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The Bruhat order on conjugation-invariant
sets of involutions in the symmetric group

Mikael Hansson†

Department of Mathematics, Linköping University, Sweden

Abstract. Let In be the set of involutions in the symmetric group Sn, and for A ⊆ {0, 1, . . . , n}, let

FA
n = {σ ∈ In | σ has a fixed points for some a ∈ A}.

We give a complete characterisation of the sets A for which FA
n , with the order induced by the Bruhat order on Sn,

is a graded poset. In particular, we prove that F {1}
n (i.e., the set of involutions with exactly one fixed point) is graded,

which settles a conjecture of Hultman in the affirmative. When FA
n is graded, we give its rank function. We also

give a short new proof of the EL-shellability of F {0}
n (i.e., the set of fixed point-free involutions), which was recently

proved by Can, Cherniavsky, and Twelbeck.

Résumé. Soit In l’ensemble d’involutions dans le groupe symétrique Sn, et pour A ⊆ {0, 1, . . . , n}, soit

FA
n = {σ ∈ In | σ a a points fixes pour quelque a ∈ A}.

Nous caractérisons tous les ensembles A dont les FA
n , avec l’ordre induit par l’ordre de Bruhat sur Sn, est un poset

gradué. En particulier, nous démontrons que F {1}
n (c’est-à-dire, l’ensemble d’involutions avec précis en point fixe)

est gradué, ce qui résout une conjecture d’Hultman à l’affirmative. Lorsque FA
n est gradué, nous donnons sa fonction

de rang. En plus, nous donnons une nouvelle démonstration courte l’EL-shellability de F {0}
n (c’est-à-dire, l’ensemble

d’involutions sans points fixes), établie récemment par Can, Cherniavsky et Twelbeck.

Keywords: Bruhat order, symmetric group, involution, conjugacy class, graded poset, EL-shellability

1 Introduction
Partially ordered by the Bruhat order, the symmetric group Sn is a graded poset whose rank function
is given by the number of inversions, and Edelman [4] proved that it is EL-shellable. Richardson and
Springer [10] proved that the set In of involutions in Sn and the set F 0

n of fixed point-free involutions
are graded. Incitti [9] proved that the rank function of In can be expressed as the average of the number
of inversions and the number of exceedances, and that In is EL-shellable. Hultman [8] studied (in a
more general setting, which we shall describe shortly) F 0

n and F 1
n , the set of involutions with exactly one
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fixed point. It follows that F 0
n is graded and Hultman conjectured that the same is true for F 1

n . Can,
Cherniavsky, and Twelbeck [3] recently proved that F 0

n is EL-shellable.
We consider the following generalisation. For a ∈ {0, 1, . . . , n}, let F an be the conjugacy class in Sn

consisting of the involutions with a fixed points, and for A ⊆ {0, 1, . . . , n}, let

FAn =
⋃
a∈A

F an .

Both In and FAn are regarded as posets with the order induced by the Bruhat order on Sn. Note that

FAn = {σ ∈ In | σ has a fixed points for some a ∈ A}.

Also note that for all elements in In, the number of fixed points is congruent to n modulo 2. Hence, we
may assume that all members of A have the same parity as n.

Depicted in Figures 1 and 2, are the Hasse diagrams of I4, F 0
4 , and F 2

4 .

�

◦

• 1324 •

• 2143 •

◦ •

1234

4321

1243 • 2134

1432 ◦ 3214

3412 4231

Figure 1: Hasse diagram of I4 with the involutions with zero (◦), two (•), and four (�) fixed points indicated.

◦

◦

◦

• • •

• •

•

Figure 2: Hasse diagrams of F 0
4 (left) and F 2

4 (right).

Our main result is a complete characterisation of the sets A for which FAn is graded. In particular, we
prove that F 1

n is graded.
Informally, FAn is graded precisely when A − {n} is empty or an “interval,” which may consist of a

single element if it is 0, 1, or n − 2. The following theorem, which is our main result, makes the above
precise. It also gives the rank function of FAn when it exists.
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Theorem 1 The poset FAn is graded if and only if A− {n} = ∅ or A− {n} = {a1, a1 + 2, . . . , a2} with
a1 ∈ {0, 1}, a2 = n − 2, or a2 − a1 ≥ 2. Furthermore, when FAn is graded, its rank function ρ is given
by

ρ(σ) =
inv(σ) + exc(σ)− n+ ã

2
+

{
1 if n ∈ A
0 otherwise,

where inv(σ) and exc(σ) denote the number of inversions and exceedances, respectively, of σ, and ã =
max(A− {n}). In particular, FAn has rank

ρ(FAn ) =
n2 − a2 − 2n+ 2ã

4
+

{
1 if n ∈ A
0 otherwise,

where a = minA.

