook in row i of an n-core γ. The k-conjugate of a
shape λ ∈ Pn is then the shape

λωk = p(p−1(λ)′) ,

where λ′ denotes the conjugate of λ.

Theorem 2.1 [14] For any µ ∈ Pn, the affine Pieri rule is

ξm ξµ =
∑

λ∈Hµ,m

ξλ , (8)

where the sum is over the subset of the partitions, called weak horizontal m-strips, defined by

Hµ,m = {λ | λ/µ = horizontal m-strip and λωk/µωk = vertical m-strip} . (9)

Central to our study are coefficients arising in the following iteration of the affine Pieri relation:

ξµ1
· · · ξµ` =

∑
λ

K(k)
λµ ξλ . (10)

These “affine Kostka coefficients” K(k)
λµ count certain tableaux that are defined using n-cores and another

notion from modular representation theory called the n-residue (the label j − i mod n of a cell (i, j)).

Definition 2.2 Let γ be a (k+ 1)-core with m k-bounded hooks and let α = (α1, . . . , αr) be a composi-
tion of m. A “weak k-tableau” of shape γ and weight α is a tableau of shape γ with integers 1, 2, . . . , r
such that the collection of cells filled with letter i is labeled by exactly αi distinct (k + 1)-residues. Stan-
dard weak k-tableaux are those of weight (1r).

Note that for a weak k-tableau associated to a shape γ and weight α, in contrast to usual tableaux, |α|
equals the number of k-bounded hooks in γ. We use T (λ, µ) to denote the set of weak k-tableaux of
weight µ and shape p−1(λ). This given, K(k)

λµ = |T (λ, µ)|.
The first step towards expressing affine Kostka polynomials in terms of KR crystals is to identify which

recording tableaux of highest weight crystal elements correspond to weak k-tableaux. To do so, we
reinterpret the Pieri rule for ξλ in the context of a distinguished subset of semi-standard tableaux that
gives yet another realization of weak k-tableaux.

Consider a semi-standard tableau T of shape λ and weight µ. Denote by λ(i) the shape of the subtableau
consisting only of the letters less than or equal to i. By (9), T is a k-bounded weak k-tableau if both

λ(i)/λ(i−1) and (λ(i)ωk)′/(λ(i−1)ωk)′ are horizontal strips for all i ≥ 1. (11)

We have discovered a new characterization for k-bounded weak k-tableaux that employs an alternate
formulation of k-conjugation due to Karola Mészáros [22].
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Lemma 2.3 [22] [11, Chapter 2, Section 1.3]

1. Each row of a k-bounded partition λ = (λ1, λ2, . . . , λ`) ∈ Pk+1 is assigned to a string as follows:
the first string s1 = (λi1 , λi2 , . . . , λit) is constructed starting with the longest part λi1 = λ1 and
assigning other rows λij satisfying ij = k+ 1−λij−1

+ ij−1. Successively construct strings si for
i > 1, each time beginning with the longest row λi1 that was not previously assigned to a string.
Then

λωk = (|s1|, |s2|, . . . , |s`|)′.

2. The i-th part of p−1(λ) is obtained by adding all elements in the string containing λi that are
weakly above λi.

Example 2.4 For λ = (4, 3, 3, 2, 1, 1) and k = 4, rows are assigned to the strings

3
2
1
2
1
1 ,

where the first cell in a row is labeled by its string, and

(λω4)′ = (λ1 + λ2 + λ4, λ3 + λ5, λ6) = (9, 4, 1),

p−1(λ) = (λ1 + λ2 + λ4, λ2 + λ4, λ3 + λ5, λ4, λ5, λ6) = (9, 5, 4, 2, 1, 1).

Remark 2.5 Given a partition γ where γi < γi−1, let (γi1 , . . . , γit) denote the string to which γi belongs.
By construction, γij−1 is the first entry in its string for the smallest index ij larger than i.

We reformulate the conditions in (11) in terms of the strings defined in Lemma 2.3.

Lemma 2.6 Let λ, τ ∈ Pk+1 such that λ/τ consists of one box in row r. Consider the string sj to which
τr is assigned and let sj>r = (τr1 , τr2 , . . .) be the subset of parts in sj where r1 > r. Here we include
parts of size 0. Then (λωk)′/(τωk)′ is a skew partition if and only if τri = τri−1 for all i ≥ 1.

