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Bridge Graphs and Deodhar Parametrizations for Positroid Varieties

Rachel Karpman † University of Michigan, Ann Arbor, United States Abstract. A parametrization of a positroid variety Π of dimension d is a regular map (C × ) d → Π which is birational onto a dense subset of Π. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are essentially the same. Our first family is defined in terms of Postnikov's boundary measurement map, and the domain of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar networks called bridge graphs, which have applications to particle physics. Our second family arises from Marsh and Rietsch's parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization from a bridge graph agrees with some projected Deodhar parametrization.

Introduction

Lusztig defined the totally nonnegative part of an abstract flag manifold and conjectured that it was made up of cells, a conjecture later proved by Rietsch [START_REF] Lusztig | Total positivity in reductive groups[END_REF][START_REF] Lusztig | Total positivity in partial flag varieties[END_REF][START_REF] Rietsch | An algebraic cell decomposition on the nonnegative part of a flag variety[END_REF]. More than a decade later, Postnikov introduced the positroid stratification of the totally nonnegative Grassmannian Gr ≥0 (k, n), which Rietsch then showed was a special case of Lusztig's stratification [START_REF] Postnikov | Total positivity, Grassmannians and networks[END_REF][START_REF] Lam | Network parametrizations for the Grassmannian[END_REF]. While Lusztig's approach relied on the machinery of canonical bases, Postnikov's was more elementary. Each of Postnikov's positroid cells is the locus in Gr ≥0 (k, n) where certain Plücker coordinates vanish.

The positroid stratification of Gr ≥0 (k, n) extends to a stratification of the complex Grassmannian Gr(k, n) of k-planes in n-space. That is, we can decompose Gr(k, n) The decomposition of Gr(k, n) into projected Richardson varieties was first studied by Lusztig [START_REF] Lusztig | Total positivity in partial flag varieties[END_REF]. Rietsch showed that this decomposition is a stratification, and described the closure partial order on the cells [START_REF] Rietsch | Closure relations for totally nonnegative cells in G/P[END_REF]. Brown, Goodearl and Yakimov investigated the same stratification from the viewpoint of Poisson geometry [START_REF] Brown | Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space[END_REF]. Finally, Knutson, Lam and Speyer showed that Lusztig's (closed) strata were in fact the Zariski closures of Postnikov's totally nonnegative cells [START_REF] Knutson | Positroid varieties: juggling and geometry[END_REF].

Postnikov defined a family of maps onto each positroid cell in Gr ≥0 (k, n). The domain of each map is the space of positive real edge weights of some weighted planar network, and there is a class of such networks for each positroid cell [START_REF] Postnikov | Total positivity, Grassmannians and networks[END_REF]. If we let the edge weights range over C × instead of R + we obtain a well-defined map onto a dense subset of the positroid variety Π in Gr(k, n) corresponding to the totally nonnegative cell Π≥0 [START_REF] Muller | The twist for positroid varieties[END_REF]. Specializing all but an appropriately chosen set of edge weights to 1 gives a birational map to a dense subset of Π, which we call an parametrization. In this paper, we investigate a particular class of network parametrizations, which arise from bridge graphs. Bridge graphs are constructed by an inductive process, and the definition of the corresponding parametrization is particularly straightforward. In addition, bridge graphs have proven to be a useful tool in particle physics [START_REF] Arkani-Hamed | Scattering amplitudes and the positive Grassmannian[END_REF].

Our second family of parametrizations arises from Deodhar's decompositions of F (n) [START_REF] Deodhar | On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells[END_REF]. Each Deodhar decomposition of F (n) refines the Richardson decomposition. Richardson varieties are indexed by intervals [u, w] in Bruhat order on the symmetric group S n . To define a Deodhar decomposition, choose a reduced word w for each w ∈ S n . For each chosen w, and each u ≤ w in Bruhat order, we can express the (open) Richardson variety Xw u indexed by [u, w] as a disjoint union of Deodhar components. The Deodhar components of Xw u are indexed by distinguished subexpressions for u in w; that is, by subwords for u in w which satisfy a technical condition.