The following result is direct consequence of Theorem 1.

Corollary 2 The posets F 0
n , F 1

n , Fn−2n , and Fnn are the only graded conjugacy classes of involutions in
Sn. Furthermore, the rank function ρ of F 0

n and F 1
n is given by

ρ(σ) =
inv(σ)− bn/2c

2
,

and the rank function ρ of Fn−2n is given by

ρ(σ) =
inv(σ)− 1

2
.

It is well known that Fn−2n is graded (in fact, it coincides with the root poset of the Weyl groupAn−1 ∼=
Sn). As was mentioned above, the gradedness of F 0

n was proved by Richardson and Springer, and that of
F 1
n was conjectured by Hultman. These two posets are special cases of a more general construction from

Hultman’s paper [8], which we now describe.(i)

Given a finitely generated Coxeter system (W,S) and an involutive automorphism θ of (W,S) (i.e., a
group automorphism θ of W such that θ(S) = S and θ2 = id), let

ι(θ) = {θ(w−1)w | w ∈W}

and
I(θ) = {w ∈W | θ(w) = w−1}

be the sets of twisted identities and twisted involutions, respectively. Clearly, ι(θ) ⊆ I(θ) ⊆ W . Note
that when θ = id, ι(θ) and I(θ) reduce to the sets of the (ordinary) identity and (ordinary) involutions in
W . Each subset of W is regarded as a poset with the order induced by the Bruhat order on W . When W
is the symmetric group Sn, there is a unique non-trivial automorphism of (W,S), mapping si = (i, i+ 1)
to sn−i.

(i) The results below are taken from [6, 7, 8]. In general, we do not indicate which results are from which paper. For general Coxeter
group terminology and results, see [2].
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We say that θ has the no odd flip property if the order of sθ(s) is even or infinite for all s ∈ S
with s 6= θ(s). If W is finite and irreducible, then θ has the no odd flip property, unless W is of type
A2n

∼= S2n+1 or I2(2n + 1) for some n ≥ 1, and θ is the unique non-trivial automorphism. The poset
I(θ) is always graded. Furthermore, we have the following result, from which it follows that F 0

n is graded,
as we shall see.

Theorem A ([8, Theorem 4.6 and Proposition 6.7]) If θ has the no odd flip property, then ι(θ) is graded
with the same rank function as I(θ).

IfW is finite, it contains a greatest elementw0, and θ(w) = w0ww0 defines an involutive automorphism
of (W,S). Since ι(θ) = {w0w

−1w0w | w ∈W} and I(θ) = {w ∈W | w0ww0 = w−1},

w0 · ι(θ) = {w−1w0w | w ∈W}

and
w0 · I(θ) = {w0w | w0ww0 = w−1} = {w0w | (w0w)2 = e}.

Since left (as well as right) multiplication by w0 is a poset anti-automorphism (i.e., an order-reversing
bijection whose inverse is order-reversing), ι(θ) is isomorphic to the dual of [w0], where [w0] is the
conjugacy class of w0, and I(θ) is isomorphic to the dual of I(W ), where I(W ) is the set of involutions
in W .

When W is the symmetric group Sn, this θ is the unique non-trivial automorphism of (W,S), and
I(W ) = In. For n even, [w0] = F 0

n , and for n odd, [w0] = F 1
n . Thus, it follows from Theorem A that F 0

n

is graded.
It was conjectured by Hultman [8, Conjecture 6.1] that ι(θ) is graded when W = A2n. As we have

seen, this is equivalent to F 1
n being graded, which is the case (see Corollary 2). Since ι(θ) is graded

wheneverW is dihedral, as is easily seen, it therefore follows that ι(θ) is graded wheneverW is finite and
irreducible. From this, we get the following (we omit the proof):

Theorem 3 If W is finite, then ι(θ) is graded.