Proof: Let s1, s2, . . . and b1, b2, . . . denote the strings of τ and λ, respectively. Consider the string to
which τr belongs; sj = (τi1 , . . . , τia , τr1 , τr2 , . . .) where r1 > r = ia. Let st denote the string to
which τr1−1 belongs. Note by Remark 2.5 that st = (τr1−1, τr′2 , . . .). Since λ differs from τ by only an
additional box in row r, si = bi for all i 6= t, j. The additional box causes r1 = k+1− τr +r = (k+1−
λr + r) + 1 and thus implies that the string to which λr belongs is bj = (τi1 , . . . , τia + 1, τr1−1, τr′2 , . . .)

while bt = (τr1 , τr2 , . . . , ). Note by the string construction that τri ≤ τr′i implying that |sj | < |bj | but
|st| ≥ |bt|.

By Lemma 2.3 (1), it suffices to show that |si| ≤ |bi| if and only if τri = τri−1, for all i ≥ 1. Note
that |si| ≤ |bi| for all i implies that |st| = |bt|. In turn, this ensures that τri = τr′i for all i. In particular,
τri = τri−1. On the other hand, given τri = τri−1 for all i, τr′i = τri−1 and the claim follows. 2
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Example 2.7 Take k = 5 and the partition τ with the strings as indicated

2
3
4
1
2
3
1
2
1 .

Then adding a box to row 2 of τ yields λ such that (λωk)′/(τωk)′ is a valid skew partition since τ4 = τ5
and τ8 = τ9, but adding a box in row 4 would not be allowed since τ8 6= τ7.

Let λ, τ ∈ Pk+1 such that λ/τ is a horizontal strip. Suppose that for a given row r the skew partition
λ/τ contains ` boxes, set r1 = r + k + 1 − τr (that is, the smallest row in τ above row r in the same
string as row r), and let s = (λr1 , λr2 , . . .) be the tuple of parts of λ weakly above row r1 that belong to
the string of Lemma 2.3 passing through row r1. Again we include parts of size 0.

Lemma 2.8 With the notation above, (λωk)′/(τωk)′ is a horizontal strip if and only if λri = τri−` for all
i ≥ 1 and all rows r with ` > 0.

Proof: The lemma follows from Lemma 2.6 by successively adding boxes. Adding boxes in different
strings in τ is independent. Boxes within the same string need to be added from top to bottom, left to
right. 2

Example 2.9 Take k = 5 and

τ =
3
2
1

and λ =

3
1
2
1

so that λ/τ has cells in rows 1 and 4. Note that for row 1, we have r1 = 4, ` = 1 and 2 = λr1 = τr1−`.
Similarly, for row 4 we have r1 = 10, ` = 2 and 0 = λr1 = τr1−`. Hence λ/τ is a weak horizontal strip
for k = 5.

On the other hand, for

τ =

2
1
2
1

and λ =

1
2
1
1

we have ` = 1 cells in row 1 of λ/τ and r1 = 3, but 0 = λ5 = λr2 6= τr2−` = τ4 = 1. Hence λ/τ is not
a weak horizontal strip for k = 5.

Given the Pieri rule Theorem 2.1, we may deduce a different formulation.
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Theorem 2.10 Let 1 ≤ m < n and τ ∈ Pn. The Pieri rule in H∗(Gr) can be described by

ξmξτ =
∑
λ

ξλ , (12)

over all partitions λ ∈ Pn where λ/τ is a horizontal m-strip and λri = τri−` for all i ≥ 1 and all rows
r in λ/τ with ` > 0 boxes, where ri is as defined in Lemma 2.8.

Theorem 2.11 Let T be a semi-standard tableau of k-bounded shape λ and weight µ. Then T is a k-
bounded weak k-tableau if for each letter i in T , the skew shape λ(i)/λ(i−1) satisfies the conditions of
Lemma 2.8.

Proof: This follows directly from Lemma 2.8 by noting that for a semi-standard tableau T of k-bounded
shape, condition (11) must hold for every λ(i)/λ(i−1) in order to correspond to a weak k-tableau. 2

As a corollary of Theorem 2.11 we can now determine which highest weight crystal elements contribute
to a k-Schur expansion of the Hall–Littlewood polynomials. Namely, it will be those whose insertion
tableau is a k-bounded weak k-tableau by the conditions in Theorem 2.11. This, together with the k-
charge in this language, is summarized in Theorem 3.8.

Example 2.12 Let us determine which insertion tableaux from Example 1.1 contribute for k = 3. Since
the shape needs to be 3-bounded only the first four tableaux in (5) can potentially contribute. Looking at
the strings in λ(i)/λ(i−1) for each i = 1, 2, 3 we find that

3
2 2
1 1 : 1 →

2
1 →

1
2
1

3
2
1 1 2 : 1 →

1
1 →

2
1
1

2 3
1 1 2 : 1 →

1
1 →

1
1

satisfy the conditions of Lemma 2.8 and hence contribute. On the other hand

2 2
1 1 3 : 1 →

2
1 →

1
1

does not satisfy the condition of Lemma 2.8 for λ(3)/λ(2) since in this case τ = (2, 2), r = 1, ` = 1,
r1 = 3, and 0 = λ3 6= τ2 = 2.

