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Bridge Graphs and Deodhar Parametrizations
for Positroid Varieties

Rachel Karpman †

University of Michigan, Ann Arbor, United States

Abstract. A parametrization of a positroid variety Π of dimension d is a regular map (C×)d → Π which is birational
onto a dense subset of Π. There are several remarkable combinatorial constructions which yield parametrizations of
positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are
essentially the same. Our first family is defined in terms of Postnikov’s boundary measurement map, and the domain
of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar
networks called bridge graphs, which have applications to particle physics. Our second family arises from Marsh and
Rietsch’s parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of
reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show
that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization
from a bridge graph agrees with some projected Deodhar parametrization.

Résumé. Soit Π une variété positroı̈de. Nous appellerons paramétrisation toute application régulière (C×d) → Π
qui est un isomorphisme birégulier sur un sous-ensemble dense de Π. On sait que plusieurs constructions combina-
toires donnent des paramétrisations intéressantes. Le but du présent article est d’investiguer deux familles de telles
paramétrisations et de montrer, essentiellement, qu’elles coı̈ncident. La première famille trouve son origine dans
la fonction de mesure des bords de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l’ensemble
de poids des arêtes d’un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux
planaires, les graphes de ponts, ayant des applications à la physique subatomique. La deuxième famille provient
des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions
de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de
positroı̈des en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar
corresponde à un graphe de ponts; d’autre part, chaque paramétrisation provenant d’un graphe de ponts s’accorde
avec quelque paramétrisation de Deodhar.

Keywords: positroids varieties, plabic graphs, bridge graphs, bounded affine permutations, Deodhar parametriza-
tions, positive distinguished subexpressions

1 Introduction
Lusztig defined the totally nonnegative part of an abstract flag manifold and conjectured that it was made
up of cells, a conjecture later proved by Rietsch (Lusztig, 1994, 1998; Rietsch, 1999). More than a
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1365–8050 c© 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmFPSAC'15ind.html


644 Rachel Karpman

decade later, Postnikov introduced the positroid stratification of the totally nonnegative Grassmannian
Gr≥0(k, n), which Rietsch then showed was a special case of Lusztig’s stratification (Postnikov, 2006;
Rietsch, 2009). While Lusztig’s approach relied on the machinery of canonical bases, Postnikov’s was
more elementary. Each of Postnikov’s positroid cells is the locus in Gr≥0(k, n) where certain Plücker
coordinates vanish.

The positroid stratification of Gr≥0(k, n) extends to a stratification of the complex Grassmannian
Gr(k, n) of k-planes in n-space. That is, we can decompose Gr(k, n) into open positroid varieties Π̊
whose intersections with Gr≥0(k, n) are precisely Postnikov’s totally nonnegative cells Π̊≥0. Remark-
ably, open positroid varieties are the images of open Richardson varieties in the flag variety F`(n) under
the natural projection πk : F`(n)→ Gr(k, n).

The decomposition of Gr(k, n) into projected Richardson varieties was first studied by Lusztig (Lusztig,
1998). Rietsch showed that this decomposition is a stratification, and described the closure partial order
on the cells (Rietsch, 2006). Brown, Goodearl and Yakimov investigated the same stratification from
the viewpoint of Poisson geometry (Brown et al., 2006). Finally, Knutson, Lam and Speyer showed that
Lusztig’s (closed) strata were in fact the Zariski closures of Postnikov’s totally nonnegative cells (Knutson
et al., 2013).

Postnikov defined a family of maps onto each positroid cell in Gr≥0(k, n). The domain of each map is
the space of positive real edge weights of some weighted planar network, and there is a class of such net-
works for each positroid cell (Postnikov, 2006). If we let the edge weights range over C× instead of R+

we obtain a well-defined map onto a dense subset of the positroid variety Π̊ in Gr(k, n) corresponding to
the totally nonnegative cell Π̊≥0 (Muller and Speyer, 2014). Specializing all but an appropriately chosen
set of edge weights to 1 gives a birational map to a dense subset of Π̊, which we call an parametriza-
tion. In this paper, we investigate a particular class of network parametrizations, which arise from bridge
graphs. Bridge graphs are constructed by an inductive process, and the definition of the corresponding
parametrization is particularly straightforward. In addition, bridge graphs have proven to be a useful tool
in particle physics (Arkani-Hamed et al., 2012).