Let us also mention a connection to work by Richardson and Springer [10, 11], who studied a graded
poset V of orbits of certain symmetric varieties (depending on, inter alia, a group G). They did so by
defining an order-preserving function ϕ : V → I(θ) ⊆ W (where the Weyl group W depends on, inter
alia, G).

When W = Sn, I(θ) is the image of an injective ϕ (for details, see [10, Example 10.2]). When n
is even, the same is true for ι(θ) (see [10, Example 10.4] or [8, Example 3.1]). Thus, In and F 0

n are
isomorphic to the duals of such posets V . Hence, In and F 0

n are graded.
However, these are not the only FAn that occur as the image of a ϕ. To describe these sets, and for later

purposes, define
F≤an =

⋃
i≥0

F a−2in and F≥an =
⋃
i≥0

F a+2i
n ,

and for a2 = a1 + 2m, where m is a positive integer, let

F a1:a2n = F≥a1n ∩ F≤a2n .
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As described in [10], the image of ϕ can be read off from the corresponding Satake diagram. It follows
from Satake diagrams A III and A IV in Helgason [5, Table VI] that for each a ≤ n−2, F≥an is the image
of a ϕ. (From Satake diagrams A I and A II, it follows that I(θ) and ι(θ), respectively, are the images of
such functions).

The remainder of this extended abstract is organised as follows. In Section 2, we agree on notation and
gather the necessary definitions and previous results. Then, in Section 3, we sketch the proof of our main
result (Theorem 1). Finally, in Section 4, we give a short new proof of the following result, which was
recently proved by Can, Cherniavsky, and Twelbeck.

Theorem B ([3, Theorem 1]) The poset F 0
n is EL-shellable.

2 Notation and preliminaries
Poset notation and terminology will follow [12]. In particular, if P is a poset and x ≤ y in P , then
[x, y] = {z ∈ P | x ≤ z ≤ y} and (x, y) = {z ∈ P | x < z < y}. Furthermore, in a finite poset P , C
denotes the covering relation, a chain x0 < x1 < · · · < xk is saturated if xi−1 C xi for all i ∈ [k], P is
bounded if it has a minimum (denoted by 0̂) and a maximum (denoted by 1̂), and P is graded of rank n
if every maximal chain has length n. In this case, there is a unique rank function ρ : P → {0, 1, . . . , n}
such that ρ(x) = 0 if x is a minimal element of P , and ρ(y) = ρ(x) + 1 if x C y in P ; x has rank i if
ρ(x) = i. An x-y-chain is a saturated chain from x to y.

Let P be a finite, bounded, and graded poset. An edge-labelling of P is a function λ : {(x, y) ∈ P 2 |
x C y} → Q, where Q is a totally ordered set. If λ is an edge-labelling of P and x0 C x1 C · · · C xk is a
saturated chain, let λ(x0, x1, . . . , xk) = (λ(x0, x1), λ(x1, x2), . . . , λ(xk−1, xk)). The chain is said to be
increasing if λ(xi−1, xi) ≤ λ(xi, xi+1) for all i ∈ [k − 1], and decreasing if λ(xi−1, xi) > λ(xi, xi+1)
for all i ∈ [k − 1]. An edge-labelling λ of P is an EL-labelling if, for all x < y in P , there is exactly
one increasing x-y-chain, say x0 C x1 C · · · C xk, and this chain is lexicographically minimal, or
lex-minimal, among the x-y-chains in P (i.e., if y0 C y1 C · · · C yk is any other x-y-chain, then
λ(xj−1, xj) < λ(yj−1, yj), where j = min{i ∈ [k] | λ(xi−1, xi) 6= λ(yi−1, yi)}; this is known as the
lexicographic order). If P has an EL-labelling, P is said to be EL-shellable. The reason for this is the
following result, due to Björner.

Theorem C ([1, Theorem 2.3]) Let P be a finite, bounded, and graded poset. If P is EL-shellable, then
its order complex ∆(P ) is shellable.