Let Π ⊂ Gr(k, n) be a positroid variety, and fix a Deodhar decomposition of F (n). We have a family of Deodhar components D ⊂ F (n) such that the natural projection from F (n) to Gr(k, n) maps each D isomorphically to a dense subset of Π. These are precisely the top-dimensional Deodhar components of the Richardson varieties Xw u which project birationally to Π. For each such Xw u , the desired component is indexed by a special choice of subexpression for u in w called a positive distinguished subexpression, or PDS. Marsh and Rietsch defined matrix parametrizations for each Deodhar component of F (n) [START_REF] Marsh | Parametrizations of flag varieties[END_REF]. Composing with π k gives a family of parametrizations for the positroid variety Π, which we call projected Deodhar parametrizations or simply Deodhar parametrizations (Talaska and [START_REF] Lam | Network parametrizations for the Grassmannian[END_REF].

We will show that these two ways of parametrizing positroid varieties-via bridge graphs, and via pro-jected Deodhar parametrizations-are essentially the same. This result was first conjectured by Thomas Lam (Lam, 2013a). Our main result is the following.

Theorem 1.1. Let Π be a positroid variety in Gr(k, n). For each Deodhar parametrization of Π, there is a bridge graph which yields the same parametrization. Conversely, any bridge graph parametrization of Π agrees with some Deodhar parametrization.

t 1 t 2 t 3 t 4 4 3 2 1
Fig. 1: A bridge network. All unlabeled edges have weight 1.

To convey the flavor of this result, we briefly sketch an example; the details will appear later. Take k = 2 and n = 4. Let u = 2143 and w = 4321. The Richardson variety Xw u projects birationally to the positroid Πu,w . Fix the reduced word w = s 1 s 2 s 3 s 2 s 1 s 2 for w. The PDS u for u in w comprises the bolded entries in w, so we have Deodhar parametrization

(t 1 , t 2 , t 3 , t 4 ) → 1 0 0 0 0 1 0 0 x 2 (t 1 ) ṡ1 -1 x 2 (t 2 ) ṡ3 -1 x 2 (t 3 )x 1 (t 4 ) = 0 1 t 3 t 2 -1 -t 4 0 t 1 (1.1)
We claim that we can obtain the same map from a bridge graph. Indeed, The bridge graph in Figure 1 yields the parametrization:

(t 1 , t 2 , t 3 , t 4 ) → 1 t 4 0 -t 1 0 1 t 3 t 2 (1.2)
Note that the two parametrizations send the point (t 1 , t 2 , t 3 , t 4 ) to representative matrices which have the same row space, and hence correspond to the same point in Gr(2,4).

This work builds on a number of earlier results. Postnikov's Le-diagrams, which index positroid varieties, provided the first link between planar networks and PDS's. A Le-diagram is a Young diagram filled with 0's and +'s according to certain rules. There is a beautiful bijection between Le-diagrams and PDS's of Grassmannian permutations, permutations with a single descent at position k. Moreover, Postnikov constructed a planar network from each Le-diagram, which yields a parametrization of the corresponding positroid variety [START_REF] Postnikov | Total positivity, Grassmannians and networks[END_REF].

Talaska and Williams explored the link between distinguished subexpressions and network parametrizations further in [START_REF] Lam | Network parametrizations for the Grassmannian[END_REF]. They considered Deodhar components of F (n) indexed by all distinguished subexpressions of Grassmannian permutations, not just PDS's. These Deodhar components project isomorphically to subsets of Gr(k, n), and the projections give a decomposition of Gr(k, n). Marsh and Rietsch's work yields a unique parametrization for each component [START_REF] Marsh | Parametrizations of flag varieties[END_REF].

Talaska and Williams proved that each of these parametrizations arises from a network, which they constructed explicitly. For components indexed by PDS's, they recovered the planar networks corresponding to Postnikov's Le diagrams; for the remaining components, their networks are nonplanar.