Our second family of parametrizations arises from Deodhar’s decompositions of F`(n) (Deodhar,
1985). Each Deodhar decomposition of F`(n) refines the Richardson decomposition. Richardson va-
rieties are indexed by intervals [u,w] in Bruhat order on the symmetric group Sn. To define a Deodhar
decomposition, choose a reduced word w for each w ∈ Sn. For each chosen w, and each u ≤ w in
Bruhat order, we can express the (open) Richardson variety X̊w

u indexed by [u,w] as a disjoint union of
Deodhar components. The Deodhar components of X̊w

u are indexed by distinguished subexpressions for
u in w; that is, by subwords for u in w which satisfy a technical condition.

Let Π̊ ⊂ Gr(k, n) be a positroid variety, and fix a Deodhar decomposition of F`(n). We have a family
of Deodhar components D ⊂ F`(n) such that the natural projection from F`(n) to Gr(k, n) maps each
D isomorphically to a dense subset of Π̊. These are precisely the top-dimensional Deodhar components of
the Richardson varieties X̊w

u which project birationally to Π̊. For each such X̊w
u , the desired component is

indexed by a special choice of subexpression for u in w called a positive distinguished subexpression, or
PDS. Marsh and Rietsch defined matrix parametrizations for each Deodhar component of F`(n) (Marsh
and Rietsch, 2004). Composing with πk gives a family of parametrizations for the positroid variety Π̊,
which we call projected Deodhar parametrizations or simply Deodhar parametrizations (Talaska and
Williams, 2013).

We will show that these two ways of parametrizing positroid varieties–via bridge graphs, and via pro-
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jected Deodhar parametrizations–are essentially the same. This result was first conjectured by Thomas
Lam (Lam, 2013a). Our main result is the following.

Theorem 1.1. Let Π̊ be a positroid variety in Gr(k, n). For each Deodhar parametrization of Π̊, there is
a bridge graph which yields the same parametrization. Conversely, any bridge graph parametrization of
Π̊ agrees with some Deodhar parametrization.

t1
t2

t3

t4

4

3

2

1

Fig. 1: A bridge network. All unlabeled edges have weight 1.

To convey the flavor of this result, we briefly sketch an example; the details will appear later. Take
k = 2 and n = 4. Let u = 2143 and w = 4321. The Richardson variety X̊w

u projects birationally to the
positroid Π̊u,w. Fix the reduced word w = s1s2s3s2s1s2 for w. The PDS u for u in w comprises the
bolded entries in w, so we have Deodhar parametrization

(t1, t2, t3, t4) 7→
[
1 0 0 0
0 1 0 0

]
x2(t1)ṡ1

−1x2(t2)ṡ3
−1x2(t3)x1(t4) =

[
0 1 t3 t2
−1 −t4 0 t1

]
(1.1)

We claim that we can obtain the same map from a bridge graph. Indeed, The bridge graph in Figure 1
yields the parametrization:

(t1, t2, t3, t4) 7→
[
1 t4 0 −t1
0 1 t3 t2

]
(1.2)

Note that the two parametrizations send the point (t1, t2, t3, t4) to representative matrices which have
the same row space, and hence correspond to the same point in Gr(2, 4).

This work builds on a number of earlier results. Postnikov’s Le-diagrams, which index positroid vari-
eties, provided the first link between planar networks and PDS’s. A Le-diagram is a Young diagram filled
with 0’s and +’s according to certain rules. There is a beautiful bijection between Le-diagrams and PDS’s
of Grassmannian permutations, permutations with a single descent at position k. Moreover, Postnikov
constructed a planar network from each Le-diagram, which yields a parametrization of the corresponding
positroid variety (Postnikov, 2006).

