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How to get the weak order out of a digraph ?

Francois Viard1†

1Université Lyon 1, Institut Camille Jordan, UMR 5208 du CNRS, 69622 Villeurbanne, France

Abstract. We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute
the values of its Möbius function. We show that the weak order on Coxeter groups An−1, Bn, Ãn, and the flag weak
order on the wreath product Zr o Sn introduced by Adin, Brenti and Roichman (2012), are special instances of our
construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a
special emphasis on the An−1 case, in which case we obtain the classical Stanley symmetric function.

Résumé. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une
valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre
faible sur les groupes de Coxeter An−1, Bn, Ãn, ainsi qu’une variante de l’ordre faible sur les produits en couronne
Zr oSn introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en
expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant
sur l’exemple de l’ordre faible sur An−1, où l’on obtient les séries de Stanley classiques.

Keywords: Tableaux, digraphs, posets, Coxeter groups, weak order, reduced decompositions.

1 Introduction
A tableau is a map from a finite subset S ⊂ N × N to N. Some families of tableaux are very classical in
combinatorics and algebra, such as standard and semi-standard tableaux which play a fundamental role
in the study of symmetric functions and representation theory.

In [4], Edelman and Greene introduced a new family of tableaux called balanced and exhibited a beau-
tiful connection between them and the theory of reduced decompositions in the symmetric groups. This
study has been extended by Fomin et al. in [5] by considering balanced labellings of the Rothe diagram
of a permutation. Those labelled diagrams are a convenient way to visualise both the inversion set of a
permutation and its associated set of reduced decompositions, and can be interpreted as a generalization of
standard Young tableaux. Moreover, they introduced column-strict balanced labellings which generalize
the notion of semi-standard Young tableaux. Column-strict labellings of the diagram of a permutation σ
yield the Stanley symmetric function Fσ (introduced in [7]) in the same way semi-standard tableaux yield
Schur functions. This approach has been generalized to the affine Coxeter group Ãn by Yun and Yoo in
[10], and leads to a combinatorial description in terms of tableaux of the affine Stanley symmetric function
introduced by Lam in [6].
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The main purpose of this paper is to introduce a new family of posets, defined from a simple acyclic
digraph together with a valuation on its vertices, by using an iterative process which peels the graph vertex
by vertex. Then, we exhibit some general properties of these posets: we show that they are complete meet
semi-lattice, and we give an explicit formula to compute the values of their Möbius function. Then we
give some examples of classical posets which are special instances of this construction, namely the weak
order on An−1, Bn, Ãn, the flag weak order on Zr o Sn introduced by Adin, Brenti and Roichman (2012,
[1]), the tree order of any tree, and the up-set (resp. down-set) lattice of any finite poset. In the An−1 case
we explain how this description naturally leads to associate a family of tableaux to each element of An−1,
and we explain how they can be used to find the result of [5] again. To finish we mention that a similar
method can be applied to the Ãn case, and we briefly mention how these combinatorial consequences can
be generalized to the other examples.

2 Definition of the family of posets
We begin with some standard definitions about poset theory and graph theory. A poset is a couple P =
(P,≤), where P is a set and ≤ is a binary relation which is reflexive, antisymmetric, and transitive. A
poset P is called a complete meet (resp. join) semi-lattice if and only if every subset S of P has an
infimum (resp. supremum) in P , i.e. there exists z in P such that if y ∈ P and y ≤ x (resp. x ≤ y) for
all x ∈ S, then y ≤ z (resp. z ≤ y). If P is both a complete join and meet semi-lattice, then we say that
P is a complete lattice. A lower set of P is a subset A of P such that for all x ∈ A and y in P , if y ≤ x
then y ∈ A. It is classical that the lower sets of P ordered by inclusion is a lattice (for more details about
poset theory, see [8]).

A simple digraph is a couple G = (V,E), where V is the set of vertices of G, and E is a subset of
V × V called the set of arcs of G. A cycle of G is a finite sequence x1, . . . , xn of vertices of G such that
(xi, xi+1) ∈ E for all i ∈ N, where the indices are taken modulo n. A graph G is called acyclic if it does
not have any cycle. On each vertex x of G, we define the statistic

d+(x) = |{y | (x, y) ∈ E}|,

called the out-degree of x, and which is possibly infinite.