Here, we relax the requirement that our Deodhar components be indexed by subexpressions of Grassmannian permutations. Instead, we restrict our attention to Deodhar components which correspond to PDS's, and which project isomorphically to a subset of Gr(k, n). There is a family of such components for each positroid variety, which in turn gives a family of parametrizations. We construct a planar network for each such parametrization. The Le-diagrams defined by Postnikov, and recovered by Talaska and Williams, are a special case of this result. This is an extended abstract for a longer paper, which may be found at arXiv:1411.2997 [math.CO].

Background

Notation

Let S n denote the symmetric group in n letters, with simple generators s 1 , . . . , s n-1 , and let denote the standard length function on S n . For u, w ∈ S n , we write u ≤ w to denote a relation in the (strong

) Bruhat order. A factorization u = vw ∈ S n is length additive if (u) = (v) + (w). We write [a] for the set of integers {1, . . . , a}. If a < b, let [a, b] = {a, a + 1, . . . , b}. Otherwise, let [a, b] = ∅. Let w([a]) be the set {w(1), . . . , w(a)}. By S k × S n-k , we mean the subgroup of S n which fixes the sets [k] and [k + 1, n].
We denote the set of all k-elements subsets of n by [n] k . All functions and permutations act on the left. For a ≤ b, we let x (a,b) (t) denote the elementary matrix with 1's along the main diagonal, a single nonzero entry t in position (a, b), and 0's everywhere else. Let

x i (t) denote x (i,i+1) (t).

Bruhat intervals and bounded affine permutations

Fix k ≤ n. The k-Bruhat order on S n , introduced by Bergeron and Sottile in [START_REF] Bergeron | Schubert polynomials, the Bruhat order, and the geometry of flag manifolds[END_REF], is defined as follows. For u, w ∈ S n , we say that w is a k-cover of u, written w k u, if w u in Bruhat order and w([k]) = u([k]). To obtain the k-Bruhat order on S n , we take the transitive closure of these cover relations. We use ≤ k to denote k-Bruhat order, and write [u, w] 

k for the interval {v | u ≤ k v ≤ k w}.
Following (Knutson et al., 2013, Section 2.3), we define an equivalence relation on k-Bruhat intervals by setting [u, w] k ∼ [x, y] k if there is some z ∈ S k × S n-k such that x = uz and y = wz, with both factorizations length additive. We write u, w k for the equivalence class of [u, w] k , and denote the set of all such classes by Q(k, n). There is a partial order on Q(k, n), defined by setting u,

w k ≤ x, y k if there exist representatives [u , w ] k of u, w k and [x , y ] k of x, y k with [x , y ] k ⊆ [u , w ] k . The poset Q(k, n) is anti-isomorphic to
a special case of the posets that appeared in [START_REF] Brown | Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space[END_REF] and [START_REF] Rietsch | Closure relations for totally nonnegative cells in G/P[END_REF].

Definition 2.1. A bounded affine permutation of type (k, n) is a bijection f : Z → Z which satisfies the following criteria: 1. f (i + n) = f (i) + n for all i ∈ Z. 2. i ≤ f (i) ≤ i + n for all i ∈ Z. 3. 1 n k i=1 (f (i) -i) = k
We write Bound(k, n) for the set of bounded affine permutations of type (k, n). Let t (i,j) : Z → Z be the map which interchanges i + rn and j + rn for all r ∈ Z. The Bruhat ordering on Bound(k, n) is the transitive closure of the relations given by f → g if f, g ∈ Bound(k, n) and there exists i < j ∈ Z such that f (i) < f (j) and g = f t (i,j) . The poset Bound(k, n) is anti-isomorphic to Postnikov's poset of decorated permutations. For further discussion, see [START_REF] Knutson | Positroid varieties: juggling and geometry[END_REF].

