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We give a statistic preserving bijection from rigged configurations to a tensor product of Kirillov-Reshetikhin crystals N i=1 B 1,s i in type D

(3) 4

by using virtualization into type D

(1)

4 . We consider a special case of this bijection with B = B 1,s , and we obtain the so-called Kirillov-Reshetikhin tableaux model for the Kirillov-Reshetikhin crystal.

Résumé. Nous donnons une bijection prservant les statistiques entre les configurations gréées et les produits tensoriels de cristaux de Kirillov-Reshetikhin N i=1 B 1,s i de type D

4 , via une virtualisation en type D

(1) 4 . Nous considérons un cas particulier de cette bijection pour B = B 1,s et obtenons ainsi les modèles de tableaux appelés Kirillov-Reshetikhin pour le cristal Kirillov-Reshetikhin.

Introduction

Rigged configurations were first introduced by Kerov, Kirillov, and Reshetikhin in [START_REF] Kerov | Combinatorics, the Bethe ansatz and representations of the symmetric group[END_REF][START_REF] Kirillov | The Bethe ansatz and the combinatorics of Young tableaux[END_REF] as combinatorial objects that index solutions to the Bethe Ansatz for the Heisenberg spin chains. Rigged configurations were shown to be in bijection with semi-standard tableaux and classical highest weight elements of a tensor power of the vector representation in type A [START_REF] Chari | On the fermionic formula and the Kirillov-Reshetikhin conjecture[END_REF] n . This bijection was then extended to Littlewood-Richardson tableaux [START_REF] Kirillov | A bijection between Littlewood-Richardson tableaux and rigged configurations[END_REF], to non-exceptional types [START_REF] Okado | A crystal to rigged configuration bijection for nonexceptional affine algebras, Algebraic combinatorics and quantum groups[END_REF], and to type E (1) 6 [START_REF] Okado | KKR type bijection for the exceptional affine algebra E (1) 6 , Algebraic groups and quantum groups[END_REF]. This bijection Φ between rigged configurations and the tensor powers has been further expanded to include classically highest weight elements in a tensor product of certain Kirillov-Reshetikhin (KR) crystals [START_REF] Kirillov | A bijection between Littlewood-Richardson tableaux and rigged configurations[END_REF][START_REF]Virtual crystals and fermionic formulas of type D (2) n+1 , A (2) 2n , and C (1) n[END_REF][START_REF] Okado | Affine crystal structure on rigged configurations of type D (1) n[END_REF][START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF][START_REF] Schilling | X = M for symmetric powers[END_REF].

Rigged configurations have been shown to display remarkable representation theoretic properties. A (classical) crystal structure was first given for simply-laced types [START_REF]Crystal structure on rigged configurations[END_REF], which was then extended to all finite types [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF] and affine types [START_REF] Salisbury | A rigged configuration model for B(∞)[END_REF]. While Φ is defined recursively, making it difficult to work with, it preserves certain natural statistics (cocharge and energy), giving a bijective proof of the X = M conjecture of [START_REF] Hatayama | Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics[END_REF][START_REF] Hatayama | Paths, crystals and fermionic formulae, MathPhys odyssey[END_REF]. Furthermore, the combinatorial R-matrix transforms into the identity map on rigged configurations under Φ. Rigged configurations are also well-behaved under virtualization [START_REF]Virtual crystals and fermionic formulas of type D (2) n+1 , A (2) 2n , and C (1) n[END_REF][START_REF]Virtual crystals and Kleber's algorithm[END_REF][START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF], a process of realizing a non-simply-laced type crystal inside of a simply-laced type, and embeddings B(λ) -→ B(µ) where λ ≤ µ component-wise, leading to a model for B(∞) [START_REF] Salisbury | A rigged configuration model for B(∞)[END_REF]. 

KR crystals in non-exceptional types were given a combinatorial model in [START_REF] Fourier | Kirillov-Reshetikhin crystals for nonexceptional types[END_REF] using Kashiwara-Nakashima tableaux [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF]. The bijection Φ has also lead to a new tableaux model for KR crystals, coined Kirillov-Reshetikhin (KR) tableaux, using filled rectangular tableaux [START_REF] Okado | Affine crystal structure on rigged configurations of type D (1) n[END_REF][START_REF] Schilling | A bijection between type D (1) n crystals and rigged configurations[END_REF][START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF]. The map between Kashiwara-Nakashima tableaux [START_REF] Kashiwara | Crystal graphs for representations of the q-analogue of classical Lie algebras[END_REF] and the KR tableaux is called the filling map.