2.1 General idea of the construction
We first present a suitable method to construct all lower sets of a finite poset P = (P,≤), using the notion
of linear extension of P . A linear extension of P is an injective sequence [a1, . . . , an] (with |P | = n) of
elements of P such that: if ai ≤ aj in P , then i ≤ j. It is classical that A ⊆ P is a lower set of P if and
only if there exists [a1, . . . , an] a linear extension of P and 1 ≤ k ≤ n such that A = {a1, . . . , ak} (see
[8]). Then to construct all the lower sets of P , we just have to construct all the linear extensions of P , and
this can easily be done recursively thanks to the following iterative method.

Since P is finite, there exists a1 in P which is a minimum, that is if x ≤ a1 in P , then x = a1. Set
P2 = (P \ {a1},≤) the finite poset obtained by suppressing a1 in P . Then there exists a2 in P2 which is
a minimum. Then we can consider the poset P3 obtained by suppressing a2 in P2, and so on. At the end
we obtain an injective sequence [a1, . . . , an] of elements of P . By construction, this sequence is a linear
extension of P . Furthermore, one can easily prove by induction that all the linear extensions of P can be
obtained by this way.



A family of posets defined on digraphs 561

In a certain sense, this method “peels” a finite poset element by element, in order to obtain a family of
sequences which give rise to an interesting family of sets (here, the lower sets). What we propose here
it is to apply a similar principle to a simple acyclic digraph. Namely, we will peel the digraph vertex by
vertex, with respect to a constraint given by a valuation on its vertices. It will give rise to a family of
sequences of vertices of the graph, then to a family of subsets having an interesting poset structure once
ordered by inclusion.

2.2 Construction of the family of posets
We start by defining the valuation on the vertices of a simple acyclic digraph.

Definition 2.1 Set G = (V,E) a simple acyclic digraph. A valuation θ : V → N is called an out-degree
compatible valuation of G (abbreviated in “OCV”) if and only if for all x ∈ V , we have 0 ≤ θx ≤ d+(x).

In what follows, we will denote G = (G, θ) the pair of a simple acyclic digraph G together with an
OCV of G. Thanks to the associated OCV, some vertices of G will be of special interest.

Definition 2.2 (Erasable vertex) A vertex x of G is called erasable in G if and only if:

• θx = 0;

• for all z ∈ V such that (z, x) ∈ E, we have θz 6= 0.

Now we define the peeling sequences of G, which leads to the definition of the claimed poset.

Definition 2.3 (Peeling process and peeling sequences) We construct recursively two sequences: a se-
quence L = [x1, x2, . . .] of elements of V , and a sequence (Gi = (Gi, θ

i))1≤i≤n as follows.

1. Set G1 = G.

2. If there is not any erasable vertex in Gi, the process stop. Otherwise, choose x a vertex of Gi which
is erasable in Gi, and set xi = x.

(a) Set Gi+1 the simple acyclic directed graph obtained by suppressing the vertex xi in Gi to-
gether with all the arcs of Gi containing it.

(b) Set θi+1 the OCV of Gi+1 such that θi+1
y = θiy − 1 if (y, x) is an arc of Gi, and θi+1

y = θiy
otherwise. Then set Gi+1 = (Gi+1, θ

i+1) and go back to the Step 2.

A sequence L which comes from this process is called a peeling sequence of G, and we denote PS(G) the
set of all the peeling sequences of G.

And now we give the definition of the poset.

Definition 2.4 Let L = [x1, x2, . . .] be a peeling sequence of G. The initial sections of L are the sets of
the form {x1, x2 . . . , xk} for some k ∈ N∗. By convention, ∅ is an initial section of L. We set IS(G) the
set of all the initial sections of all the peeling sequences of G, and we denote P(G) = (IS(G),⊆) the
poset obtained by ordering IS(G) by inclusion.

Example 2.2.1 Consider G as depicted in the upper left corner of the following figure. The peeling
sequences of G are L1 = [a, c, b] and L2 = [b, c, a], thus IS(G) = {∅, {a}, {b}, {a, c}, {b, c}, {a, b, c}}.
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3 General properties of P(G)
In this section we give the main properties of the poset P(G). We start by announcing our results, and the
scheme of the proofs will be given in the sequel.