For J ∈ [n] k , define t J ∈ Bound(k, n) by setting

i → i + n i ∈ J i i ∈ [n]\J (2.1)
and extending periodically. Let u, w k ∈ Q(k, n). The function et al., 2013, Section 3.4). Essentially the same isomorphism appears in [START_REF] Williams | Shelling totally nonnegative flag varieties[END_REF].

f u,w = ut [k] w -1 (2.2) lies in Bound(k, n). The map u, w k → f u,w gives a well-defined isomorphism of posets from Q(k, n) to Bound(k, n) (Knutson

Grassmannians, flag varieties, and Richardson varieties

Let Gr(k, n) denote the Grassmannian of k-dimensional linear subspaces of the vector space C n . We realize Gr(k, n) as the space of full-rank k × n matrices modulo row operations; a matrix M represents the space spanned by its rows. We number the rows of our matrices from top to bottom, and the columns from left to right. The Plücker embedding, denoted p, maps Gr(k, n) into the projective space P ( n k )-1 (C) with homogeneous coordinates x J indexed by elements of [n] k . For J ∈ [n] k , and M a k × n matrix, let ∆ J (M ) denote the minor of M with columns indexed by J. Let V be a k-dimensional subspace of C n with representative matrix M . Then p(V ) is the point defined by x J = ∆ J (M ). The homogeneous coordinates ∆ J are known as Plücker coordinates on Gr(k, n). The totally nonnegative Grassmannian Gr ≥0 (k, n) is the subset of Gr(k, n) whose Plücker coordinates are all nonnegative real numbers, up to multiplication by a common scalar.

The flag variety F (n) is an algebraic variety whose points correspond to flags

V • = {0 ⊂ V 1 ⊂ V 2 ⊂ • • • ⊂ V n = C n } (2.3)
where V i is a linear subspace of C n of dimension i. We realize F (n) as the quotient of GL(n) by the left action of B, the group of n × n lower triangular matrices. The projection π k :

F (n) → Gr(k, n) carries a flag V • to the k-plane V k .
We recall the definitions of Schubert and Richardson varieties, following the conventions of (Knutson et al., 2013, Section 4). For a subset J of [n], let Project J : C n → C J be projection onto the coordinates indexed by J. For a permutation w ∈ S n , we define the Schubert cell corresponding to w by

Xw = {V • ∈ F (n) | dim(Project [j] (V i )) = |w([i]) ∩ [j]| for all i} (2.4)
Similarly, we define the opposite Schubert cell by

Xw = {V • ∈ F (n) | dim(Project [n-j+1,n] (V i )) = |w([i]) ∩ [n -j + 1, n]| for all i} (2.5)
We define the open Richardson variety Xw u to be the transverse intersection Xu ∩ Xw . The variety Xw u is empty unless u ≤ w, in which case it has dimension (w) -(u) [START_REF] Kazhdan | Schubert varieties and Poincaré duality[END_REF]. Open Richardson varieties form a stratification of F (n) which refines the Schubert stratification.

Positroid varieties

Let V ∈ Gr ≥0 (k, n). The indices of the non-vanishing Plücker coordinates of V give a set J ⊆ [n] k called the matroid of V . We define the matroid cell M J as the locus of points V ∈ Gr ≥0 (k, n) with matroid J . The nonempty matroid cells in Gr ≥0 (k, n) are the positroid cells defined by Postnikov.

Positroid cells form a stratification of Gr ≥0 (k, n), and each cell is homeomorphic to (R + ) d for some d (Postnikov, 2006, Theorem 3.5).

The positroid stratification of Gr ≥0 (k, n) extends to the complex Grassmannian Gr(k, n). Taking the Zariski closure of a positroid cell of Gr ≥0 (k, n) in Gr(k, n) gives a closed positroid variety. For a closed positroid variety Π ⊆ Gr(k, n), we define the open positroid variety Π ⊂ Π by taking the complement in Π of all lower-dimensional positroid varieties. These open positroid varieties give a stratification of Gr(k, n) [START_REF] Rietsch | An algebraic cell decomposition on the nonnegative part of a flag variety[END_REF][START_REF] Knutson | Positroid varieties: juggling and geometry[END_REF]. Positroid varieties in Gr(k, n) may be defined in numerous other ways. For instance, there is is a beautiful description of positroid varieties as intersections of cyclically permuted Schubert varieties [START_REF] Postnikov | Total positivity, Grassmannians and networks[END_REF][START_REF] Knutson | Positroid varieties: juggling and geometry[END_REF].