Since the shapes of the surviving tableaux are (2, 2, 1), (3, 1, 1), and (3, 2), this agrees with the terms
in the 3-Schur expansion in (16). How to obtain the powers of t is discussed in the next section.
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3 Affine charge
In [16], Lapointe and Pinto introduced a statistic called k-charge on weak k-tableaux. In analogy to (3),
the affine Kostka numbers are thus lifted to affine Kostka polynomials

K(k)
λµ (t) =

∑
T∈T (λ,µ)

tkcharge(T ) . (13)

It was recently proven [2] that the functions Sλ(x; t) can be defined in these terms.
The k-charge statistic is easiest to describe first on standard (of weight (1n)) weak k-tableaux. Let

diag(c1, c2), associated to cells c1 and c2 in a (k + 1)-core, be the number of diagonals of residue x that
are strictly between c1 and c2 where x is the residue of the lower cell. Instead of taking a cell as input, the
diag function can also take a specific instance of an entry in the tableau as input (which then determines
a cell).

Definition 3.1 Given a standard weak k-tableau T on m letters, put a bar on the topmost occurrence of
letter r, for each r = 1, . . . ,m. Define the index of T , starting from I1 = 0, by

Ir =

{
Ir−1 + 1 + diag(r̄, r − 1) if r̄ is east of r − 1,
Ir−1 − diag(r̄, r − 1) otherwise ,

(14)

for r = 2, . . . ,m. The k-charge of T is the sum of entries in I(T ), denoted by kcharge(T ).

The definition of k-charge extends to semi-standard weak k-tableaux by successively computing an
appropriate choice of standard sequences. The trick is to introduce a method for making this choice in
weak k-tableaux.

Definition 3.2 From an x (of some residue i) in a semi-standard weak k-tableau T , the appropriate
choice of x+ 1 will be determined by choosing its residue from the set A of all (k+ 1)-residues labelling
x+ 1’s. Reading counter-clockwise from i, this choice is the closest j ∈ A on a circle labelled clockwise
with 0, 1, . . . , k.

A standard subtableau is extracted by choosing the rightmost x = 1 and then selecting subsequent letters
x using the choice of Definition 3.2. The same procedure is then repeated with the yet unselected letters.

Example 3.3 For k = 3, we compute the k-charge:

3
2
1 1 2 2

3
2
1 1 2 2

3
2
1 1 2 2

=⇒ kcharge = (0 + 0 + 0) + (0 + 1) = 1

Hall–Littlewood polynomials {Hµ(x; t)} arise as the basis dual to {Pµ(x; t)} with respect to the Hall
inner product

〈mλ, hµ〉 = δλµ ,

where mλ are the monomial symmetric functions and hλ are the complete homogeneous symmetric func-
tions. Hence, (7) implies that

Hµ(x; t) =
∑
λ

K(k)
λµ (t) s

(k)
λ (x; t) , (15)
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where {s(k)λ (x; t)}λ∈Pn is the dual basis to {Sλ(x; t)}λ∈Pn . At t = 1, s(k)λ (x; t) reduce to the parame-
terless k-Schur functions (discussed in the introduction).

Example 3.4 We have

H221[X; t] = s
(2)
221 = s

(3)
221 + ts

(3)
311 + t2s

(3)
32

= s
(4)
221 + ts

(4)
311 + (t+ t2)s

(4)
32 + t3s

(4)
41

= s
(5)
221 + ts

(5)
311 + (t+ t2)s

(5)
32 + (t2 + t3)s

(5)
41 + t4s

(5)
5 ,

(16)

where we have dropped the dependence on x and t in the notation. For example, the coefficient of s(3)311

in (16) is K(3)
(3,1,1),(2,2,1)(t) = t corresponding to the unique weak 3-tableau of weight µ = (2, 2, 1) in

Example 3.3 with kcharge equal to 1.

The k-charge in terms of (k + 1)-cores as given in Definitions 3.1 and 3.2 can be reformulated for
k-bounded weak k-tableaux.