Theorem 3.1 For all G = (G, θ), the poset P(G) is a graded complete meet semi-lattice, and its rank
function is ρ : A→ |A|. Moreover, when the underlying graph G is finite, P(G) is a complete lattice.

In the context of these posets, it is possible to give an explicit formula for the values of their Möbius
function. Recall that the Möbius function on a graded poset P = (P,≤) is the application µ : P 2 → N
recursively defined by µ(x, x) = 1 for all x ∈ P , and

∑

x≤z≤y

µ(x, z) = 0 for all (x, y) ∈ P 2.

For the sake of clarity, we give the formula only for the couples of the form (∅, A), A ∈ IS(G), but a
similar one can be stated for all couples in IS(G).

Theorem 3.2 Set A ∈ IS(G). We denote N (A) = {x ∈ A | θx = 0}, and F(A) = {x ∈ A | A \ {x} ∈
IS(G)}. Then we have the two following possibilities:

1. if F(A) = N (A), then µ(∅, A) = (−1)|N (A)|;

2. otherwise, µ(∅, A) = 0.

3.1 Proof of Theorem 3.1
The proof of this theorem has to be divided into several steps. The first one is a characterization of the
elements of IS(G).

Proposition 3.1.1 Set A a finite subset of vertices of G. We have that A ∈ IS(G) if and only if the two
following conditions are satisfied:

(1) for all x ∈ A, θx ≤ |{ y | y ∈ A and (x, y) ∈ E}|;

(2) for all x ∈ V \A, θx ≥ |{ y | y ∈ A and (x, y) ∈ E}|.
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Proof: The proof of the necessary condition consists in a straightforward verification using the construc-
tion of a peeling sequence. The reverse direction is proved by induction on |A|: essentially, the fact that
G is acyclic together with condition (1) and (2) imply that there exists x inA which is erasable in G. Then
we begin the peeling process by picking this vertex and we set G′ the obtained digraph and OCV. One
can show that A \ {x} satisfies conditions (1) and (2) in G′, and the induction hypothesis applies. Hence
A \ {x} ∈ IS(G′) and this concludes the proof. 2

The next proposition implies immediately that P(G) is a graded poset with rank function ρ : A 7→ |A|.
Proposition 3.1.2 Set A and B two elements of IS(G), and denote k = |A| and q = |B|. If A ⊆ B, then
there exists L = [x1, x2, . . .] ∈ PS(G) such that A = {x1, . . . , xk} and B = {x1, . . . , xq}.

Proof: We suppose that k < q. We construct explicitly the sequence L as follows. Since A ∈ IS(G),
we can start by picking the first k elements x1, . . . , xk in A. Set G′ = (G′, θ′) obtained from G after
this procedure. Thus B \ A is a finite subset of vertices of G′, moreover B \ A satisfy the conditions
of Proposition 3.1.1, hence B \ A ∈ IS(G′). So there exists L′ = [xk+1, . . . , xq, . . .] ∈ PS(G′) such
that B \A = {xk+1, . . . , xq}. At the end if we concatenate the sequences [x1, . . . , xk] and L′, we obtain
L = [x1, x2, . . .] which is a peeling sequence of G by construction, and satisfies all the claimed properties.
2

We conclude by an explicit construction of the infimum (also called the meet) of a set S ⊆ IS(G). We
start by a useful lemma, which is an immediate consequence of Proposition 3.1.1.

Lemma 3.1.1 Set S ⊆ IS(G), and denote X :=
⋂

A∈S
A. If there exists x ∈ X such that θx = 0, then

there exists z ∈ X which is erasable in G.

Construction of the meet. We consider S and X as defined in the previous lemma, and we construct
a set C ∈ IS(G) as follows. If for all x ∈ X , θx 6= 0, we set C = ∅. Otherwise, let z1 ∈ X be an
erasable vertex of G. We start the peeling process by picking this vertex and we denote G2 = (G2, θ

2) the
obtained graph and OCV. Then for all A ∈ S, A \ {z1} ∈ IS(G2), so we can again apply Lemma 3.1.1 to
X \ {z1} seen as a subset of vertices of G2. If for all x ∈ X \ {z1}, θ2x 6= 0 we set C = {z1}; otherwise,
let z2 ∈ X \ {z1} be an erasable vertex of G2 and we perform the peeling process by picking this vertex.
We repeat this procedure until there is not any erasable vertex left (this process always ends, since X is
finite), and we set C the obtained set. By construction, C ∈ IS(G).

