
HAL Id: hal-01337781
https://hal.science/hal-01337781v1

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enumeration of minimal acyclic automata via
generalized parking functions

Jean-Baptiste Priez

To cite this version:
Jean-Baptiste Priez. Enumeration of minimal acyclic automata via generalized parking functions.
27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015),
Jul 2015, Daejeon, South Korea. pp.697-708, �10.46298/dmtcs.2471�. �hal-01337781�

https://hal.science/hal-01337781v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


FPSAC 2015, Daejeon, South Korea DMTCS proc. FPSAC’15, 2015, 697–708

Enumeration of minimal acyclic automata via
generalized parking functions

Jean-Baptiste Priez:

LRI, Université Paris-Sud, Orsay, France

Abstract. We give an exact enumerative formula for the minimal acyclic deterministic finite automata. This formula is
obtained from a bijection between a family of generalized parking functions and the transitions functions of acyclic
automata.

Résumé. On donne une formule d’énumération exacte des automates finites déterministes acycliques minimaux. Cette
formule s’obtient à partir d’une bijection entre une famille fonctions de parking généralisées et les fonctions de
transitions des automates acycliques.
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Introduction
The study of the enumeration of minimal acyclic deterministic finite automata (MADFA) has been
undertaken by several authors in the last decade. DOMARATZKI and al. [DKS02, Dom03, Dom04]
presented different lower and upper bounds, CÂMPEANU and HO [CH04] gave a good upper bound
of MADFA with some constraints, ALMEIDA and al. [RMA05, AMR07, AMR08] gave a canonical
representation of MADFA and obtained a method for exact generation.

In this paper, we refer to the study of LISKOVETS [Lis06]. The latter gave a recurrence relation to
enumerate acyclic finite deterministic automata (ADFA). The main idea of [Lis06] has been to define
an extended notion of ADFA with more than one absorbing state. Unfortunately its approach of the
enumeration of ADFA is not fine enough to enumerate MADFA. The goal of this paper is to give a
finer enumeration of ADFA. In particular, the formula given in this paper expresses properties on the
right language of ADFA. Therefore, it allows to enumerate MADFA. The main tool is a bijection with
generalized parking functions.

VIRMAUX and the author studied in [PV] the generalization of parking functions defined by [SP02]
and gave a generalized generating series in non-commutative symmetric functions as in [NT08]. Those
generating series, called the non-commutative Frobenius characteristic of the natural action of the 0-Hecke
algebra, contain substantial information on combinatorial objects.

In the first section, we recall the definition of extended ADFA of [Lis06] and then enrich the definition
with some constraints.
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In the second section, we recall the background on generalized parking functions and we give an
isomorphism with a noteworthy family of generalized parking functions. We explicit the bijection and we
transport some interesting properties on the right language of ADFA directly on parking functions. The
substantial information provided by the Frobenius characteristic shows us how to extract sub-families of
parking functions. We use this information to extract the sub-family of parking functions which exactly
encodes (by the bijection) the ADFA such that all states have their right language distinct. Finally in the
same way as [Lis06], one uses a bijection between ADFA and couple of extended ADFA (with constraints)
and MADFA. This defines a recurrence relation for the enumeration of minimal acyclic deterministic finite
automata.

1 Acyclic deterministic finite automata
For a basic background on automaton, the reader may consult [Hop79].

A deterministic finite automaton (DFA) of n states (labeled by a set N ) over an alphabet Σ of k symbols
is a tuple pi, A, δq with
• i P N the initial state,
• A Ă N the accepting states, and

• δ : N ˆ Σ Ñ N Y tHu the transition function.