Given a k-bounded weak k-tableau T as characterized by Theorem 2.11, recall that λ(i) denotes the
shape of T restricted to the letters smaller or equal to i. Draw all intermediate shapes λ(i) together with
their corresponding strings. Then for the new boxes in each step, compute the residues using p−1(λ) as
described in Lemma 2.3 (2). Definition 3.2 is still used to select the standard subtableaux. From these
we can obtain subwords w(1,k), . . . , w(`,k) by reading the selected cells columnwise top to bottom, left to
right. The definition of index in Definition 3.1 without the terms diag(r, r − 1) is the usual charge of the
subwords w(1,k), . . . , w(`,k). This is due to the fact that the topmost ocurrence of the letter r, which we
denoted r, in a weak k-tableau in the (k+ 1)-core setting becomes the letter r in the k-bounded analogue
under the map p. Note, however, that the selected subwords do depend on k and for small k are usually
different from the subwords selected for the usual charge of T .

Example 3.5 Take k = 4 and

T =

7
6
5 6
3 4
2 3 5
1 1 2 4

which is the k-bounded analogue of [11, Chapter 2, Example 3.20]. Now we draw the sequence of
partitions λ(i) and mark the strings in the left columns and the residues of the added boxes as exponents
at each step:

10 1 →
24

1 2 →

13

2 0

1 →

2 4

1
1 0 →

12

2
1 1

1 →

31

1 3

2
1
1 →

20

3
1
2
1
1 .

The cells selected for w(1,4) are marked in bold which shows that

w(1,4) = 7653214 and w(2,4) = 164352
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with charge(w(1,4)) + charge(w(2,4)) = 4 + 7 = 11. Note that the words selected for the usual charge
(or for large k) are different

w(1,∞) = 7326154 and w(2,∞) = 651432

with charge(w(1,∞)) + charge(w(2,∞)) = 4 + 5 = 9.

The term diag(r, r − 1) in the definition of the index in Definition 3.1 can be elegantly expressed in
terms of the strings in the partition λ(r) (or λ(r−1)). Recall that the letter r in a weak k-tableaux in the
(k + 1)-core setting becomes the letter r in the k-bounded analogue.

Lemma 3.6 Let T be a k-bounded weak k-tableau.

1. If r is east of r − 1 in T , diag(r, r − 1) is the number of rows strictly between the rows containing
r and r − 1 that are in the same string as the row containing r in λ(r).

2. Otherwise, diag(r, r − 1) is the number of rows strictly between the rows containing r and r − 1
that are in the same string as the row containing r − 1 in λ(r−1).

Proof: Suppose that r is east of r − 1 in T . By definition, diag(r, r − 1) is the number of diagonals of
the same residue as the cell containing r between r and r − 1 in the (k + 1)-core analogue p−1(T ) of T .
In other words, it counts how many multiples of k + 1 are in the number of cells between r and r − 1
when forming a hook between the two cells. Note that by Lemma 2.3(2) that describes how to pass from
a k-bounded partition to a (k + 1)-core using the strings, it suffices to restrict in T to the rows between r
and r−1. Consider λ(r) and let λ̃(r) be the restriction of λ(r) to the rows weakly between r and r−1 in T .
The hook distance between r and r − 1 in p−1(T ) is the same as the hook distance in p−1(λ̃(r)) between
the corresponding cells. Note that by the definition of strings, the hook distance between the cells at the
end of the rows in rows of the same string is always k + 1. This proves the claim for part (1).

Part (2) can be argued in a similar fashion. Since the strings of the lower cell matter, one uses λ(r−1)

in this case. 2

With the definitions and results above, the k-charge of Definition 3.1 can be written as

kcharge(T ) = charge(w(k)) +O(T ),

where O(T ) =
∑
r≥1Or(T ) with O1(T ) = 0 and

Or = Or−1 +


# of rows strictly between rows containing if r east of r − 1,
r and r − 1 in same string as r in λ(r)

–# of rows strictly between rows containing otherwise.
r and r − 1 in same string as r − 1 in λ(r−1)

(17)

Example 3.7 Let us compute Or(T ) for T in Example 3.5. For the first selected standard word we get a
contribution to (17) from r = 4 and r = 5 of 1 and−1, respectively (where we filled the rows contributing
to (17))

1
2
1 →

2
1
1 and

2
1
1 →

1
2
1
1
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so that O4(T ) = 1 and all other Or(T ) = 0, which implies O(T ) = 1 and kcharge(T ) = 12.

Theorem 3.8 Let λ, µ ∈ Pn. Then the affine Kostka–Foulkes polynomial is given by

Kwλ,µ(t) =
∑
T

tkcharge(T ) ,

where the sum is over all k-bounded weak k-tableaux of shape λ and weight µ as characterized in Theo-
rem 2.11 with k-charge as computed in this section.

Since the recording tableaux of the highest weight KR crystal elements are given in the k-bounded
language, this can be translated directly to the statistical mechanical formulation of the affine Kostka–
Foulkes polynomials via [23] as demonstrated in Example 2.12.
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