The goal of this work is to extend Φ to type D

(3) 4

and describe the filling map. For this extended abstract, we will be focusing on the KR crystals B 1,s and the rigged configurations associated with tensor products of the form N i=1 B 1,si . In particular, we show Φ is a classical crystal isomorphism, and we describe the filling map for B 1,s . We do so by showing the filling map and bijection commute with the virtualization map, proving more special cases of many of the conjectures stated in [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF].

This extended abstract is organized as follows. In Section 2, we give background on crystals, virtualization, and rigged configurations. In Section 3, we describe the bijection Φ. In Section 4, we describe the filling map . In Section 5, we describe the virtualization map and our main results. In Section 6, we give possible extensions to B 2,s and some open questions. We conclude in Section 7 with some examples using Sage [START_REF] Stein | Sage Mathematics Software (Version 6.4)[END_REF].

Background

Crystals

For this extended abstract, let g be the Kac-Moody algebra of type D

(3) 4 with index set I = {0, 1, 2}, generalized Cartan matrix A = (A ij ) i,j∈I , weight lattice P , root lattice Q, fundamental weights {Λ i | i ∈ I}, simple roots {α i | i ∈ I}, and simple coroots {h i | i ∈ I}. There is a canonical pairing , : P ∨ × P -→ Z defined by h i , α j = A ij , where P ∨ is the dual weight lattice. Let g 0 denote the classical subalgebra of type G 2 with index set I 0 = {1, 2}, weight lattice P , root lattice Q, fundamental weights {Λ 1 , Λ 2 }, and simple roots {α 1 , α 2 }.

An abstract U q (g)-crystal is a nonempty set B together with a weight function wt : B -→ P , crystal operators e a , f a : B -→ B {0}, and maps ε a , ϕ a : B -→ Z {-∞} for a ∈ I, subject to the conditions

1. ϕ a (b) = ε a (b) + h a , wt(b) for all a ∈ I, 2. if e a b ∈ B, then ε a (e a b) = ε a (b) -1, ϕ a (e a b) = ϕ a (b) + 1, and wt(e a b) = wt(b) + α a . 3. if f a b ∈ B, then ε a (f a b) = ε a (b) + 1, ϕ a (f a b) = ϕ a (b) -1, and wt(f a b) = wt(b) -α a . 4. f a b = b if and only if b = e a b for b, b ∈ B and a ∈ I, 5. if ϕ a (b) = -∞ for b ∈ B, then e a b = f a b = 0. We define for all b ∈ B ε a (b) = max{k ∈ Z ≥0 | e k a b = 0}, ϕ a (b) = max{k ∈ Z ≥0 | f k a b = 0}. (2.1)
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1 2 3 0 3 2 1 ∅ 1 2 1 1 2 1 0 0 0 0 Fig. 2.2: The KR crystal B 1,1 of type D (3) 4 which is isomorphic to B(Λ1) ⊕ B(0) as Uq(g0)-crystals.
An abstract U q (g)-crystal with ε a and ϕ a defined as above is called a regular crystal.

Let B 1 and B 2 be abstract U q (g)-crystals. The tensor product of crystals B 2 ⊗ B 1 is defined to be the Cartesian product B 2 × B 1 with the crystal structure

e i (b 2 ⊗ b 1 ) = e i b 2 ⊗ b 1 if ε i (b 2 ) > ϕ i (b 1 ), b 2 ⊗ e i b 1 if ε i (b 2 ) ≤ ϕ i (b 1 ), ε i (b 2 ⊗ b 1 ) = max ε i (b 2 ), ε i (b 1 ) -h i , wt(b 2 ) f i (b 2 ⊗ b 1 ) = f i b 2 ⊗ b 1 if ε i (b 2 ) ≥ ϕ i (b 1 ), b 2 ⊗ f i b 1 if ε i (b 2 ) < ϕ i (b 1 ), ϕ i (b 2 ⊗ b 1 ) = max ϕ i (b 1 ), ϕ i (b 2 ) + h i , wt(b 1 ) wt(b 2 ⊗ b 1 ) = wt(b 2 ) + wt(b 1 ).
Remark 2.1 Our tensor product convention is the opposite to that given in [START_REF]On crystal bases of the q-analogue of universal enveloping algebras[END_REF]. 