The special stateH is called the absorbing state. We consider N the set of states to avoid worrying about
“well-labeled” states from 1 to n.
Extended transition function We extend the transition function δ recursively to words on Σ:

δ˚ : N Y tHu ˆ Σ˚ ÝÑ N Y tHu ,

by setting δ˚pq, awq :“ δ˚pδpq, aq, wq, for any w P Σ˚ and any a P Σ; δ˚pq, εq “ q (with ε the empty
word), for any state q P N ; and, δ˚pH, wq :“ H, for any w.
Transitions of a state We denote δq the underlying transition function at q defined by δqpaq :“ δpq, aq.
Accepting status The accepting status of a state q denotes if q is accepting or not (true or false).
Right language The right language of a state q is the language: RLpqq :“ tw P Σ˚ | δ˚pq, wq P Au.
Two states q and r are right language equivalent if RLpqq “ RLprq. If RLpqq ‰ RLprq then one says q
and r are distinguished. The language recognized by the automaton pi, A, δq is the right language RLpiq.
Acyclicity An DFA is acyclic (an ADFA) if there is no non-empty sequence of transitions from a state to
it self. Formally, one has δ˚pq, wq “ q if and only if w “ ε, for any state q P N .
Reachability A DFA is reachable if any state is reachable from the initial state. That means there exists
a word w P Σ˚ such that δ˚pi, wq “ q for any state q.
Coreachability A DFA is coreachable if for all state reachs an accepting state. That means there exists
w such that δ˚pq, wq P A for any state q.
Non initial DFA We extend the definition of DFA to structures pA, δq without initial state.
Minimal DFA A DFA is minimal if there is no DFA with fewer state which recognizes the same language.

1.1 Minimal ADFA
An important point will be the notion of simple DFA:

Definition 1: A DFA is simple if all its states are distinguished.
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Proposition 1: If a DFA is simple then it doesn’t have a non-trivial automorphism.

This proposition expresses the problem of counting M(A)DFA having labeled or unlabeled states are
equivalent. So in the following, we consider automata as labeled combinatorial structures/objects. Moreover,
from the definition of simple automata, it is easy to use the MYHILL-NERODE theorem about minimal
DFA:

Theorem 1 (Myhill-Nerode): A DFA is minimal if and only if it is reachable, coreachable, and simple.

In the following, we enumerate non-initial ADFA which are coreachable and simple. Following [Lis06],
we fix an initial state and extract the underlying reachable ADFA. Ultimately, the extracted ADFA is
reachable, coreachable and simple, and so it is minimal.

1.2 Non-initial ADFA
Proposition 2: Let Θ be an ADFA.

The absorbing stateH is always reachable from any state of Θ.

This proposition is obvious because there is no loop in an ADFA. For the upcoming bijection with parking
functions, this point will be important. In particular, the bijection is based on the fact that there exists
an order on states wherein H is minimum. From this order we will put forward the states q such that
δpq, aq “ H for any symbol a P Σ and which are accepting or not.

Lemma 1: The automaton Θ is coreachable if all state q such that for any a P Σ, one has δpq, aq “ H
are accepting.

The interpretation of states in parking functions will give a simple caracterization of generalized parking
functions associated to (non-initial) coreachable ADFA. Furthermore the flexibility of the generalized
parking function definition will easily give a family of parking functions, exactly encoding those coreachable
ADFA.

We denote N k
n the set of non-initial ADFA with n labeled states (and one absorbing state) over an

alphabet of k symbols and call it the graded component of degree n. We also denote N k :“
Ů

ně1N k
n

the graded set of all non-initial ADFA. Likewise, we denote Sk the graded set of non-initial simple
coreachable ADFA. This first set N k will be usefull to recall the extended notion of non-initial ADFA
given in [Lis06, Quasi-acyclic automata, §2.15] and the second to define constraints on extended non-initial
“simple coreachable” ADFA. Considering a non-initial ADFA Θ and a fixed state i, the sub-automata Θpiq

extracted from all reachables states from i defines an (initial-connected) ADFA. We will extend ADFA
to caracterize the complement of Θpiq. Furthermore, an important remark is that the automaton Θpiq is
minimal if Θ is coreachable and simple (Theorem 1):
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A good definition of extended (coreachable and simple) ADFA (with constraint) gives a bijection between
non-initial (coreachable and simple) ADFA and couple of extended (coreachable and simple) ADFA (with
constraint) and (M)ADFA.