Talaska and Williams explored the link between distinguished subexpressions and network parametriza-
tions further in (Talaska and Williams, 2013). They considered Deodhar components ofF`(n) indexed by
all distinguished subexpressions of Grassmannian permutations, not just PDS’s. These Deodhar compo-
nents project isomorphically to subsets of Gr(k, n), and the projections give a decomposition of Gr(k, n).
Marsh and Rietsch’s work yields a unique parametrization for each component (Marsh and Rietsch, 2004).
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Talaska and Williams proved that each of these parametrizations arises from a network, which they con-
structed explicitly. For components indexed by PDS’s, they recovered the planar networks corresponding
to Postnikov’s Le diagrams; for the remaining components, their networks are nonplanar.

Here, we relax the requirement that our Deodhar components be indexed by subexpressions of Grass-
mannian permutations. Instead, we restrict our attention to Deodhar components which correspond to
PDS’s, and which project isomorphically to a subset of Gr(k, n). There is a family of such components
for each positroid variety, which in turn gives a family of parametrizations. We construct a planar net-
work for each such parametrization. The Le-diagrams defined by Postnikov, and recovered by Talaska
and Williams, are a special case of this result. This is an extended abstract for a longer paper, which may
be found at arXiv:1411.2997 [math.CO].

2 Background
2.1 Notation
Let Sn denote the symmetric group in n letters, with simple generators s1, . . . , sn−1, and let ` denote the
standard length function on Sn. For u,w ∈ Sn, we write u ≤ w to denote a relation in the (strong) Bruhat
order. A factorization u = vw ∈ Sn is length additive if `(u) = `(v) + `(w). We write [a] for the set of
integers {1, . . . , a}. If a < b, let [a, b] = {a, a+ 1, . . . , b}. Otherwise, let [a, b] = ∅. Let w([a]) be the set
{w(1), . . . , w(a)}. By Sk × Sn−k, we mean the subgroup of Sn which fixes the sets [k] and [k + 1, n].
We denote the set of all k-elements subsets of n by

(
[n]
k

)
.

All functions and permutations act on the left. For a ≤ b, we let x(a,b)(t) denote the elementary matrix
with 1’s along the main diagonal, a single nonzero entry t in position (a, b), and 0’s everywhere else. Let
xi(t) denote x(i,i+1)(t).

2.2 Bruhat intervals and bounded affine permutations
Fix k ≤ n. The k-Bruhat order on Sn, introduced by Bergeron and Sottile in (Bergeron and Sottile, 1998),
is defined as follows. For u,w ∈ Sn, we say that w is a k-cover of u, written w mk u, if w m u in Bruhat
order and w([k]) 6= u([k]). To obtain the k-Bruhat order on Sn, we take the transitive closure of these
cover relations. We use≤k to denote k-Bruhat order, and write [u,w]k for the interval {v | u ≤k v ≤k w}.

Following (Knutson et al., 2013, Section 2.3), we define an equivalence relation on k-Bruhat intervals
by setting [u,w]k ∼ [x, y]k if there is some z ∈ Sk × Sn−k such that x = uz and y = wz, with both
factorizations length additive. We write 〈u,w〉k for the equivalence class of [u,w]k, and denote the set
of all such classes by Q(k, n). There is a partial order on Q(k, n), defined by setting 〈u,w〉k ≤ 〈x, y〉k
if there exist representatives [u′, w′]k of 〈u,w〉k and [x′, y′]k of 〈x, y〉k with [x′, y′]k ⊆ [u′, w′]k. The
poset Q(k, n) is anti-isomorphic to a special case of the posets that appeared in (Brown et al., 2006) and
(Rietsch, 2006).

Definition 2.1. A bounded affine permutation of type (k, n) is a bijection f : Z→ Z which satisfies the
following criteria:

1. f(i+ n) = f(i) + n for all i ∈ Z.