At first glance, this set C seems to depend heavily on the choices of vertices made at each step of its
construction. The next proposition shows that it is not the case.

Proposition 3.1.3 Set U ∈ IS(G). If U ⊆ X , then U ⊆ C.

Proof: Since U ∈ IS(G), there exists L = [x1, x2, . . .] ∈ PS(G) and k ∈ N∗ such that U =
{x1, . . . , xk}. Assume that U 6⊂ C and set j ≥ 1 minimal such that xj /∈ C. Then by construction
of C and Lemma 3.1.1, xj has to be in C, which is a contradiction. 2

Since C ⊆ X by construction, the previous proposition leads to the following corollary.

Corollary 3.1.1 The set C is the infimum of S.
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When the underlying graph G is finite, we obviously have that V , the set of all the vertices of G,
satisfies the conditions of Proposition 3.1.1, hence V ∈ IS(G), and the poset P(G) is bounded. Since it
is a meet semi-lattice, then P(G) is a lattice, and this concludes the proof of Theorem 3.1.

3.2 Proof of Theorem 3.2
The proof of this formula is purely combinatorial, and is based on the well-known inclusion-exclusion
principle (see [8]). For all B ∈ IS(G), we denote [∅, B] = {U ∈ IS(G) | ∅ ⊆ U ⊆ B}. Set A, N (A)
and F(A) as defined in Theorem 3.2. For all S ⊆ F(A), we denote AS the infimum of {A \ {x} | x ∈
S} ⊆ IS(G). We have the following lemma.

Lemma 3.2.1 Set S ⊆ F(A). We have that AS 6= ∅ if and only if N (A) 6⊂ S.

Proof: We have that the intersection of all the A \ {x}, for x in S, is equal to A \ S. By Lemma 3.1.1, if
N (A) 6⊂ S then there exists z ∈ A \S which is erasable in G, so the infimum of {A \ {x} | x ∈ S} is not
∅. The reciprocal is based on similar arguments. 2

An immediate consequence of the meet semi-lattice structure of P(G) is that, for all U and V in IS(G),
[∅, U ]∩ [∅, V ] = [∅, U ∧V ] where U ∧V is the infimum of {U, V }. This basic remark leads to the claimed
formula: first, we obviously have

[∅, A] \ {A} =
⋃

x∈F(A)

[∅, A{x}].

Then, by the inclusion-exclusion principle we have that

|[∅, A] \ {A}| =
∑

∅6=S⊆F(A)

(−1)|S|+1

∣∣∣∣∣
⋂

x∈S
[∅, A{x}]

∣∣∣∣∣ =
∑

∅6=S⊆F(A)

(−1)|S|+1 |[∅, AS ]| .

Once applied to the Möbius function of P(G), this gives rise to the following identity:

µ(∅, A) = −
∑

∅6=S⊆F(A)

(−1)|S|+1
∑

B∈[∅,AS ]

µ(∅, B). (1)

By definition of the Möbius function,
∑

B∈[∅,AS ]

µ(∅, B) = 1 if AS = ∅, and 0 otherwise. Hence by

Lemma 3.2.1, if N (A) 6⊂ F(A), then µ(∅, A) = 0. As a consequence, Equation (1) becomes

µ(∅, A) = −
∑

N (A)⊆S⊆F(A)

(−1)|S|+1 = (−1)|N (A)|
∑

S⊆F(A)\N (A)

(−1)|S| (2)

= (−1)|N (A)|(1− 1)|F(A)\N (A)|. (3)

The claimed formula follows immediately.
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4 Applications of this construction
Let W be a Coxeter group with finite generating set S, and Coxeter matrix M = (mst)s,t∈S . That is, M
is a symmetric matrix withmss = 1 and, for s 6= t, mst = mts ∈ {2, 3, . . .}∪{∞}. The relations among
the generators are of the form (st)mst = 1 if mst < ∞. For w ∈ W we denote by `(w) the minimum
length of any decomposition w = s1 · · · sl with si ∈ S. Such decompositions with minimum length are
called reduced, and we denote byR(w) the set of all reduced decompositions of w.