1.3 Extended non-initial ADFA
In [Lis06], the author introduces “quasi-acyclic automata”. We call these objects extended non-initial
ADFA (with t extra absorbing states), which means one considers tuples pA, T, δq with A as the accepting
state set, T the set of extra absorbing states, and δ an extension of the transition function definition:

δ : N ˆ Σ ÝÑ N Y tHu Y T

with N the set of n (labeled) states, Σ the alphabet. One denotes by Ek,t :“
Ů

ně0 Ek,tn the graded set of
extended non-initial ADFA (with t extra absorbing states over an alphabet of k symbols).

Example 1: This example represents an extended non-
initial ADFA with 3 extra absorbing states T “

tα1, α2, α3u over the alphabet ta, bu. This structure
pt2, 4u, δq is in E2,3

5 with δp1, aq “ 2, δp1, bq “ α1,
δp2, aq “ δp2, bq “ 4, and so on.

1 α1 5 α3

3 2 4 α2 H
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a a,b

b

b
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b

Remark 1: An non-initial ADFA is an extended non-initial ADFA with 0 extra absorbing states,N k“ Ek,0.

1.3.1 Enumeration of underlying transition functions
In [Lis06], the author gives a formula d to enumerate the number of extended transition function δ,
underlying an extended non-initial ADFA:

dpk, t; nq “
n´1
ÿ

j“0

ˆ

n

j

˙

p´1qn´j´1pj ` t` 1qkpn´jqdpk, t; jq , [Lis06, Theorem 3.1]

with k the cardinal of the alphabet, t the number of extra absorbing states and n the number of states. In
the same way this formula can be adapted to enumerate Ek,tn :

Corollary 1 (of [Lis06, Theorem 3.1]): The extended non-initial ADFA with n states and t extra absorb-
ing states over an alphabet of k symbols, Ek,tn , are enumerated by the formula:

epk, t; nq “
n´1
ÿ

j“0

ˆ

n

j

˙

p´1qn´j´1p2pj ` t` 1qkqn´jepk, t; jq ,

for any n ě 1 and epk, t; 0q “ 1.

PROOF: Immediate from the fact epk, t, nq “ 2ndpk, t, nq.

In the next section we use this formula to show their there is an isomorphism with some generalized parking
functions using formula in [KY03] (also recall in [PV]).

1.3.2 Enumeration of ADFA
In this subsection, we recall a well-know method of counting connected graphs, used in [Lis06, Theorem
3.2]. This method points out that, for a fixed state i, for any non-initial ADFA Θ, one has a reversible
splitting of Θ into an ADFA Θpiq (initially connected by a fixed state i, see (1)), and its complement
sΘpiq which is an extended non-initial ADFA. It results an enumeration formula apk; tq of ADFA over an
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alphabet of k symbols with t states (and one fixed label: the initial state). This formula is given by the
linear recurrence:

epk, 0; nq “
n
ÿ

t“1

ˆ

n´ 1

t´ 1

˙

epk, t; n´ tqapk; tq . [Lis06, Theorem 3.2]

The complement sΘpiq is defined as follow: let Θ P N k
n be a non-initial ADFA with state set is N and let

Θpiq “ pi, Ai, δiq be an ADFA with its state set is Ni (the reachable states from i) and δi is the restriction
of δ to states of Ni. We set sΘpiq the complement of Θpiq as an extended non-initial ADFA of n´ t states
sNi “ NzNi with t extra absorbing states Ni, the accepting states are sAi “ A X sNi and the extended

transition function sδi is defined by:

sδi :
sNi ˆ Σ ÝÑ N Y tHu ,
q ˆ a ÞÝÑ δpq, aq .

We denote κi : N k Ñ Ak ˆ Ek that splitting bijection (with Ek “
Ů

tě1 Ek,t). The inverse bijection
consists simply (in term of graph) to merge extra absorbing states q of sΘpiq with the state q of Θpiq.

Remark 2: N Y tHu “ sNi Y tHu YNi.

Example 2: In Equation (1), we have a non-initial ADFA
Θ on the left and Θp5q on the right. We represent (here, on
the right) sΘp5q, the complement of Θp5q, as an extended
ADFA (with extra absorbing states framed with dashed
rectangles).