2. i ≤ f(i) ≤ i+ n for all i ∈ Z.

3. 1
n

∑k
i=1(f(i)− i) = k
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We write Bound(k, n) for the set of bounded affine permutations of type (k, n). Let t(i,j) : Z→ Z be
the map which interchanges i + rn and j + rn for all r ∈ Z. The Bruhat ordering on Bound(k, n) is
the transitive closure of the relations given by f → g if f, g ∈ Bound(k, n) and there exists i < j ∈ Z
such that f(i) < f(j) and g = ft(i,j). The poset Bound(k, n) is anti-isomorphic to Postnikov’s poset of
decorated permutations. For further discussion, see (Knutson et al., 2013).

For J ∈
(

[n]
k

)
, define tJ ∈ Bound(k, n) by setting

i 7→

{
i+ n i ∈ J
i i ∈ [n]\J

(2.1)

and extending periodically. Let 〈u,w〉k ∈ Q(k, n). The function

fu,w = ut[k]w
−1 (2.2)

lies in Bound(k, n). The map 〈u,w〉k 7→ fu,w gives a well-defined isomorphism of posets from Q(k, n)
to Bound(k, n) (Knutson et al., 2013, Section 3.4). Essentially the same isomorphism appears in (Williams,
2007).

2.3 Grassmannians, flag varieties, and Richardson varieties
Let Gr(k, n) denote the Grassmannian of k-dimensional linear subspaces of the vector space Cn. We
realize Gr(k, n) as the space of full-rank k × n matrices modulo row operations; a matrix M represents
the space spanned by its rows. We number the rows of our matrices from top to bottom, and the columns
from left to right.

The Plücker embedding, denoted p, maps Gr(k, n) into the projective space P(n
k)−1(C) with homoge-

neous coordinates xJ indexed by elements of
(

[n]
k

)
. For J ∈

(
[n]
k

)
, and M a k × n matrix, let ∆J(M)

denote the minor of M with columns indexed by J . Let V be a k-dimensional subspace of Cn with rep-
resentative matrix M . Then p(V ) is the point defined by xJ = ∆J(M). The homogeneous coordinates
∆J are known as Plücker coordinates on Gr(k, n). The totally nonnegative Grassmannian Gr≥0(k, n) is
the subset of Gr(k, n) whose Plücker coordinates are all nonnegative real numbers, up to multiplication
by a common scalar.

The flag variety F`(n) is an algebraic variety whose points correspond to flags

V• = {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn} (2.3)

where Vi is a linear subspace of Cn of dimension i. We realize F`(n) as the quotient of GL(n) by the left
action of B, the group of n× n lower triangular matrices. The projection πk : F`(n)→ Gr(k, n) carries
a flag V• to the k-plane Vk.

We recall the definitions of Schubert and Richardson varieties, following the conventions of (Knutson
et al., 2013, Section 4). For a subset J of [n], let ProjectJ : Cn → CJ be projection onto the coordinates
indexed by J . For a permutation w ∈ Sn, we define the Schubert cell corresponding to w by

X̊w = {V• ∈ F`(n) | dim(Project[j](Vi)) = |w([i]) ∩ [j]| for all i} (2.4)

Similarly, we define the opposite Schubert cell by

X̊w = {V• ∈ F`(n) | dim(Project[n−j+1,n](Vi)) = |w([i]) ∩ [n− j + 1, n]| for all i} (2.5)
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We define the open Richardson variety X̊w
u to be the transverse intersection X̊u ∩ X̊w. The variety X̊w

u

is empty unless u ≤ w, in which case it has dimension `(w) − `(u) (Kazhdan and Lusztig, 1980). Open
Richardson varieties form a stratification of F`(n) which refines the Schubert stratification.