This statistic ` on W is the rank function of a poset structure (W,≤R) called the (right) weak order on
W , and which is defines as follows: we say that w ≤R τ if and only if there exists s1, . . . , sk in S such
that τ = ωs1 · · · sk and `(τ) = `(w)+k. It is classical that (W,≤R) is a complete meet semi-lattice when
W is infinite, a complete lattice when W is finite, and that its Möbius function take values into {±1, 0}
(see [2] and [3]). Hence, it is natural to look for an interpretation of the weak order through the theory
developed in the previous section. Indeed, we can provide such a description in some cases. In the next
theorem, we give a list of posets which admit such an interpretation.

Theorem 4.1 For each poset P in the following list, there is an explicit G = (G, θ) such that P is
isomorphic to P(G).

• The (right) weak order on Coxeter groups An−1, Bn and Ãn.

• The flag weak order on Zr o Sn (see [1]).

• The up-set (resp. down-set) lattice of any finite poset.

• The tree order of any finite tree.

In this extended abstract we will focus on the case of the symmetric group An−1.

4.1 The weak order on An−1

Recall that An−1 is the Coxeter group with generating set S = {s1, . . . , sn−1}, and with Coxeter matrix
given by msisi+1

= 3 for all 1 ≤ i ≤ n− 2, and mst = 2 otherwise. One can see An−1 as the symmetric
group Sn by identifying the generator si to the transposition of Sn which exchanges the integers i and
i + 1. The main issue that arises when we want to find a pair G = (G, θ) such that (An−1,≤R) is
isomorphic to P(G), is that on the one side we have a poset whose elements are permutation (once An−1
identified to the symmetric group Sn), and on the other side we have a poset whose elements are sets.
Fortunately, there is a canonical set associated with each permutation σ ∈ Sn, its inversion set:

Inv(σ) = {(a, b) ∈ {1, . . . , n}2 | a < b and σ−1(a) > σ−1(b)}. (4)

There is a deep connection between inversion sets and the weak order on Sn. That is, if σ and ω are
two elements of Sn, then σ ≤R ω if and only if Inv(σ) ⊆ Inv(ω). This property allows us to clarify our
goal: we are looking for a pair G = (G, θ) such that,

1. the vertices of the graph are indexed by the couple of integers (a, b) ∈ {1, . . . , n}2 such that a < b;

2. the digraph structure of G, together with the valuation θ, imply that IS(G) is constituted exactly of
the sets of the form Inv(σ), σ ∈ Sn.
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There is a convenient way to represent the set {(a, b) ∈ {1, . . . , n}2 | a < b}, by considering the
n-th staircase diagram, namely the Ferrers diagram of the partition λn = (n − 1, n − 2, . . . , 1) of size
N =

(
n
2

)
. At the left of the next figure, the diagram associated to the case n = 5 is represented. The

coordinates of each box can be read thanks to the circled integers on the diagonal.

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

3

The coordinates of
this box are (2, 5)

The inversion set of
σ = [4, 1, 3, 5, 2]

Hook based on (2, 5)

As depicted in the middle of the figure, one can easily visualize the inversion set of any element of Sn as
a subset of boxes in λn. Note that the set constituted by all the boxes of the diagram corresponds to the
inversion set of the reverse permutation [n, n−1, . . . , 1] ∈ Sn, which is the maximal element in the weak
order.

Definition 4.1 We define a digraph structure G on this diagram (where the vertices are the boxes of
the diagram), thanks to a classical combinatorial object associated to each box c, the hook based on c,
denoted H(c) and composed of all the boxes which are on the right and below c (represented at the right
of the Figure): we say that there is an arc from c to d if and only if c 6= d and d ∈ H(c). The obtained
digraph G is obviously a simple acyclic digraph whose vertices are the boxes of the diagram. Moreover,
with this definition we have that the out-degree of any box is an even number. Hence we set θ the valuation
θ : c 7→ d+(c)

2 . Finally, we denote GA = (G, θ).

Among others natural choices for a valuation on this digraph, this one is in fact the “good” choice as
stated in the next theorem.

