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Matching Ensembles(Extended Abstract)

Suho Oh! and Hwanchul Yoo?

YTexas State University, San Marcos, Texas, USA
2KIAS, Seoul, Korea

Abstract. We introduce an axiom system for a collection of matchings that describes the triangulation of product of
simplices.

Résumé. Nous introduisons un systeéme d’axiomes pour une collection de couplages qui décrit la triangulation de
produit de simplexes.

Keywords: Matchings, Bipartite Graphs, Spanning trees, Simplices, Product of two simplices, Subdivisions, Trian-
gulations.

1 Introduction

Triangulations of a product of two simplices are beautiful and important objects. In this paper, we describe
a new combinatorial model for describing the triangulations of product of two simplices, A, 1 X Ag_1.

The model we use is called matching ensemble; it was motivated by matching fields introduced and
studied by Bernstein and Zelevinsky Bernstein and Zelevinsky| (1993). The (n, d)-matching field, for
n > d, is a collection of bijections (“matchings”) between d-element subsets of [n] = {1,...,n} and the
set [d] = {1,...,d}. A matching field is coherent if it satisfies linkage property, which is similar to the
basis exchange axiom for matroids. These objects were used to study the Newton polytope of the product
of all maximal minors of an n-by-d matrix of indeterminates.

We define an (n, d)-matching ensemble as a collection of matchings between subsets of [n] and subsets
of [d] such that:

o there is exactly one matching between every pair with same cardinality,
e a submatching of any matching is in the collection, and
o the matchings contained in the collection satisfy the linkage property.

There is a bijection between (n, d)-matching ensembles and triangulations of A, _; x Agz_1. This is
an extended abstract, and the proof of this claim can be found in|Oh and Yoo|(2013).
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2 Triangulation of A, 1 X Ay

Following [Postnikov| (2009), we will study A,, 1 X A4_1 using a class of polytopes associated to bipartite
graphs G C K, 4, called root polytopes. We think of the complete bipartite graph K, 4 as having a set
of left vertices {1,...,n} and a set of right vertices {1, ...,d}. We define Q¢ to denote the convex hull
of points e; — e; for edges (i,7) of G where e1,...,en,e1,...,e are the coordinate vectors in Rt
When G is the complete bipartite graph K, 4, the polytope Q¢ is exactly A, 1 X Ag_q.

Definition 2.1. A triangulation of a polytope P is a subdivision of P into a union of simplices of the
same dimension as P such that each simplex is the convex hull of some subset of vertices of P and any
two simplices intersect properly, i.e., the intersection of any two simplices is their common face.

(2.1)

1.1)

(12) (2.3)

(1.3)
Fig. 1: An example of a triangulation of A; X As.

Figure[T]is an example of a triangulation of A x A. We will be studying the triangulation of A,,_; x
Ag4_1. The simplices of the triangulations can be described via spanning trees due to the following lemma:

Lemma 2.2 (Lemma 12.5 of |Postnikov|(2009)). For a subgraph H C K,, 4, the polytope Q pr is a n+d—2
dimensional simplex if and only if H is a spanning tree of K,, 4. All n 4+ d — 2 dimensional simplices of
this form have the same volume m.

1 1 1
1 1 1

2 2 2
2 2 2

3 3 3

Fig. 2: Spanning tree of K2 3 which encodes the simplices in Figure|T]
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If we look at the triangulation in Figure[T] one of the simplices is a convex hull of e; — e, e; —e3, €2 —
e1,e2 — es. This is encoded as a spanning tree in Figure 2] having edges (1, 1), (1,3),(2,1), (2,2). We
express this tree as (13, 12), standing for the fact that the first left vertex is connected to first and third
vertex (13) on the right, and the second right vertex is connected to first and second (12) vertex on the
right.

Lemmatells us that a triangulation of A,,_; x A4_1 is a collection of simplices {Qy,...,QT.},
for some spanning trees 711, ..., T of K, 4 such that Qf, , = UQ7, and each intersection Qr, N Qr,
is the common face of the two simplices. Lemmacombined with Theorem 12.2 of |Postnikov|(2009),
implies that:

Lemma 2.3. A triangulation of A,,_1 X Agq_1 contains exactly ("jﬁ;z

For two spanning trees 7" and T” of K, 4, let U(T,T") be union of edges of T" and T" with edges of T'
oriented from left to right and edges of T” oriented from right to left. A directed cycle is a sequence of
directed edges (i1,%2), (42,3), .-, (ik—1,%%), (ig,41) such that all iy, ..., iy are distinct. We say that T
and T" are compatible if the directed graph U (T, T") has no directed cycles of length > 4, and incompat-
ible if not. An example is given in Figure 3] The pair on the right is incompatible, since we get a cycle
(1,1),(1,2),(2,2),(2,1) (Here we write the right vertices as 1,2, 3) which alternates between the edges
of the two trees.

1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2

3 3 3 3

Fig. 3: The pair to the left is compatible. The pair to the right is incompatible.