2.4 Positroid varieties
Let V ∈ Gr≥0(k, n). The indices of the non-vanishing Plücker coordinates of V give a set J ⊆

(
[n]
k

)
called the matroid of V . We define the matroid cell MJ as the locus of points V ∈ Gr≥0(k, n) with
matroid J . The nonempty matroid cells in Gr≥0(k, n) are the positroid cells defined by Postnikov.
Positroid cells form a stratification of Gr≥0(k, n), and each cell is homeomorphic to (R+)d for some d
(Postnikov, 2006, Theorem 3.5).

The positroid stratification of Gr≥0(k, n) extends to the complex Grassmannian Gr(k, n). Taking the
Zariski closure of a positroid cell of Gr≥0(k, n) in Gr(k, n) gives a closed positroid variety. For a closed
positroid variety Π ⊆ Gr(k, n), we define the open positroid variety Π̊ ⊂ Π by taking the complement
in Π of all lower-dimensional positroid varieties. These open positroid varieties give a stratification of
Gr(k, n) (Rietsch, 1999; Knutson et al., 2013). Positroid varieties in Gr(k, n) may be defined in numer-
ous other ways. For instance, there is is a beautiful description of positroid varieties as intersections of
cyclically permuted Schubert varieties (Postnikov, 2006; Knutson et al., 2013).

Positroid varieties in Gr(k, n) coincide with projected Richard varieties (Knutson et al., 2013, Section
5.4). Indeed, let u ≤k w. The projection πk maps X̊w

u isomorphically onto its image, which is an open
positroid variety Π̊u,w. If 〈u′, w′〉k = 〈u,w〉k then Π̊u,w = Π̊u′,w′ , so each class in 〈u,w〉k ∈ Q(k, n)
corresponds to a unique positroid variety. This correspondence gives a poset isomorphism between
Q(k, n) and the poset of positroid varieties, ordered by reverse inclusion (Knutson et al., 2013, Section
5.4).

Since Q(k, n) is isomorphic to the poset of positroid varieties, so is Bound(k, n). We write Πf for the
positroid variety corresponding to a bounded affine permutation f . There are numerous other combinato-
rial objects that index positroid varieties; see (Postnikov, 2006; Knutson et al., 2013).

2.5 Plabic graphs and bridge graphs
A plabic graph is a planar graph embedded in a disk, with each vertex colored black or white. (Plabic is
short for “planar bicolored.”) The boundary vertices are numbered 1, 2, . . . , n in clockwise order, and all
boundary vertices have degree one. We call the edges adjacent to boundary vertices legs of the graph, and
a leaf adjacent to a boundary vertex a lollipop.

Postnikov introduced plabic graphs in (Postnikov, 2006, Section 11.5), where he used them to construct
parametrizations of positroid cells in the totally nonnegative Grassmannian. In this paper, we follow the
more restrictive conventions of (Postnikov et al., 2009). In particular, we require our plabic graphs to be
bipartite, with the black and white vertices forming the partite sets. Further, we restrict our attention to
reduced, perfectly orientable plabic graphs, which satisfy some additional combinatorial conditions. See
(Postnikov, 2006, Section 12).

Postnikov associates a decorated permutation σG to each plabic graphG with n boundary vertices; that
is, a permutation with each fixed point colored black or white. If G is a reduced graph, each fixed point
of σG corresponds to a boundary leaf (Postnikov, 2006). Let

k = |{a ∈ [n] | σG(a) < a or σG(a) = a and G has a white boundary leaf at a}| (2.6)
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Then there is a unique fG ∈ Bound(k, n) corresponding to G such that fG(i) ≡ σG(i) (mod n) (Knut-
son et al., 2013). Thus we have a correspondence between plabic graphs and positroid varieties, with
ΠG = ΠfG , which assigns a family of reduced plabic graphs to each positroid variety.

We describe a way to build plabic graphs inductively by adding new edges, called bridges. The resulting
graphs are called bridge graphs. Versions of this construction appear in (Arkani-Hamed et al., 2012) and
(Lam, 2013b).