Theorem 4.2 Set n ∈ N and GA associated with λn. The posets (Sn,≤R) and P(GA) are isomorphic.

Proof: It is enough to show that IS(G) = {Inv(σ) | σ ∈ Sn}. The inclusion “⊇” is based on a verification
using Proposition 3.1.1.

To give a sketch of the proof of the reverse inclusion, we recall a classical concept about permutations.
Set σ ∈ Sn and 1 ≤ a < b ≤ n two integers. We say that a and b are adjacent in σ if and only if
σ−1(a) + 1 = σ−1(b). This notion is linked to the weak order thanks to the following property: we
have that σ ≤R ω with `(ω) = `(σ) + 1 if and only if ω can be obtained from σ by exchanging the
position of two adjacent entries of σ. In that case, we say that ω covers σ and we denote it σ � ω.
This can be transposed in the context of the inversion sets as follows: we have that σ � ω if and only if
Inv(ω) = Inv(σ) ∪ {(a, b)} where a and b are two adjacent entries of σ.
Now consider B ∈ IS(GA) and L = [(a1, b1), . . . , (aN , bN )] ∈ PS(GA) such that B = {(a1, b1), . . . ,
(ak, bk)}. Set B0 = ∅, and Bi = {(a1, b1), . . . , (ai, bi)} for all 1 ≤ i ≤ k. We can show recursively that
Bi is the inversion set of a permutation.
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• If we denote Id = [1, 2, . . . , n], then B0 = Inv(Id).

• By definition of GA, we have that (a1, b1) is of the form (j, j + 1) for some j ∈ {1, . . . , n − 1}.
Since j and j + 1 are adjacent in Id, we have that Id � σ1 := [1, . . . , j + 1, j, . . . , n], thus
Inv(σ1) = {(j, j + 1)} = {(a1, b1)} = B1.

• Now, consider GA2 obtained with the peeling process after we picked (a1, b1). Since L ∈ PS(GA),
(a2, b2) is erasable in GA2 . Then we can show that a2 and b2 are adjacent in σ1, hence σ1�σ2, where
σ2 is obtained from σ1 by exchanging the positions of a2 and b2. Hence Inv(σ2) = Inv(σ1) ∪
{(a2, b2)} = {(a1, b1), (a2, b2)} = B2.

• The sequel of the induction is similar: if there is σj such that Inv(σj) = {(a1, b1), . . . , (aj , bj)},
then we show that aj+1 and bj+1 are adjacent in σj , and we construct σj+1 as before. The exact
proof is quite technical and is essentially based on refinements of the arguments introduced by
Edelman and Greene about balanced tableaux of staircase shape. The interested reader can look at
[9] for a proof using another terminology.

As an immediate consequence, B = Bk = Inv(σk). This concludes the proof. 2

4.2 A combinatorial model for reduced decompositions in An−1

Remark 4.2.1 For a more detailed description of the content of this section, the reader can look at [9].

This construction provides a new combinatorial interpretation of the elements of R(σ) for each σ ∈ Sn.
That is, consider σ ∈ Sn and B ∈ IS(GA) such that B = Inv(σ). We may associate to B a canonical
digraph structure and an OCV by “restriction” of the structure of GA. That is, the sub-diagram B inherit
of the digraph structure of the original diagram. Moreover, sinceB is an initial section, the restriction of θ
to this sub-diagram is an OCV of it. The next figure depict this restriction on the example of [4, 1, 3, 5, 2]
(the integers in the boxes represent the values of θ on each box).
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We will denote PS(B) the set of all the peeling sequences of the sub-graph and OCV induced by B.

Proposition 4.2.1 Set σ ∈ Sn and B its associated diagram. There is a bijection between R(σ) and
PS(B).