For σ ∈ Sn and (k, l) ∈ [n]2, let σ[k, l] = |{i ≤ k | σ(i) ≥ l}|. The Bruhat order on Sn may be
defined as follows (see, e.g., [2, Theorem 2.1.5]):

Definition 4 Let σ, τ ∈ Sn. Then σ ≤ τ if and only if σ[k, l] ≤ τ [k, l] for all (k, l) ∈ [n]2.

Let us turn to involutions in the symmetric group. Here, notation will follow [9].
Let σ ∈ Sn. A rise of σ is a pair (i, j) ∈ [n]2 such that i < j and σ(i) < σ(j). A rise (i, j) is called

free if there is no i < k < j such that σ(i) < σ(k) < σ(j). An inversion is a pair (i, j) ∈ [n]2 such that
i < j and σ(i) > σ(j). An element i ∈ [n] is a fixed point of σ if σ(i) = i, an exceedance if σ(i) > i,
and a deficiency if σ(i) < i. Let inv(σ) and exc(σ) denote the number of inversions and exceedances,
respectively, of σ.
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Let σ ∈ In. A free rise (i, j) of σ is suitable if it is an ff -rise (Type 1), an fe-rise (Type 2), an ef -rise
(Type 3), a non-crossing ee-rise (Type 4), a crossing ee-rise (Type 5), or an ed-rise (Type 6). Here fe,
e.g., means that i is a fixed point of σ while j is an exceedance, and an ee-rise is crossing if σ(i) < j and
non-crossing otherwise.

The following definition is very important.

Definition 5 Let σ ∈ In and let (i, j) be a suitable rise of σ. We define a new involution ct(i,j)(σ) as
follows:

If (i, j) is of Type 1, then ct(i,j)(σ) = σ(i, j).
If (i, j) is of Type 2, then ct(i,j)(σ) = σ(i, j, σ(j)).
If (i, j) is of Type 3, then ct(i,j)(σ) = σ(i, j, σ(i)).
If (i, j) is of Type 4, then ct(i,j)(σ) = σ(i, j)(σ(i), σ(j)).
If (i, j) is of Type 5, then ct(i,j)(σ) = σ(i, j, σ(j), σ(i)).
If (i, j) is of Type 6, then ct(i,j)(σ) = σ(i, j)(σ(i), σ(j)).

See [9, Table 1] for pictures describing the action of ct(i,j) on the diagram of σ.

Incitti characterised the covering relation in In as follows.

Lemma 6 ([9, Theorem 5.1]) Let σ, τ ∈ In. Then σ C τ in In if and only if τ = ct(i,j)(σ) for some
(necessarily unique) suitable rise (i, j) of σ.

If τ = ct(i,j)(σ) for some suitable rise (i, j) of σ, let λ(σ, τ) = (i, j). By Lemma 6, this defines
an edge-labelling of In (with {(i, j) ∈ [n]2 | i < j} totally ordered by the lexicographic order, i.e.,
(i1, j1) < (i2, j2) if and only if i1 < i2, or i1 = i2 and j1 < j2). Whenever we consider an edge-labelling
of In, it is this one. If λ(σ, τ) = (i, j), then (i, j) is the label on the cover σ C τ ; (i, j) is a label on a
chain if it is the label on some cover of the chain.

Let τ ∈ In and let (i, j) be an inversion of τ . If (i, j) is a suitable rise of some σ ∈ In and ct(i,j)(σ) =
τ , then σ is unique, and we write σ = ict(i,j)(τ).

For σ < τ in In, let di(σ, τ) = min{i ∈ [n] | σ(i) 6= τ(i)}.

We shall need the following results, due to Incitti:

Lemma 7 ([9, Theorem 5.2]) The poset In is graded with rank function ρ given by

ρ(σ) =
inv(σ) + exc(σ)

2
.

Lemma 8 ([9, Theorem 6.2]) Let σ < τ in In. Then there is exactly one increasing σ-τ -chain, and it is
lex-minimal.

Lemma 9 ([9, Theorem 7.3]) Let σ < τ in In. Then there is exactly one decreasing σ-τ -chain.

Remark 1 Since ct(i,j)(σ)(i) > ct(i,j)(σ)(j), there is also exactly one “weakly” decreasing σ-τ -chain.
This fact is used in Section 4.



The Bruhat order on conjugation-invariant sets of involutions 553

3 Sketch of the proof of the main result
In this section, we prove, sketch the proofs of, or simply state, a number of lemmas and propositions, from
which Theorem 1 easily follows.