Begin with a plabic graph G. To add a bridge, we choose a pair of boundary vertices a < b such every
c ∈ [a + 1, b − 1] is a lollipop, and fG(a) > fG(b). Our new edge has one vertex on the leg at a, and
one on the leg at b. If a (respectively b) is a lollipop, then the leaf at a must be white (black), and we use
that boundary leaf as one endpoint of the bridge. If a (respectively b) is not a lollipop, we instead insert
a white (black) vertex in the middle of the leg at a (respectively, b). After adding the bridge, we insert
additional vertices of degree two or change the color of boundary vertices as needed to obtain a bipartite
graph. (See Figure 2.) The following is straightforward.

Proposition 2.2. Suppose G is reduced. Choose 1 ≤ a < b ≤ n such that fG(a) > fG(b), and each
c ∈ [a+ 1, b− 1] is a lollipop. Let G′ be the graph obtained by adding an (a, b)-bridge to G. Then G′ is
a reduced plabic graph, and f ′G = f ◦ (a, b) ∈ Bound(k, n).

(a) Adding a bridge between
boundary leaves.

(b) Adding a bridge between legs which are not boundary
leaves. Note that after adding the bridge, we add additional
vertices of degree 2 to create a bipartite graph.

Fig. 2: Adding bridges to a plabic graph.

The zero-dimensional positroid varieties correspond to the points in Gr(k, n) which have a single non-
zero Plücker coordinate J . There is a unique reduced plabic graph for each J ∈

(
[n]
k

)
, which has n

lollipops. The k lollipops corresponding to elements of J are white; the rest are black. We call a plabic
graph consisting only of lollipops a lollipop graph.

Let u ≤k w. Then by (2.2), together with the fact that ut[k] = tu([k])u, we have fu,w = tu([k])uw
−1

To construct a bridge graph for Π〈u,w〉k we begin with the lollipop graph corresponding to u([k]), and
successively add bridges, making sure the hypotheses of Proposition 2.2 are satisfied at each step, until
we have a graph with bounded affine permutation fu,w.

2.6 Parametrizations from plabic graphs
LetG be a reduced plabic network with e edges, and assign weights t1, . . . , te to the edges ofG. Postnikov
defined a surjective map from the space of positive real edge weights of G to the positroid cell

(
Π̊G

)
≥0

in Gr≥0(k, n), called the boundary measurement map (Postnikov, 2006, Section 11.5). Postnikov, Speyer
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and Williams re-cast this construction in terms of certain matchings (Postnikov et al., 2009, Section 4-
5), an approach Lam developed further in (Lam, 2013b). Muller and Speyer showed that we can extend
the boundary measurement map to the space of nonzero complex edge weights, and obtain a regular
map; specializing all but an appropriate set of edges to 1 gives a birational map to a dense subset of Π̊G

(Muller and Speyer, 2014). If G is a bridge graph, we have a simple procedure for constructing such a
parametrization.

Note that for a bridge graph G, we have ΠG = Πu,w for some u ≤k w. Let d = dim(ΠG). Assign
weights t1, . . . , td to each bridge, in the order the bridges were added, and set all other edge weights to 1.
Begin with a k× n matrix which has a single nonzero Plücker coordinate indexed by the columns u([k]),
and whose remaining columns consist of all 0’s. Say the rth bridge is from a to b, with a < b, and let

θ = |u([k]) ∩ [a+ 1, b− 1]|

When we add the rth bridge to the graph, we multiply our matrix on the right by x(a,b)((−1)θtr)

2.6.1 Example
Let n = 4, k = 2. Let w = 4321 and u = 2143. Then u ≤2 w, and 〈u,w〉2 corresponds to the big cell in
Gr(2, 4). We have u([2]) = {1, 2}. The bounded affine permutation corresponding to 〈u,w〉2 is given by
fu,w = 3456. Starting with the plabic graph corresponding to tu([2]) = 5634 we successively add bridges

(1, 4)→ (2, 4)→ (2, 3)→ (1, 2). (2.7)