Let B 1 and B 2 be two abstract U q (g)-crystals. A crystal morphism ψ : B 1 -→ B 2 is a map B 1 {0} -→ B 2 {0} with ψ(0) = 0 such that for b ∈ B 1 1. if ψ(b) ∈ B 2 , then wt(ψ(b)) = wt(b), ε i (ψ(b)) = ε i (b), and ϕ i (ψ(b)) = ϕ i (b);

we have ψ(f

i b) = f i ψ(b) provided ψ(f i b) = 0 and f i ψ(b) = 0.
A crystal embedding or isomorphism is a crystal morphism such that the induced map B 1 {0} -→ B 2 {0} is an embedding or bijection respectively. A crystal morphism is strict if it commutes with all crystal operators.

If an abstract U q (g)-crystal B is isomorphic to the crystal basis of an integrable U q (g)-module, we simply say B is a U q (g)-crystal. In particular, an irreducible highest weight U q (g 0 )-module with highest weight λ admits a crystal basis [START_REF] Kashiwara | Crystalizing the q-analogue of universal enveloping algebras[END_REF], which we denote by B(λ). Moreover there is a unique element u λ ∈ B(λ) such that wt(u λ ) = λ and e a u λ = 0 for all a ∈ I 0 . For each dominant integral weight

λ = k 1 Λ 1 + k 2 Λ 2 , we can associate a partition (k 1 + k 2 , k 2 ).
We can realize B(λ) as semistandard tableaux of shape λ filled with entries in B(Λ 1 ) whose crystal structure is given by embedding into B(Λ 1 ) ⊗|λ| using the reverse far-eastern reading word. The resulting tableaux were explicitly described by Kang and Misra [START_REF] Kang | Crystal bases and tensor product decompositions of U q (G 2 )modules[END_REF].

Kirillov-Reshetikhin crystals

An important class of finite dimensional U q (g)-representations are Kirillov-Reshetikhin (KR) modules W r,s indexed by r ∈ I 0 and s ∈ Z >0 . KR modules are characterized by their Drinfeld polynomials [START_REF] Chari | Quantum affine algebras and their representations, Representations of groups[END_REF][START_REF]Twisted quantum affine algebras[END_REF] and correspond to the minimal affinization of B(sΛ r ) [START_REF] Chari | On the fermionic formula and the Kirillov-Reshetikhin conjecture[END_REF]. The KR modules W 1,s admit a crystal basis called Kirillov-Reshetikhin (KR) crystals and denoted by B 1,s . As U q (g 0 )-crystals, we have B 1,s ∼ = s k=1 B(kΛ 1 ), and B 1,s is a perfect crystal [START_REF] Kashiwara | Perfect crystals for U q (D (3) 4 )[END_REF]. This means we can use a semi-infinite tensor product of B 1,s to realize highest weight U q (g)-crystals, see [START_REF] Hong | Introduction to quantum groups and crystal bases[END_REF] for details.

There is a statistic called energy defined on B = N i=1 B 1,si [START_REF] Hatayama | Remarks on fermionic formula, Recent developments in quantum affine algebras and related topics[END_REF]. First we define the local energy function on B 1,s ⊗ B 1,t as follows. The combinatorial R-matrix is the unique U q (g)-crystal isomorphism (2.

R : B 1,s ⊗ B 1,t -→ B 1,t ⊗ B 1,s [10]. Let c ⊗ c = R(b ⊗ b ). H e i (b ⊗ b ) = H(b ⊗ b ) +      -1 i = 0
2)

The local energy function is defined up to an additive constant [START_REF] Kang | Affine crystals and vertex models, Infinite analysis, Part A, B[END_REF], and so we normalize H by the condition

H(1 s ⊗ 1 t ) = 0 where 1 k is row of length k filled with 1. Next we define D B 1,s : B 1,s → Z by D B 1,s (b) = H(b ⊗ b ) -H(1 s ⊗ b ), (2.3) 
where b is the unique element such that ϕ(b ) = sΛ 0 . Then we define

D(b N ⊗ • • • ⊗ b 1 ) = 1≤i<j≤N H i R i+1 R i+2 • • • R j-1 + N j=1 D B 1,s j R 1 R 2 • • • R j-1 , (2.4) 
where R i and H i are the combinatorial R-matrix and local energy function, respectively, acting on the i-th and (i + 1)-th factors and D B 1,s j acts on the rightmost factor. We say the energy of an element b ∈ B is D(b). 