The strategy for proving that a poset FAn is graded is as follows. We first prove that FAn has a maximum
and that all its minimal elements have the same rank in In (see Propositions 11 and 12). We then prove
that if σ, τ ∈ FAn , then σ C τ in FAn if and only if σ C τ in In (one implication is obvious). This is done
in Lemmas 15, 16, and 17. Since In is graded, it thus follows that FAn is graded.

In particular, when FAn ∈ {F≤an , F≥an }, to prove that σ C τ in In if σ C τ in FAn , we assume that
σ 6 τ in In, and consider the increasing and the decreasing σ-τ -chains in In. We then prove that either
the element in the increasing chain that covers σ, or the element in the decreasing chain that is covered by
τ , has to belong to FAn . This contradicts the fact that σ C τ in FAn .

To prove that a poset FAn is not graded, we consider an interval [σ, τ ], and then construct two σ-τ -chains
in FAn of different lengths (see Propositions 19 and 20).

Let us first note the following fact:

Lemma 10 For all n and all A, FAn is graded if and only if FA−{n}n is graded.

Proof: This is obvious if n /∈ A. Otherwise, deleting the identity permutation gives a bijection between
maximal chains in FAn of length k and maximal chains in FA−{n}n of length k − 1. 2

In the next two results, we describe the maximal and minimal elements of FAn . The proofs are not given
here.

Proposition 11 For all n and all A, FAn has a 1̂. Furthermore, inv(1̂) = n−a
2 (n+ a− 1) and exc(1̂) =

n−a
2 , where a = minA.

Proposition 12 For all n and all A, all minimal elements of FAn have rank (n−maxA)/2 in In.

Recall that

F≤an =
⋃
i≥0

F a−2in , F≥an =
⋃
i≥0

F a+2i
n , and F a1:a2n = F≥a1n ∩ F≤a2n ,

where a2 = a1 + 2m for some positive integer m. Note that F a1:a2n is not defined for a1 = a2.
The following lemma will eventually allow us to conclude that F≤an , F≥an , and F a1:a2n are graded.

Lemma 13 If every cover in FAn is a cover in In, then FAn is graded.

Proof: This follows from Lemma 7 and Propositions 11 and 12. 2

The next lemma is used in the proofs of Lemmas 15, 16, and 17, which, together with Lemma 13, show
that F≤an , F≥an , and F a1:a2n are graded.

Lemma 14 Let σ < τ in In. Then the label (i, j) on any cover in [σ, τ ] satisfies i ≥ di(σ, τ).

Proof: Suppose i < di(σ, τ) for the label (i, j) on σ C π ≤ τ . Then π(k) = τ(k) for k < i and
σ(i) = τ(i). However, it follows from Definition 5 that π(i) > σ(i). Hence, π[i, σ(i)+1] > τ [i, σ(i)+1].
By Definition 4, this contradicts the fact that π ≤ τ . Thus i ≥ di(σ, τ). The result follows by induction.
2
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Lemma 15 Let σ C τ in F≤an . Then σ C τ in In.

Proof: Assume that σ 6 τ in In, and let CI = σ C σ1 C · · · C σk C τ be the increasing σ-τ -chain in
In and CD = σ C τk C · · · C τ1 C τ the decreasing σ-τ -chain in In. Since σ C τ in F≤an , neither σ1
nor τ1 belongs to F≤an .

Let h = di(σ, τ), and let (iσ, jσ) and (iτ , jτ ) be the labels on σ C σ1 and τ1 C τ , respectively. Since
σ(h) 6= τ(h), it follows from Lemma 14 that h is in some label on CI and some label on CD. Since CI
is increasing, iσ = h, and since σ1 /∈ F≤an , h is an exceedance of σ (Type 5). Since CD is decreasing,
iτ = h, and since τ1 /∈ F≤an , h is a fixed point of τ1 (Type 1). Hence, σ[h, h + 1] > τ1[h, h + 1]. By
Definition 4, this contradicts the fact that σ ≤ τ1. 2

Lemma 16 Let σ C τ in F≥an . Then σ C τ in In.