Positroid varieties in Gr(k, n) coincide with projected Richard varieties (Knutson et al., 2013, Section 5.4). Indeed, let u ≤ k w. The projection π k maps Xw u isomorphically onto its image, which is an open positroid variety Πu,w . If u , w k = u, w k then Πu,w = Πu ,w , so each class in u, w k ∈ Q(k, n) corresponds to a unique positroid variety. This correspondence gives a poset isomorphism between Q(k, n) and the poset of positroid varieties, ordered by reverse inclusion (Knutson et al., 2013, Section 5.4).

Since Q(k, n) is isomorphic to the poset of positroid varieties, so is Bound(k, n). We write Π f for the positroid variety corresponding to a bounded affine permutation f . There are numerous other combinatorial objects that index positroid varieties; see [START_REF] Postnikov | Total positivity, Grassmannians and networks[END_REF][START_REF] Knutson | Positroid varieties: juggling and geometry[END_REF].

Plabic graphs and bridge graphs

A plabic graph is a planar graph embedded in a disk, with each vertex colored black or white. (Plabic is short for "planar bicolored.") The boundary vertices are numbered 1, 2, . . . , n in clockwise order, and all boundary vertices have degree one. We call the edges adjacent to boundary vertices legs of the graph, and a leaf adjacent to a boundary vertex a lollipop.

Postnikov introduced plabic graphs in (Postnikov, 2006, Section 11.5), where he used them to construct parametrizations of positroid cells in the totally nonnegative Grassmannian. In this paper, we follow the more restrictive conventions of [START_REF] Postnikov | Matching polytopes, toric geometry, and the totally nonnegative Grassmannian[END_REF]. In particular, we require our plabic graphs to be bipartite, with the black and white vertices forming the partite sets. Further, we restrict our attention to reduced, perfectly orientable plabic graphs, which satisfy some additional combinatorial conditions. See (Postnikov, 2006, Section 12).

Postnikov associates a decorated permutation σ G to each plabic graph G with n boundary vertices; that is, a permutation with each fixed point colored black or white. If G is a reduced graph, each fixed point of σ G corresponds to a boundary leaf [START_REF] Postnikov | Total positivity, Grassmannians and networks[END_REF]. Let

k = |{a ∈ [n] | σ G (a) < a or σ G (a) = a and G has a white boundary leaf at a}| (2.6)
Then there is a unique son et al., 2013). Thus we have a correspondence between plabic graphs and positroid varieties, with Π G = Π f G , which assigns a family of reduced plabic graphs to each positroid variety. We describe a way to build plabic graphs inductively by adding new edges, called bridges. The resulting graphs are called bridge graphs. Versions of this construction appear in [START_REF] Arkani-Hamed | Scattering amplitudes and the positive Grassmannian[END_REF] and (Lam, 2013b).

f G ∈ Bound(k, n) corresponding to G such that f G (i) ≡ σ G (i) (mod n) (Knut
Begin with a plabic graph G. To add a bridge, we choose a pair of boundary vertices a < b such every

c ∈ [a + 1, b -1] is a lollipop, and f G (a) > f G (b).
Our new edge has one vertex on the leg at a, and one on the leg at b. If a (respectively b) is a lollipop, then the leaf at a must be white (black), and we use that boundary leaf as one endpoint of the bridge. If a (respectively b) is not a lollipop, we instead insert a white (black) vertex in the middle of the leg at a (respectively, b). After adding the bridge, we insert additional vertices of degree two or change the color of boundary vertices as needed to obtain a bipartite graph. (See Figure 2.) The following is straightforward. The zero-dimensional positroid varieties correspond to the points in Gr(k, n) which have a single nonzero Plücker coordinate J. There is a unique reduced plabic graph for each J ∈ [n] k , which has n lollipops. The k lollipops corresponding to elements of J are white; the rest are black. We call a plabic graph consisting only of lollipops a lollipop graph.