Rigged configurations

(a,i)∈H0 im (a) i α a = (a,i)∈H0 iL (a) i Λ a -λ, (2.5) where m (a) 
i is the number of parts of length i in the partition ν (a) . We denote the set of (L, λ)-configurations by C(L, λ). The vacancy numbers of ν ∈ C(L; λ) are defined as

p (a) i = j≥1 min(i, j)L (a) j - (b,j)∈H0 A ab min(i, j)m (b) j .
(2.6)

A rigged configuration of classical weight λ is a (L; λ)-configuration ν, along with a sequence of multisets of integers J = {J Example 2.2 Rigged configurations will be depicted with vacancy numbers on the left and labels on the right. For example,

3 1 5 1 -2 -2
is a rigged configuration of weight 2Λ 1 + Λ 2 with L is given by L Denote by RC * (L; λ) the set of valid highest weight rigged configurations. Rigged configurations have an abstract U q (g 0 )-crystal structure [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF]. To obtain the weight, we first note that we can compute the classical weight by wt(ν, J)

= (a,i)∈H0 i L (a) i Λ a -m (a) i α a . (2.7)
We can extend this to wt : RC(L; λ) -→ P by wt(ν, J) = k 0 Λ 0 + wt(ν, J), where k 0 is such that wt(ν, J), c = 0 with c the canonical central element of g (i.e., we make wt(ν, J) be level 0).

Explicitly, if wt(ν, J) = c 1 Λ 1 + c 2 Λ 2 , then we have k 0 = -2c 1 -3c 2 .
Next we recall the crystal operators. Definition 2.3 Let g 0 be a Lie algebra of finite type and L a multiplicity array. Let (ν, J) be a valid rigged configuration. Fix a ∈ I 0 and let x be the smallest label of (ν, J) (a) , the strings associated to ν (a) .

1. If x ≥ 0, then set e a (ν, J) = 0. Otherwise, let be the minimal length of all strings in (ν, J) (a) which have label x. The rigged configuration e a (ν, J) is obtained by replacing the string ( , x) with the string ( -1, x + 1) and changing all other labels so that all colabels remain fixed.

2. If x > 0, then add the string (1, -1) to (ν, J) (a) . Otherwise, let be the maximal length of all strings in (ν, J) (a) which have label x and replace the string ( , x) by the string ( + 1, x -1). In both cases, change all other labels so that all colabels remain fixed. If the result is a valid rigged configuration, then it is f a (ν, J) . Otherwise f a (ν, J) = 0.

Remark 2.4

The condition for highest weight rigged configurations matches with the usual crystal theoretic definition; i.e., that e a (ν, J) = 0 for all (ν, J) ∈ RC * (L; λ).

Example 2.5 Let (ν, J) be the rigged configuration from Example 2.2. Then

e 1 (ν, J) = 0, e 2 (ν, J) = 0 1 2 1 -1 -1 , f 1 (ν, J) = 1 -1 -1 3 -1 -1 -1 -1 , f 2 (ν, J) = 0.
Let RC(L; λ) denote the set generated from RC * (L; λ) by the crystal operators. Let RC(L) be the closure under the crystal operators of the set RC * (L) = λ∈P + RC * (L; λ).

Theorem 2.6 ([27]

) Let g 0 be a Lie algebra of finite type. For (ν, J) ∈ RC * (L; λ), let X (ν,J) be the closure of (ν, J) under e a , f a for a ∈ I 0 . Then X (ν,J) ∼ = B(λ) as U q (g 0 )-crystals.