Proof: Assume that σ 6 τ in In, and let CI = σ C σ1 C · · · C σk C τ be the increasing σ-τ -chain in
In and CD = σ C τk C · · · C τ1 C τ the decreasing σ-τ -chain in In. Since σ C τ in F≥an , neither σ1
nor τ1 belongs to F≥an .

Let h = di(σ, τ), and let (iσ, jσ) and (iτ , jτ ) be the labels on σ C σ1 and τ1 C τ , respectively. Since
σ(h) 6= τ(h), it follows from Lemma 14 that h is in some label on CI and some label on CD. Since CI is
increasing, iσ = h, and since σ1 /∈ F≥an , h is a fixed point of σ (Type 1). Since CD is decreasing, iτ = h,
and since τ1 /∈ F≥an , h is an exceedance of τ1 (Type 5).

Let m be such that h is an exceedance of τ1, . . . , τm−1 and a fixed point of τm (with τk+1 = σ). Then
the labels on τ B τ1 B · · · B τm are (h, j1), . . . , (h, jm), where j1 < j2 < · · · < jm. Since τ1 >
τ2 > · · · > τm−1, τ1(h) > τ2(h) > · · · > τm−1(h). Since h is a fixed point of τm but an exceedance
of τm−1, the cover τm C τm−1 is of Type 1 or 2, whence τm−1(h) = jm or τm−1(h) = τm(jm) > jm,
respectively; hence, τm−1(h) ≥ jm. Therefore, j1 < jm ≤ τm−1(h) ≤ τ1(h). However, since the cover
τ1 C τ is of Type 5, τ1(h) < j1, which is a contradiction. 2

Lemma 17 Let σ C τ in F a1:a2n . Then σ C τ in In.

The proof, which is omitted here, is largely a combination of the proofs of Lemmas 15 and 16.

Proposition 18 The posets F≤an , F≥an , and F a1:a2n are graded.

Proof: This follows from Lemmas 13, 15, 16, and 17. 2

In the following two results, we consider the sets A for which FAn is not graded.

Proposition 19 If there is an i ∈ [2, n− 4] such that i ∈ A but i− 2, i+ 2 /∈ A, then FAn is not graded.

The proof, which is not given here, is similar to, but easier than, the proof of Proposition 20.

Proposition 20 If there is an i /∈ A and a positive integer m such that i− 2, i+ 2m ∈ A−{n}, then FAn
is not graded.

Proof sketch: We first prove that F {0,k−2}k , where k ≥ 6 is even, is not graded. Let σ = 12 · · · (k −
2)k(k − 1) and τ = k23 · · · (k − 1)1, and consider the interval [σ, τ ]. We obtain a σ-τ -chain C in Ik
by k − 2 fe-rises with labels (k − 2, k − 1), (k − 3, k − 2), . . . , (1, 2) (from σ to τ ). We also obtain a
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σ-τ -chain in In by (k− 2)/2 ff -rises with labels (1, 2), (3, 4), . . . , (k− 3, k− 2), followed by (k− 2)/2
crossing ee-rises with labels (k − 3, k − 1), (k − 5, k − 3), . . . , (1, 3).

Let π be the fixed point-free involution obtained after the ff -rises. Since each ff -rise decreases the
number of fixed points and Ik is graded, (σ, π)∩F {0,k−2}k = ∅, and since each crossing ee-rise increases
the number of fixed points and Ik is graded, (π, τ)∩ F {0,k−2}k = ∅. Hence, C is a σ-τ -chain in F {0,k−2}k

of length k − 2, while σ C π C τ is a σ-τ -chain in F {0,k−2}k of length 2. Thus F {0,k−2}k is not graded.
Figure 3 illustrates the situation when k = 6.

Now we have to obtain the right number of fixed points. The details are not given here. 2

•

•

•

•

•

◦

•

◦

σ = 123465

τ = 623451

123654

126453

163452

213465

π = 214365

216453

(4, 5)

(3, 4)

(2, 3)

(1, 2)

(1, 2)

(3, 4)

(3, 5)

(1, 3)

Figure 3: Two σ-τ -chains in I6 of length 4, and two σ-τ -chains in F {0,4}
6 of length 4 (right) and length 2 (left); the

involutions marked by a • belong to F {0,4}
6 , and the involutions marked by a ◦ belong to I6 − F {0,4}

6 . On the edges
(covers in I6) are the labels (i, j).