The corresponding bridge graph is shown in Figure 1.
We next construct the corresponding matrix parametrization. Since u([2]) = {1, 2}, we start with the

k × n matrix which has a copy of the identity in its first two columns, and multiply on the right by the
factors x(a,b)(±tr) as in (2.6). So we have

[
1 0 0 0
0 1 0 0

]
1 0 0 −t1
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 t2
0 0 1 0
0 0 0 1




1 0 0 0
0 1 t3 0
0 0 1 0
0 0 0 1




1 t4 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =

[
1 t4 0 −t1
0 1 t3 t2

]
(2.8)

2.7 Positive distinguished subexpressions
Let w = si1 · · · sim be a reduced word for w ∈ Sn. A subexpression u of w is obtained by replacing
some of the factors sij of w with the identity permutation, which we denote by 1. Following (Marsh and
Rietsch, 2004), we write u � w to indicate that u is a subexpression of w. We denote the tth factor of
u, which may be either 1 or a simple transposition, by ut, and write u(t) for the product u1u2 . . . ut. Set
u0 = u(0) = 1.

Given a subexpression u � w, we say u is a subexpression for u = u1u2 · · ·ur.
Definition 2.3. A subexpression u of w is called positive distinguished if for all 1 ≤ j ≤ m, we have

u(j−1) < u(j−1)sij . (2.9)

We will abbreviate the phrase “positive distinguished subexpression” to PDS.
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2.8 Wiring diagrams, subexpressions, and bridge diagrams
Wiring diagrams represent words in Sn visually. Let w in Sn, and fix a word w of w. For an example,
see Figure 3b. Each crossing between the wires represents a transposition si, where i − 1 is the number
of wires in the diagram which pass directly above the crossing. However, the crossings in the diagram for
w appear in the opposite order as the corresponding generators in the word w. If w(s) = t, the wire with
left endpoint s has right endpoint t.

We now define bridge diagrams, which represent subexpressions of reduced words. To draw the bridge
diagram for a subexpression u � w we take a wiring diagram for u, and draw dashed crosses between
adjacent wires to represent the additional crossings from w. We call these dashed crosses bridges, by
analogy with bridge graphs. For an example, see Figure 3a. If u � w is a bridge diagram, we label wires
in the underlying diagram for u by their right endpoints. A wire is isolated if there are no bridges on that
wire.

2.9 Deodhar parametrizations of positroid varieties
We review Deodhar’s decompositions of the flag variety, as well as Marsh and Rietsch’s parametrizations
of Deodhar components, and their projections to the Grassmannian (Deodhar, 1985; Marsh and Rietsch,
2004). Our discussion follows (Talaska and Williams, 2013, Section 4), but with slightly different con-
ventions.

To construct a Deodhar decomposition of F`(n), we first fix a reduced word w for each w ∈ Sn. We
have a Deodhar componentRu,w for each distinguished subexpression u � w with

X̊w
u =

⊔
u�w distinguished

Ru,w. (2.10)

To define a Deodhar decomposition of the Grassmannian, fix a Deodhar decomposition of F`(n), and
choose a representative 〈u,w〉k for each class in Q(k, n). For each of the selected u ≤k w, and each
distinguished subexpression u � w, the Deodhar component of Gr(k, n) corresponding to u � w is
given by Du,w := πk(Ru,w).

We give the explicit matrix parametrization for Du,w in the case where u � w is a PDS. We write ṡi
for the matrix obtained from the n× n identity by replacing the 2× 2 block whose upper left corner is at
position (i, i) with the block matrix [

0 −1
1 0

]
(2.11)

Let w = si1 · · · sim . Then we define gj for 1 ≤ i ≤ m by

gj =

{
xij (tj) if sij is not in u
˙sij
−1 if sij is in u

}
(2.12)

where the tj are parameters, and define the set

Gu,w := {gmgm−1 . . . g1 ∈ GL(n) | tj ∈ C×}. (2.13)