There is a statistic called cocharge on rigged configurations given by cc(ν, J) = 1 2

a,b∈I0 i,j∈Z>0

(α a |α b ) min(i, j)m (a) i m (b) j + (a,i)∈H0 x∈J (a) i x. (2.8) 
Moreover cocharge is invariant under e a and f a for a ∈ I 0 [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF].

Virtual crystals

Let g be the Kac-Moody algebra with index set I of type D

4 and g 0 be of type D 4 . We consider the diagram folding φ : I I defined by φ(0) = 0, φ(2) = 1, and φ(1) = φ(3) = φ(4) = 2. The folding φ restricts to a diagram folding of type g 0 g 0 , and by abuse of notation, we also denote this folding by φ.

Remark 2.7 To simplify our notation, for any object X or X of g 0 , we denote the corresponding object of g 0 by X.

Furthermore, the folding φ induces an embedding of weight lattices Ψ : P -→ P given by

Λ a → b∈φ -1 (a) Λ b , α a → b∈φ -1 (a) α b . (2.9) 
This gives an embedding of crystals as sets v : B(λ) -→ B Ψ(λ) , and let V (λ) denote the image of v.

We can define a crystal structure on V which is induced from the crystal B Ψ(λ) by

e v := b∈φ -1 (a) e b , f v := b∈φ -1 (a) f b , ε v a := ε x , ϕ v a := ϕ x , wt := Ψ -1 • wt, (2.10)
where we fix some x ∈ φ -1 (a). We say the pair V (λ), B Ψ(λ) is a virtual crystal and the isomorphism v is the virtualization map. Proposition 2.8 ( [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF]) Let g 0 be of finite type. Then we have B(λ) ∼ = V (λ) as U q (g 0 )-crystals.

In particular, we can define a virtualization map on rigged configurations by

ν (b) = ν (a) , (2.11a) 
J (b) i = J (a) i (2.11b)
for all b ∈ φ -1 (a) [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF]. 

The basic algorithm δ

We begin by describing the basic step δ : RC(B 1,1 ⊗ B * ) -→ RC(B * ), where B * is some tensor product of KR crystals. Each step δ returns some element b ∈ B 1,1 , which we use to create B. We note that this is the special case of the algorithm given in [START_REF] Mohammad | Soliton cellular automata constructed from a U q (g)-Crystal B n,1 and Kirillov-Reshetikhin type bijection for U q (E (1) 6 )-Crystal B[END_REF] for type D

4 . Set 0 = 1. Do the following process for a = 1. Find the minimal integer i ≥ a-1 such that ν (a) has a singular string of length i. If no such i exists, then set b = a and a = ∞ and terminate. Otherwise set a = i and repeat the above process for a = 2.

Suppose the process has not terminated. We remove the selected (singular) string of length 1 from consideration. If there are no singular or quasi-singular strings in ν (a) larger than 2 or if 2 = 1 and there is only one string of length 1 in ν (1) , then set b = 3 and terminate. Otherwise find the smallest i ≥ 2 that satisfies one of the following three mutually exclusive conditions:

(S) J (1,i) is singular and i > 1;

(P) J (1,i) is singular and i = 1;

(Q) J (1,i) is quasi-singular.

If (P) holds, set b = ∅, and 3 = i and terminate. If (S) holds, set 3 = i -1, 3 = i, say case (S) holds for a = n, and continue. If (Q) holds, find the minimal j > i such that (S) holds. If no such j exists, set b = 0 and terminate. Else set 3 = j and say case (Q, S) holds and continue.

Suppose the process has not terminiated, and let a = 2. If a = a+1 , then set a = a , afterwards reset a = a -1, and say case (S2) holds for a. Otherwise find the minimal index i ≥ a+1 such that ν (a) has a singular string of length i. If no such i exists, set b = a + 1 and terminate. Otherwise set a = i and repeat this for a = 1 (there must exists at least two singular strings if 3 = 1 and case (S2) does not hold). If the process has not terminated, set b = 1. Set all undefined a and a for a = 1, 2, 3 to ∞.

Change in the rigged configuration

The rigged configurations change under δ as follows. We first remove a box from a in ν (a) for a = 1, 2, and if case (S2) holds for a, we remove another box from that particular row, otherwise we remove a box from a . If case (S) holds, then remove two boxes from 3 and make the resulting string singular. If case (Q) holds, remove a box from 3 and make the resulting string singular. If case (Q, S) holds, then we remove both boxes corresponding to 3 and 3 , but we make the smaller one (i.e. the row corresponding to 3 ) singular and the larger one quasi-singular. Also make all the changed strings in ν (2) singular.