We are now ready to prove our main result:

Proof of Theorem 1: The first claim follows from Lemma 10 and Propositions 18, 19, and 20. (It
is readily checked that if FA−{n}n does not belong to {∅, F≤an , F≥an , F a1:a2n }, then either there is an
i ∈ [2, n− 4] such that i ∈ A but i− 2, i+ 2 /∈ A, or there are an i /∈ A and a positive integer m such that
i − 2, i + 2m ∈ A − {n}.) The second claim follows from Lemma 7, Proposition 12, and Lemmas 15,
16, and 17. The third claim follows from the second claim and Proposition 11. 2

4 EL-shellability of F 0
n

In this section, we give a new proof of Theorem B, due to Can, Cherniavsky, and Twelbeck [3]. Our proof
is largely based on the same main idea as their proof, together with the technique used in the proof of
Lemma 15. The proof in [3] goes as follows:

Let σ < τ in F 0
n . It follows from, e.g., Theorem A and the paragraphs following it, that there exists a

σ-τ -chain in In that is contained in F 0
n . Let C be the lex-maximal such chain. The idea of the proof is to

show that C is decreasing. Then, by reversing the lexicographic order on the set {(i, j) ∈ [n]2 | i < j}
(i.e., by letting (i1, j1) < (i2, j2) if and only if i1 > i2, or i1 = i2 and j1 > j2), one obtains an edge-
labelling of F 0

n such that in each interval, there is an increasing σ-τ -chain which is lex-minimal. By
Lemma 9 and the remark following it, this is an EL-labelling of F 0

n .
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We use the same main idea, namely, to show that the decreasing σ-τ -chain in In is contained in F 0
n ,

and then reverse the lexicographic order. However, we give a direct proof of this fact. By using the same
technique as in the proof of Lemma 15, we get a very short argument.

Lemma 21 Let σ < τ in F 0
n and let CD = σ C τk C · · · C τ1 C τ be the decreasing σ-τ -chain in In,

where k ≥ 1. Then τ1, . . . , τk ∈ F 0
n .

Proof: Since the decreasing σ-τ1-chain in In is σ C τk C · · · C τ2 C τ1, it suffices to prove that τ1 ∈ F 0
n .

Let h = di(σ, τ), let CI = σ C σ1 C · · · C σk C τ be the increasing σ-τ -chain in In, and let (iσ, jσ)
and (iτ , jτ ) be the labels on σ C σ1 and τ1 C τ , respectively. Since σ(h) 6= τ(h), it follows from
Lemma 14 that h is in some label on CI and some label on CD. Since CI is increasing, iσ = h, and since
σ has no fixed points, h is an exceedance of σ (Type 4, 5, or 6). Since CD is decreasing, iτ = h, and were
τ1 /∈ F 0

n , h would be a fixed point of τ1 (Type 1). Hence, by Definition 4, τ1 ∈ F 0
n . 2

We can now complete the proof of Theorem B:

Proof of Theorem B: Let σ < τ in F 0
n . By Lemma 21, the decreasing σ-τ -chain in In is contained in

F 0
n . If we can show that this chain is lex-maximal, then by reversing the lexicographic order and invoking

Lemma 9, we are done.
In order to obtain a contradiction, let C = σ1 C · · · C σk be the lex-maximal σ-τ -chain in In, and

assume that it is not decreasing; say that λ(σ1, σ2) ≤ λ(σ2, σ3). By Lemma 8, σ1 C σ2 C σ3 is lex-
minimal among the σ1-σ3-chains in In. Hence, σ1 C σ′2 C σ3 C · · · C σk, where σ1 C σ′2 C σ3 is the
decreasing σ1-σ3-chain, is lex-larger than C, which is a contradiction. 2

Is it possible to use the same idea to prove that every interval in FAn ⊂ In is EL-shellable for some
A 6= {0}? Unfortunately, the answer is no, since for all A 6= {0} (except the trivial cases A = ∅ and
A = {n}), it is possible to find σ1 < τ1 and σ2 < τ2 in FAn , such that the increasing σ1-τ1-chain and the
decreasing σ2-τ2-chain in In, are of length 2 and are not contained in FAn .
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