) of n+d—2 dimensional simplices.

Combining Lemma 12.6, Definition 12.7, Lemma 12.7 of |Postnikov|(2009), we get the following:

Proposition 2.4. A collection of spanning trees of K, 4 encodes a triangulation of A,_1 X Ag_1 if and
only if it satisfies the following two conditions:

n+d—2

1 ) number of spanning trees.

e The collection contains exactly (
e Any pair inside the collection is compatible.

An example of such collection of spanning trees of K3 3 is given in Figure ] Any pair of trees inside
the collection is compatible, and there are correct number of trees. Hence this collection encodes a
triangulation of Ay, x A,, where each spanning tree corresponds to a simplex inside the triangulation.
The picture in the middle is a mixed subdivision of 3A, which corresponds to the triangulation via the
Cayley trick. For details on the connection between mixed subdivisions of nAy_1 and A,,_1 X Ag_1,
please refer to [Postnikov| (2009) or|Oh and Yool (2013).

3 Extracting matchings from a triangulation

Given two sets A and B of equal cardinality, the matching is a bijection between A and B. We think of
this as a bipartite graph, with left vertex set A and right vertex set B, and edge set given by the set of
edges (a,7(a)) where 7 is the bijection between A and B.
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Fig. 4: A collection of spanning trees of K3 3 that encodes a triangulation of Ay x Ao.

Given a collection of spanning trees that encodes a triangulation of A,,_; X A4_1, let us collect all
matchings that appears as a subgraph in any of the trees of the collection. For example, the matchings we
get from Figure [I]and Figure [2] would look like Figure 3]

1 ol el 1 ol ol
./ 1 1 le e te
' o2 .\.2 .2 °? /.2 2 .
2
2
20 2 e 2® 5 s o3 .\.3
3 o3
1

2 2 e 2
2/ 2 2

e3 3 3
Fig. 5: A collection of matchings obtained from Figure 2}

A collection of matchings obtained from FigureE]would consist of all edges of K3 3 and the matchings
that appear in Figure 6]

In the next section, we are going to show that we can classify the collection of matchings coming from
triangulations, and give an explicit axiomatic system for them. The collection of matchings that satisfy
the axiom (hence will correspond to a triangulation) will be called a Matching Ensemble.

4 Matching Ensemble

In this section, we will define matching ensembles. To do so, we will borrow the notion of matching
fields and linkage axiom which was used in |Bernstein and Zelevinsky| (1993). Although the matching
fields used in Bernstein and Zelevinsky| (1993)) only concerns d-by-d matchings, we extend the definition
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Fig. 6: A collection of matchings obtained from Figure[d] Only the matchings of size > 1 are listed.

and look at matchings of all sizes.

Definition 4.1. We say that a collection M of matchings between subsets of [n] and subsets of [d] forms
a matching field (with parameters (n, d)) if it satisfies the following two axioms:

e There is exactly one matching for any pair I C [n], J C [d] such that |I| = |J|.

e Let M be a matching between I and J. Let M’ be a matching obtained by taking a subgraph of M.
Then M’ is also in M.

If a matching field M also satisfies the following axioms, we call it a matching ensemble:

(left linkage) Let M be a matching between I and J in M. Pick any v € [n] \ I. Then there is an edge
(i,7) € M that we can replace with (v, j) to get another matching M’ in M.

(right linkage) Let M be a matching between [ and J in M. Pick any v € [d] \ J. Then there is an edge
(i,7) € M that we can replace with (z, v) to get another matching M’ in M.

The collection of matchings described in Figures [5]and [f] are examples of matching ensembles.

Theorem 4.2. The extraction method described in the previous section is actually a bijection between
triangulations of A,—1 X Ag_1 and (n, d)-matching ensembles.

The proof of this theorem is quite technical, and will be omitted in this extended abstract.

Matching Ensemble is a powerful tool for dealing with triangulations of A,,_; X Ay_;. For example,
Ceballos et al.| (2014) recently solved an extendability problem on triangulations by using our model of
Matching Ensembles. There is an interesting conjecture by Santos:

Conjecture 4.3 (Santos| (2003)). Fix n and d and consider A, _1 X Ay_1. Any two triangulations of this
polytope are connected by a sequence of flips.

We say that there is a flip between two triangulations, if these two triangulations have a common
subdivision and the only triangulations obtained by refining that subdivision is the two we started with.
If one considers the case when d = 3, this corresponds to the usual flips of triangular and rhombus tiles
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Ardila and Billey| (2007)). This is considered a very hard problem, since the usual model of describing
triangulations via collection of spanning trees does not capture flips efficiently. In order to solve this
conjecture using matching ensembles, we would first need to work on the following problems:

Question 4.4. Can we describe subdivisions of A,,_1 X Ay_1 using a model similar to matching ensem-
bles?

Answering this question would give us an insight on what operation of matchings would correspond to
flips of triangulations, and possibly lead to a proof of Santos’s conjecture.
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