Remark 3.1 We can determine the inverse algorithm by roughly doing the opposite of the above; in paritcular, selecting largest (quasi)singular strings at most as long as before. 
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 21 Fig. 2.1: Dynkin diagram of type D
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 2 we have ψ(e i b) = e i ψ(b) provided ψ(e i b) = 0 and e i ψ(b) = 0;

  and e 0 (b ⊗ b ) = b ⊗ e 0 b and e 0 (c ⊗ c) = c ⊗ e 0 c, 1 i = 0 and e 0 (b ⊗ b ) = e 0 b ⊗ b and e 0 (c ⊗ c) = e 0 c ⊗ c, 0 otherwise.

Let H 0 =

 0 I 0 × Z >0 . Consider a multiplicity array L = L (a) i ∈ Z ≥0 | (a, i) ∈ H 0 and a dominant integral weight λ of g 0 . A (L; λ)-configuration is a sequence of partitions ν = {ν (a) | a ∈ I} such that

|

  (a, i) ∈ H 0 } such that |J (a) i | = m

  in weakly decreasing order.) So to each row of length i, we have an integer x ∈ J (a) i and we call the pair (i, x) a string. The integers x ∈ J (a) i are called label, rigging, or Rigged configurations of type D (3) 4 and the filling map 677 quantum number. The colabel of a string (i, x) is defined as p (a) i -x. A rigged configuration is highest weight if min J (a) i ≥ 0 for all (a, i) ∈ H 0 and is valid if max J say a string (i, a) is singular if p (a) i = x and is quasi-singular if p (a) i = x -1 and max J

= 0 .

 0 See Section 7 on how to construct this example in Sage.

3

  The bijection Φ Consider a tensor product of KR crystals B = N i=1 B ri,si . We write RC(B) for RC(L) with L(a) i equal to the number of factors B a,i occurring in B. In this section, we describe the map Φ : RC(B) -→ B. Rigged configurations of type D (3) 4 and the filling map 679

Example 3 . 2

 32 Using the rigged configuration (ν, J) from Example 2.2 andB = B 1,1 ⊗ B 1,2 ⊗ B 2,1 .Applying the map δ, we get b = 3 and
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Extending to arbitrary rectangles

We now extend Φ to B = N i=1 B 1,si by defining the map ls : RC(B 1,s ⊗ B * ) -→ RC(B 1,1 ⊗ B 1,s-1 ⊗ B * ), which is known as left-split. On the rigged configurations, the map ls is the identity (but perhaps increases the vacancy numbers) and a strict crystal embedding. Thus iterating ls with δ, we obtain a map Φ : RC(B) -→ B.

Filling map

We determine the highest weight rigged configurations for B 1,s by using the virtual Kleber algorithm [START_REF]Virtual crystals and Kleber's algorithm[END_REF]. Lemma 4.1 Consider the KR crystal B 1,s . We have RC(B 1,s ) = s k=0 RC(B 1,s ; kΛ 1 ). Moreover the highest weight rigged configurations in RC(B 1,s ; kΛ 1 ) are given by ν (1) = (s -k, s -k) and ν (2) = (s -k) with all labels 0. From Lemma 4.1 and the U q (g 0 )-crystal decomposition of B 1,s is multiplicity free, there exists a natural U q (g 0 )-crystal isomorphism ι : RC(B 1,s ) -→ B 1,s . For type D

(3) 4 , we note that kΛ 1 can be considered as the partition (k). 4 and consider the classical component B(kΛ 1 ) ⊆ B 1,s . The filling map fill : B 1,s -→ (B 1,1 ) ⊗s is given by adding s-k 2 copies of the horizontal domino 1 1 and an additional ∅ if s -k is odd.

Let T 1,s denote the image of B 1,s under fill written as a 1 × s rectangle. We note that T 1,s inherits a classical crystal structure from (B 1,1 ) ⊗s . We give a U q (g)-crystal structure to T 1,s by following [START_REF] Kashiwara | Perfect crystals for U q (D (3) 4 )[END_REF][START_REF] Yamada | Scattering rule in soliton cellular automaton associated with crystal base of U q (D (3) 4 )[END_REF] as the conditions for e 0 and f 0 are preserved under the filling map.