Proposition 2.2. Suppose G is reduced. Choose 1 ≤ a < b ≤ n such that f G (a) > f G (b),
Let u ≤ k w. Then by (2.2), together with the fact that ut

[k] = t u([k]) u, we have f u,w = t u([k]) uw -1
To construct a bridge graph for Π u,w k we begin with the lollipop graph corresponding to u([k]), and successively add bridges, making sure the hypotheses of Proposition 2.2 are satisfied at each step, until we have a graph with bounded affine permutation f u,w .

Parametrizations from plabic graphs

Let G be a reduced plabic network with e edges, and assign weights t 1 , . . . , t e to the edges of G. Postnikov defined a surjective map from the space of positive real edge weights of G to the positroid cell ΠG ≥0 in Gr ≥0 (k, n), called the boundary measurement map (Postnikov, 2006, Section 11.5). Postnikov, Speyer and Williams re-cast this construction in terms of certain matchings (Postnikov et al., 2009, Section 4-5), an approach Lam developed further in (Lam, 2013b). Muller and Speyer showed that we can extend the boundary measurement map to the space of nonzero complex edge weights, and obtain a regular map; specializing all but an appropriate set of edges to 1 gives a birational map to a dense subset of ΠG [START_REF] Muller | The twist for positroid varieties[END_REF]. If G is a bridge graph, we have a simple procedure for constructing such a parametrization.

Note that for a bridge graph G, we have Π G = Π u,w for some u ≤ k w. Let d = dim(Π G ). Assign weights t 1 , . . . , t d to each bridge, in the order the bridges were added, and set all other edge weights to 1. Begin with a k × n matrix which has a single nonzero Plücker coordinate indexed by the columns u([k]), and whose remaining columns consist of all 0's. Say the r th bridge is from a to b, with a < b, and let

θ = |u([k]) ∩ [a + 1, b -1]|
When we add the r th bridge to the graph, we multiply our matrix on the right by x (a,b) ((-1) θ t r )

Example

Let n = 4, k = 2. Let w = 4321 and u = 2143. Then u ≤ 2 w, and u, w 2 corresponds to the big cell in Gr(2, 4). We have u([2]) = {1, 2}. The bounded affine permutation corresponding to u, w 2 is given by f u,w = 3456. Starting with the plabic graph corresponding to t u([2]) = 5634 we successively add bridges

(1, 4) → (2, 4) → (2, 3) → (1, 2).
(2.7)

The corresponding bridge graph is shown in Figure 1.

We next construct the corresponding matrix parametrization. Since u([2]) = {1, 2}, we start with the k × n matrix which has a copy of the identity in its first two columns, and multiply on the right by the factors x (a,b) (±t r ) as in (2.6). So we have

1 0 0 0 0 1 0 0     1 0 0 -t 1 0 1 0 0 0 0 1 0 0 0 0 1         1 0 0 0 0 1 0 t 2 0 0 1 0 0 0 0 1         1 0 0 0 0 1 t 3 0 0 0 1 0 0 0 0 1         1 t 4 0 0 0 1 0 0 0 0 1 0 0 0 0 1     = 1 t 4 0 -t 1 0 1 t 3 t 2
(2.8)

Positive distinguished subexpressions

Let w = s i1 • • • s im be a reduced word for w ∈ S n . A subexpression u of w is obtained by replacing some of the factors s ij of w with the identity permutation, which we denote by 1. Following [START_REF] Marsh | Parametrizations of flag varieties[END_REF], we write u w to indicate that u is a subexpression of w. We denote the t th factor of u, which may be either 1 or a simple transposition, by u t , and write u (t) for the product u 1 u 2 . . . u t . Set

u 0 = u (0) = 1.
Given a subexpression u w, we say u is a subexpression for

u = u 1 u 2 • • • u r .
Definition 2.3. A subexpression u of w is called positive distinguished if for all 1 ≤ j ≤ m, we have u (j-1) < u (j-1) s ij .