Let d = `(w) − `(u). The obvious map (C×)d → Gu,w gives a parametrization of Ru,w (Marsh and
Rietsch, 2004). Composing with πk, we have a parametrization of Du,w. Let j1, . . . , jd be the indices j
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such that sij 6∈ u. For 1 ≤ r ≤ d, set r̄ = d+ 1− r and define

ar̄ = u(jr−1)(ijr ) br̄ = u(jr−1)(ijr + 1) θr̄ = |u([k]) ∩ [ar̄ + 1, br̄ − 1])| (2.14)

βr = x(ar,br)((−1)θr tjr̄ ). (2.15)

Using the properties of PDS’s and the commutation relations between the matrices ṡi and x(a,b), we may
write each G ∈ Gu,w in the form

G = (u̇−1
m u̇−1

2 · · · u̇
−1
1 )(β1β2 · · ·βd). (2.16)

For convenience, we renumber our parameters so that βr = x(ar,br)((−1)θr tr).

2.9.1 Example continued
As before, let n = 4, k = 2. Let w = s1s2s3s2s1s2 ∈ S4, and let u = 2143. The PDS u for u in w is
comprised of the generators in bold, so we have a parametrization ofRu,w by

Gu,w = x2(t1)ṡ1
−1x2(t2)ṡ3

−1x2(t3)x1(t4). (2.17)

Rewriting this in the form (2.16) and projecting to Gr(2, 4), we obtain[
1 0 0 0
0 1 0 0

]
ṡ1
−1ṡ3

−1x(1,4)(−t1)x(2,4)(t2)x2(t3)x1(t4) =

[
0 1 t3 t2
−1 −t4 0 t1

]
(2.18)

Note that this matrix has the same row span as the one obtained from the bridge graph above.

3 Sketch of the main proof
We sketch the proof of the forward direction of Theorem 1.1: every Deodhar parametrization corresponds
to a bridge graph. The reverse direction also has a constructive proof, but the procedure is less visually
elegant. Let u � w be a PDS with u ≤k w. We construct a bridge graph G from the bridge diagram
u � w, as follows. For an example, see Figure 3.

Think of the right endpoints of the wires as boundary vertices of a bicolored graph embedded in a
disk; the wires as paths with one endpoint on the boundary; and the new crossings as white-black bridges
between these paths. Erase the tail of each wire from the left endpoint to the first bridge on that wire. If
wire t is isolated, add a black lollipop at t if u−1(t) > k, and a white lollipop if u−1(t) ≤ k. Finally, color
the boundary vertices and add degree-two vertices as needed to obtain a bipartite graph. Remarkably, this
process yields a planar embedding of a plabic graph whenever u � w is a PDS with u ≤k w. Proving
this requires a careful analysis of the possible configurations of bridge diagrams, using the properties of
k-Bruhat order.

The parametrization arising from G is precisely the projected Deodhar parametrization corresponding
to u � w. Indeed, we construct the parametrization corresponding to G by taking a k × n matrix which
has a single non-zero Plücker coordinate u([k]), and multiplying on the right by the matrices β1, . . . , βd,
where the βr are defined as in (2.9). To see this, note that in the diagram, the rth bridge from the left lies
between wires ar and br in the diagram for u, where (ar, br) is as in (2.14).
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4 4

3 3

2 2

1 1

(a) The solid lines give the wiring diagram for
u. The dashed crosses represent bridges.

4 4

3 3

2 2

1 1

(b) Replacing each bridge at left with a cross-
ing gives the wiring diagram for w.

4 4

3 3

2 2

1 1

(c) To construct the bridge graph correspond-
ing to u � w, we first replace each bridge with
a dimer, as shown above.

4

3

2

1

(d) Next, we delete the tail of each wire up to
the first dimer on that wire. Adding degree-
2 vertices as needed yields the desired plabic
graph.

Fig. 3: Constructing a bridge graph from a bridge diagram. In this example, we have k = 2, n = 4,
w = s1s2s3s2s1s2, and u = s3s1. Compare the figure at lower right with the bridge graph in Figure 1.
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