Proof: Recall that a maximal chain from Id to σ (in the weak order) is a sequence (σj)1≤j≤k such that
Id�σ1�. . .�σk = σ. There is a canonical bijection between elements ofR(σ) and maximal chains from
Id to σ. That is, set si1 · · · sik ∈ R(σ) and denote σj = si1 · · · sij , then we have Id�σ1� . . .�σk = σ.
Conversely, if σ � ω, we have that there exists sp such that ω = σsp by definition of the weak order, thus
a maximal chain leads to a reduced decomposition ofR(σ).
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Now set L = [(a1, b1), . . . , (ak, bk)] ∈ PS(B), and denoteBi = {(a1, b1), . . . , (ai, bi)}. By construc-
tion of the isomorphism between (Sn,≤R) and P(GA), there exists σi such that Inv(σi) = Bi. Hence we
have ∅ ⊂ Inv(σ1) ⊂ . . . ⊂ Inv(σk). Then we transpose this expression to the weak order, and it becomes
Id � σ1 � . . . � σk = σ. To summarize, we associated a maximal chain (from Id to σ) to each element
of PS(B), and we can show that it is a bijection. This concludes the proof. 2

Example 4.2.1 We conclude by an example of application of this bijection to σ = [4, 1, 3, 5, 2]. De-
note B the diagram associated with σ, and consider L = [(2, 3), (2, 4), (3, 4), (1, 4), (2, 5)] ∈ PS(B).
The maximal chain associated with L is: σ1 = [1, 3, 2, 4, 5] = s2, σ2 = [1, 3, 4, 2, 5] = σ1s3, σ3 =
[1, 4, 3, 2, 5] = σ2s2, σ4 = [4, 1, 3, 2, 5] = σ3s1, and σ5 = [4, 1, 3, 5, 2] = σ4s4. Thus the associated
reduced decomposition is s2s3s2s1s4. The next figure describes completely the bijection in the case of
[4, 1, 3, 5, 2] (for the reader convenience, peeling sequences are represented by tableaux).
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[4, 1, 3, 5, 2]

Graph and OCV

associated with

4.3 Application to the Stanley series of type A

The graphical interpretation of the reduced decomposition of a permutation as set of tableaux leads to a
natural question: can we define a good generalization of the concept of semi-standard Young tableaux in
this context ? If this is the case, what does the associate formal power series look like ?
A natural starting point is to consider tableaux defines by a ”column-strictness” condition as in [5].

Definition 4.2 Set σ ∈ Sn and B its associated diagram. A tableau T of shape B is a sequence of
integers indexed by the elements of B, that is T = (tc)c∈B . We say that T is σ-semi-standard if and only
if there exists L = [c1, . . . , ck] ∈ PS(B) such that:

1. for all i < j, tci ≤ tcj ;
2. for all i < j such that ci and cj lies in the same column of B, tci < tcj .

The set of the σ-semi-standard tableaux is denoted SST (σ). Finally, we denote xT the monomial
∏

c∈B
xtc .

It appears that the tableaux in SST (σ) and the column-strict balanced labellings of the Rothe diagram
of σ introduced in [5], are basically the same objects. That is, one can travel from one point of view to
another just by swapping some lines of the tableaux, as depicted below.
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Hence, as an immediate consequence of (Theorem 4.3, [5]), we have the following Theorem.

Theorem 4.3 For all σ ∈ Sn, Fσ(x1, x2, . . .) =
∑

T∈SST (σ)

xT , where Fσ is the Stanley series of type A

associated with σ and defined by

Fσ(x1, x2, . . .) =
∑

si1 ···si`(σ)∈R(σ)

∑

b1≤b2≤...≤b`(σ)
bj<bj+1 if ij>ij+1

xb1xb2 · · ·xb`(σ) .

5 Other cases
In the previous section we studied the case A in details, and showed how it naturally leads to a combina-
torial interpretation of the associated Stanley series. A similar process can be performed in the Ã case,
and leads to an analogous combinatorial interpretation of the reduced decompositions in Ã, and of the
corresponding Stanley series (using [10]) introduced by Lam in [6]. In that case, the underlying graph can
be seen as an infinite version of GA, which is rolled around a cylinder. For a graphical representation, see
the following figure.

In the case of the weak order on the type B, the digraph is a bit more complicated and can be visualize
as a shifted diagram, where the digraph structure is given by the shifted hooks. In that case, the study of
the associated formal power series which arise is undone, and the author will focus on that topic later. To
conclude, we mention that some clues suggest that a description of the weak order on any Coxeter group
with this theory is possible, and this will be the subject of a later publication.

We finish by giving, without justification, the graphical representation of some of these objects.
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(Ã4,≤R) (B4,≤R) “Flag weak order” on G(2, 3).
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