(2.9)

We will abbreviate the phrase "positive distinguished subexpression" to PDS.

Wiring diagrams, subexpressions, and bridge diagrams

Wiring represent words in S n visually. Let w in S n , and fix a word w of w. For an example, see Figure 3b. Each crossing between the wires represents a transposition s i , where i -1 is the number of wires in the diagram which pass directly above the crossing. However, the crossings in the diagram for w appear in the opposite order as the corresponding generators in the word w. If w(s) = t, the wire with left endpoint s has right endpoint t.

We now define bridge diagrams, which represent subexpressions of reduced words. To draw the bridge diagram for a subexpression u w we take a wiring diagram for u, and draw dashed crosses between adjacent wires to represent the additional crossings from w. We call these dashed crosses bridges, by analogy with bridge graphs. For an example, see Figure 3a. If u w is a bridge diagram, we label wires in the underlying diagram for u by their right endpoints. A wire is isolated if there are no bridges on that wire.

Deodhar parametrizations of positroid varieties

We review Deodhar's decompositions of the flag variety, as well as Marsh and Rietsch's parametrizations of Deodhar components, and their projections to the Grassmannian [START_REF] Deodhar | On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells[END_REF][START_REF] Marsh | Parametrizations of flag varieties[END_REF]. Our discussion follows (Talaska and Williams, 2013, Section 4), but with slightly different conventions.

To construct a Deodhar decomposition of F (n), we first fix a reduced word w for each w ∈ S n . We have a Deodhar component R u,w for each distinguished subexpression u w with

Xw u = u w distinguished R u,w .
(2.10)

To define a Deodhar decomposition of the Grassmannian, fix a Deodhar decomposition of F (n), and choose a representative u, w k for each class in Q(k, n). For each of the selected u ≤ k w, and each distinguished subexpression u w, the Deodhar component of Gr(k, n) corresponding to u w is given by D u,w := π k (R u,w ).

We give the explicit matrix parametrization for D u,w in the case where u w is a PDS. We write ṡi for the matrix obtained from the n × n identity by replacing the 2 × 2 block whose upper left corner is at position (i, i) with the block matrix 0

-1 1 0 (2.11) Let w = s i1 • • • s im . Then we define g j for 1 ≤ i ≤ m by g j = x ij (t j ) if s ij is not in u ṡ ij -1 if s ij is in u (2.12)
where the t j are parameters, and define the set [START_REF] Marsh | Parametrizations of flag varieties[END_REF]. Composing with π k , we have a parametrization of D u,w . Let j 1 , . . . , j d be the indices j

G u,w := {g m g m-1 . . . g 1 ∈ GL(n) | t j ∈ C × }. (2.13) Let d = (w) -(u). The obvious map (C × ) d → G u,w gives a parametrization of R u,w
such that s ij ∈ For 1 ≤ r ≤ d, set r = d + 1 -r and define a r = u (jr-1) (i jr ) b r = u (jr-1) (i jr + 1) θ r = |u([k]) ∩ [a r + 1, b r -1])| (2.14)
β r = x (ar,br) ((-1) θr t jr ).

(2.15)

Using the properties of PDS's and the commutation relations between the matrices ṡi and x (a,b) , we may write each G ∈ G u,w in the form

G = ( u-1 m u-1 2 • • • u-1 1 )(β 1 β 2 • • • β d ).
(2.16)

For convenience, we renumber our parameters so that β r = x (ar,br) ((-1) θr t r ).

Example continued

As before, let n = 4, k = 2. Let w = s 1 s 2 s 3 s 2 s 1 s 2 ∈ S 4 , and let u = 2143. The PDS u for u in w is comprised of the generators in bold, so we have a parametrization of R u,w by

G = x 2 (t 1 ) ṡ1 -1 x 2 (t 2 ) ṡ3 -1 x 2 (t 3 )x 1 (t 4 ).
(2.17)

Rewriting this in the form (2.16) and projecting to Gr(2, 4), we obtain

1 0 0 0 0 1 0 0 ṡ1 -1 ṡ3 -1 x (1,4) (-t 1 )x (2,4) (t 2 )x 2 (t 3 )x 1 (t 4 ) = 0 1 t 3 t 2 -1 -t 4 0 t 1 (2.18)
Note that this matrix has the same row span as the one obtained from the bridge graph above.