5 2 4 H

1 7 6 3 8
abab

1.4 Extended coreachable simple non-initial ADFA with constraints
In this subsection, we focus on non-initial ADFA which are coreachable and simple. We start by giving a
definition of extended simple non-initial ADFA:

Definition 2: An extended non-initial ADFA pA, δ, T q is simple if one has RLpqq ‰ RLprq or there exists
w P Σ˚ such that δ˚pq, wq ‰ δ˚pr, wq with δ˚pq, wq P T , for any distincts states q, r.

This definition is another way to say that if κi is applied on simple ADFA Θ then it gives a couple of
simple structures: pΘpiq, sΘpiqq. Unlike the splitting of [Lis06] described in the previous subsection, the
restriction of κi to Sk is not a bijection. From any couple of simple structures an extended coreachable
simple non-initial ADFA and a MADFA do not necessary produce a simple non-initial ADFA. The reason is
(without well-chosen constraints) for some MADFA Θ and some extended simple (and coreachable) ADFA
Π could share the “same” transitions on their respective states. Due to this therefore we add constraints to
obtain a reversible splitting.

1.4.1 Preservation of simplicity and constraints
To be sure that the assembly of a couple of an extended simple non-initial ADFA and a simple ADFA
remains simple (non-initial ADFA), one considers the couple of extended ADFA, and ADFA satisfying
a set of constraints C. The idea is to forbid them from sharing states with the same transitions, and the
same accepting status. A set of constraints C is a set of couples pν, bq with ν : Σ Ñ T Y tHu and b an
accepting status (true or false). A couple pΘ,Πq of ADFA and extended ADFA satisfies C if
• The state set of Θ is T and for each state q of Θ there exists an unique couple pν, bq such that δq “ ν

and q is accepting if b is true,
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• The set of extra absorbing states of Π is T and for any state q of Π and any couple pν, bq of C, one
has δq ‰ ν or the accepting status of q is the negation of b.

Proposition 3: For any couple pΘ,Πq of simple structures satisfying C, one has κ´1
i pΘ,Πq is simple.

Remark 3: There does not always exist a couple of ADFA and extended ADFA that satisfies any set of
constraints.

1.4.2 Preservation of coreachability
Both structures Θ and Π must not contain state q such that δpq, aq “ H (for any symbol a) and q is not
accepting. Furthermore Π must not contain state q such that δpq, aq “ H at all. Otherwise, κ´1

i pΘ,Πq is
not coreachable. So we define the notion of coreachability of extended ADFA by:

Definition 3: An extended ADFA is coreachable if there is no state q such that δpq, aq “ H, for any a P Σ.

We denote by sEk,C andMk,C respectively the graded set of extended simple coreachable ADFA and of
MADFA satisfying C. Due to this is a well-chosen definition of extended coreachable and simple ADFA,
we obtain the bijection:

Lemma 2:
Sk »

ğ

C

Mk,C ˆ sEk,C .

This gives us a description of coreachable and simple non-initial ADFA as the direct sum (over all sets
of constraints C) of couple MADFA, and extended simple coreachable ADFA satisfying C. In the next
section, the set of all available constraints will become aparent.

2 Generalized parking functions
In this section, we recall the constructive definition of generalized parking functions given by VIRMAUX
and the author in [PV]. In a first part we define a bijection between of non-initial ADFA and a remarkable
family of generalized parking functions. This bijection will reveal two interesting points:
• The localization of (some) non-distinguishable states. According to this, one extracts a sub-family

of parking functions that are isomorphic to the simple non-initial ADFA.
• An easy translation of some constraints. In particular, in this first part, we give an analoguous family

of parking functions which are isomorphic to the coreachable non-initial ADFA.
By combining both of these points we obtain an isomorphism with (extended) simple coreachable ADFA.
Finally in the next section we go back to Lemma 2 to formulate a recurrence relation which enumerate
MADFA.