Proposition 4.4

The filling map fill :

We also can show the following. is given column-bycolumn by

Using Lemma 5.1 and the analogue of Φ in type D

(1)

4 [START_REF] Okado | Affine crystal structure on rigged configurations of type D (1) n[END_REF][START_REF] Schilling | A bijection between type D (1) n crystals and rigged configurations[END_REF], we can show the following.

4 . The virtualization map v commutes with the map Φ.

We need to define the complement rigging map θ : RC(B) -→ RC(B r ) by sending (ν, J) → (ν, J ), where J is obtained by x = p (a) i -x for all labels x and B r are the factors of B in reverse order. That is to say θ maps each label x to its colabel. We can define δ := θ • δ • θ, and using the virtualization map, Proposition 4.5, and the results of [START_REF] Schilling | A bijection between type D (1) n crystals and rigged configurations[END_REF], we can show the following.

Using the results on the combinatorial R-matrix in [START_REF] Yamada | Scattering rule in soliton cellular automaton associated with crystal base of U q (D (3) 4 )[END_REF], we can show the following.

Then following [START_REF] Schilling | X = M for symmetric powers[END_REF]Sec. 8], the map rs := θ • ls •θ preserves statistics using [START_REF] Yamada | Scattering rule in soliton cellular automaton associated with crystal base of U q (D (3) 4 )[END_REF]. From Lemma 5.4, the R-matrix preserves statistics. Thus iterating rs and R-matrices, we preserve statistics to N i=1 B 1,1 . Then we use the results of [START_REF] Sakamoto | Rigged configurations and Kashiwara operators[END_REF][START_REF] Schilling | A bijection between type D (1) n crystals and rigged configurations[END_REF] and Theorem 5.2 to obtain our main result. n given in [START_REF] Okado | Affine crystal structure on rigged configurations of type D (1) n[END_REF], we can show the following. Theorem 5.6 Let B = B 1,s . Then Φ = fill •ι with fill as in Definition 4.2 as U q (g 0 )-crystal morphisms.

Thus we can define a U q (g)-crystal structure on RC(B) by extending Φ to be a U q (g)-crystal isomorphism. Thus we have a special case in type D

(3) 4 of the conjectures given in [START_REF] Schilling | Crystal structure on rigged configurations and the filling map for non-exceptional affine types[END_REF].

Extensions and questions

The U q (g 0 )-crystal decomposition of B 2,s and the highest weight rigged configurations will appear in the full version of this work. The author hopes to use this to determine the filling map for B 2,s .

There is a map lt : RC(B 2,1 ⊗ B * ) -→ RC(B 1,1 ⊗ B 1,1 ⊗ B * ) called left-top which adds a singular string of length 1 to ν (1) . In the full version, this is used to extend the U q (g 0 )-crystal isomorphism Φ to tensor products also containing B 2,1 . Example 6.1 Continuing from Example 3.2, we obtain

The computations for the Kleber algorithm can be modified to determine the U q (g 0 )-crystal decomposition of B r,s of type G

(1) 2 . However there is a difficulty with determining what the map δ should be. This would need to be overcome to define the filling map for type

There is a conjecture [START_REF]Virtual crystals and Kleber's algorithm[END_REF]Conj. 3.7] that we can realize B 1,s of type

4 . Therefore obtaining a direct description of e 0 and f 0 on rigged configurations could lead to an answer to this conjecture using the results of [START_REF] Okado | Affine crystal structure on rigged configurations of type D (1) n[END_REF]. The author hopes to have this description and prove this conjecture in this special case in the full version of this work.

Examples using Sage

The bijection Φ and the rigged configurations have been implemented by the author in Sage [START_REF] Stein | Sage Mathematics Software (Version 6.4)[END_REF]. We begin by setting up the Sage environment to give a more concise printing. sage: RiggedConfigurations.global_options(display="horizontal")

We construct our the rigged configuration from Example 2.2 by specifying the partitions and corresponding labels. We apply the full bijection and print the output using Sage's ASCII art.