Sketch of the main proof

We sketch the proof of the forward direction of Theorem 1.1: every Deodhar parametrization corresponds to a bridge graph. The reverse direction also has a constructive proof, but the procedure is less visually elegant. Let u w be a PDS with u ≤ k w. We construct a bridge graph G from the bridge diagram u w, as follows. For an example, see Figure 3.

Think of the right endpoints of the wires as boundary vertices of a bicolored graph embedded in a disk; the wires as paths with one endpoint on the boundary; and the new crossings as white-black bridges between these paths. Erase the tail of each wire from the left endpoint to the first bridge on that wire. If wire t is isolated, add a black lollipop at t if u -1 (t) > k, and a white lollipop if u -1 (t) ≤ k. Finally, color the boundary vertices and add degree-two vertices as needed to obtain a bipartite graph. Remarkably, this process yields a planar embedding of a plabic graph whenever u w is a PDS with u ≤ k w. Proving this requires a careful analysis of the possible configurations of bridge diagrams, using the properties of k-Bruhat order.

The parametrization arising from G is precisely the projected Deodhar parametrization corresponding to u w. Indeed, we construct the parametrization corresponding to G by taking a k × n matrix which has a single non-zero Plücker coordinate u([k]), and multiplying on the right by the matrices β 1 , . . . , β d , where the β r are defined as in (2.9). To see this, note that in the diagram, the r th bridge from the left lies between wires a r and b r in the diagram for u, where (a r , b r ) is as in (2.14). 

  into open positroid varieties Π whose intersections with Gr ≥0 (k, n) are precisely Postnikov's totally nonnegative cells Π≥0 . Remarkably, open positroid varieties are the images of open Richardson varieties in the flag variety F (n) under the natural projection π k : F (n) → Gr(k, n).

  and each c ∈ [a + 1, b -1] is a lollipop. Let G be the graph obtained by adding an (a, b)-bridge to G. Then G is a reduced plabic graph, and f G = f • (a, b) ∈ Bound(k, n).

  Adding a bridge between legs which are not boundary leaves. Note that after adding the bridge, we add additional vertices of degree 2 to create a bipartite graph.

Fig. 2 :

 2 Fig. 2: Adding bridges to a plabic graph.

  Replacing each bridge at left with a crossing gives the wiring diagram for w. To construct the bridge graph corresponding to u w, we first replace each bridge with a dimer, as shown above.

  Next, we delete the tail of each wire up to the first dimer on that wire. Adding degree-2 vertices as needed yields the desired plabic graph.

Fig. 3 :

 3 Fig. 3: Constructing a bridge graph from a bridge diagram. In this example, we have k = 2, n = 4, w = s 1 s 2 s 3 s 2 s 1 s 2 , and u = s 3 s 1 . Compare the figure at lower right with the bridge graph in Figure 1.

Résumé. Soit Π une variété positroïde. Nous appellerons paramétrisation toute application régulière (C ×d ) → Π qui est un isomorphisme birégulier sur un sous-ensemble dense de Π. On sait que plusieurs constructions combinatoires donnent des paramétrisations intéressantes. Le but du présent article est d'investiguer deux familles de telles paramétrisations et de montrer, essentiellement, qu'elles coïncident. La première famille trouve son origine dans la fonction de mesure des bords de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l'ensemble de poids des arêtes d'un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux planaires, les graphes de ponts, ayant des applications à la physique subatomique. La deuxième famille provient des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de positroïdes en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar corresponde à un graphe de ponts; d'autre part, chaque paramétrisation provenant d'un graphe de ponts s'accorde avec quelque paramétrisation de Deodhar.
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