2.1 Definition
Parking functions were first introduced in [KW66] to model hashing problems in computer science and
appear in many different contexts in combinatorics, such as labeled trees, prüfer sequence, hyperplane
arrangements, etc. A parking function on a finite set N is a function f : N Ñ N` such that #f´1prksq ě
k, for any k P rns (with n “ #N and rks “ t1, ¨ ¨ ¨ , ku). A generalization of parking functions was
formulated in [SP02] and well studied in [KY03, PV]. Let χ : N` Ñ N be an non-decreasing function; a
χ-parking function is a function f such that #f´1prχpkqsq ě k, for any k P rns.

Remark 4: Usual parking functions are χ-parking function with χ pkq “ k.
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2.2 Constructive definition

In this paper, we encode χ-parking functions by the sequence pQjq defined by Qj “ f´1ptjuq. We
therefore define χ-parking functions on N as a sequence of χ pnq disjoint subsets pQjq of N satisfying:

χpkq
ÿ

i“1

#Qi ě k , for any k P rns . (2)

Remark 5: The parking function condition imposes that #f´1ptkuq “ 0 for any k ą χ pnq. So the
definition in terms of a set sequence allows to complete the sequence with an arbitrary sequence of empty
sets. However one considers χ-parking functions as finite sequences of sets.

The main advantage of this definition (in terms of sequences of sets) is that it involves a natural recursive
definition (see [PV, §2.1]). A convenient language for this is the species theory [BLL98] (or equivalently
decomposable combinatorial class [FS09]). Let E be the species of sets (such that ErU s :“ tUu for
any finite set U ), let 1 be the characteristic empty species (such that 1rU s “ tHu if U “ H and H in
otherwise). We denote by ` (and

ř

) the sum of species (disjoint union of labeled combinatorial structures:
pP` QqrU s “ PrU s Y QrU s), by ¨ (,

ś

and the exponentiation) the product of species (cartesian product of
labeled combinatorial structures: pP ¨ QqrU s “

ř

S\T“U PrSs ˆ QrT s).
We directly give the recursive solution (of [PV, Eq. 2]) which defines χ-parking functions, Fpχq, grade

by grade (see [PV, Proposition 2.5]) as a sum over all compositions π of the integer n, noted π |ù n:

Fpχq “ 1`
ÿ

ně1

Fnpχq with Fnpχq “
ÿ

π|ùn

`pπq
ź

i“1

´

EΥpχ;π,iq
¯

πi
, (3)

where Υ is

Υpχ;π, iq :“

#

χ p1q if i “ 1,
χ p1` πpi´ 1qq ´ χ p1` πpi´ 2qq otherwise,

(4)

with πpiq “ π1 ` ¨ ¨ ¨ ` πi the partial sum of the first i parts of π.

Example 3: Here is the constructive definition of F3pm
2q expanding (3):

F3pm
2q “

`

E1
˘

3
`
`

E1
˘

2
¨
`

E8
˘

1
`
`

E1
˘

1
¨
`

E3
˘

2
`
`

E1
˘

1
¨
`

E3
˘

1
¨
`

E5
˘

1

By abuse of notation we denote χ directly by its image over m. For example, we denote Fpm2q the
generalized parking functions Fpχq with χ pmq :“ m2. Furthermore by abuse again, we identify Fnpχq
to the Fpχq-structures on the set rns.

Example 4: We denote pta, b, c, ¨ ¨ ¨ u, td, e, f, ¨ ¨ ¨ u, . . .q by pabc ¨ ¨ ¨ | def ¨ ¨ ¨ | . . . q. The first Fnpm2q-
structures for n “ 0, 1 and 2 are:

F0pn
2q “ t pq u ,

F1pn
2q “ t p1q u ,

F2pn
2q “ t p12 | ¨ | ¨ | ¨q, p1 | 2 | ¨ | ¨q, p1 | ¨ | 2 | ¨q, p1 | ¨ | ¨ | 2q,

p2 | 1 | ¨ | ¨q, p2 | ¨ | 1 | ¨q, p2 | ¨ | ¨ | 1q u .

And from Example 3, some of the 27 structures of F3pm
2q resulting from pE1q2 ¨ pE

8q1 are:
p12 | 3 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨q, p12 | ¨ | 3 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨q, ¨ ¨ ¨ , p12 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | 3q,

p13 | 2 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨q, p13 | ¨ | 2 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨q, ¨ ¨ ¨ , p23 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | 1q.
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2.3 Enumeration and interpretation
In [KY03] the authors gave a recurrence relation to enumerate Fnpχq-structures:

fpχ;nq “
n
ÿ

j“1

p´1qj´1

ˆ

n

j

˙

χ pn´ j ` 1q
j
fpχ;n´ jq . [KY03, Theorem 4.2]

From this formula and the Corollary 1, we immediately obtain:

Theorem 2: There is a bijection between 2pm` tqk-parking functions and extended non-initial ADFA
Ek,t.

Thanks to [KY03, Theorem 4.2] and Corollary 1. In the following we explicit the bijection. To do that
we need to use a more precise formula to extract simple ADFA/parking functions. In [PV], we use the
constructive definition (3) to obtain (automatically) this more expressive formula, i.e. the non-commutative
Frobenius characteristic of the natural action of the 0-Hecke algebra on generalized parking functions [PV,
Theorem 3.4] (expressed in complete pSπq-basis of non-commutative symmetric functions):

chpFnpχqq “
ÿ

π|ùn

¨

˝

ÿ

τ |ù`pπq

`pτq
ź

i“1

ˆ

Ψτ pχ;π, iq

τi

˙

˛

‚Sπ (5)

with Ψτ a generalization of Υ (4):

Ψτ pχ;π, iq “

#

χ p1q if i “ 1,
χ p1` πpτpiqqq ´ χ p1` πpτpi´ 1qqq in otherwise,

Remark 6: The complete non-commutative symmetric functions pSπq are a convenient algebraic way
to encode the action of relabeling of set sequence. The coefficient of Sπ (with π a composition of n) is
the number of χ-parking functions of n (upto isomorphism) such that the first non-empty set contains π1

elements, the second one contains π2 elements, and so forth.

Example 5:
F3pm

2q “
`

E1
˘

3
loomoon

`
`

E1
˘

2
¨
`

E8
˘

1
loooooomoooooon

`
`

E1
˘

1
¨
`

E3
˘

2
loooooomoooooon

`
`

E1
˘

1
¨
`

E3
˘

1
¨
`

E5
˘

1
looooooooooomooooooooooon

chpF3pm
2qq “ S3 ` 8S21 ` 3S12 ` 3S111 ` 15S111

From the non-commutative characteristic (5) the specialization of Sπ to the multinomial
`

n
π1,¨¨¨ ,πk

˘

gives au-

tomatically another formula: fpχ;nq “
ř

π|ùn

´

ř

τ |ù`pπq

ś`pτq
i“1

`

Ψτ pχ;π,iq
τi

˘

¯

`

n
π1,¨¨¨ ,π`pπq

˘

. Unfortunately
this new expression of f is a double sum over compositions of integers, so this is not (computationally)
efficient. Finally we reuse that non-commutative characteristic chpFnpχqq to extract an enumeration of a
sub-family of Fpχq according to simple ADFA (§2.4.4). Meanwhile, one explicits the bijection between
Fp2pm` tqkq and Ek,t.

2.4 Explicit bijection Fp2pm` tqkq » Ek,t

The following bijection is based on the parking functions condition (2) involving a natural division of pQjq
into n factors splitting between each χ piq. This natural division will caracterize the sets of all transition
functions ν from an alphabet Σ of k symbols into a set of p states fixing one state q. This caracterisation
will make sure that the built automaton is acyclic.
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2.4.1 Division factors
Let N be a finite set of cardinal n. The division factors of a χ-parking function pQjq on N is defined as
the sequence of factor pDpqpPrns with Dp “ pQjq with j P rχ pj ´ 1q ` 1, χ pjqs.

Example 6: The Fpm2q-structures p 3 | ¨ | 1 | ¨ | 2 | ¨ | ¨ | ¨ | ¨ q has as division factors pD1, D2, D3q

with D1 “ p 3 q, D2 “ p ¨ | 1 | ¨ q and D3 “ p 2 | ¨ | ¨ | ¨ | ¨ q.

2.4.2 Linear order on parking functions
Division factors will be used to fix an order between transitions according to a “fixing state”. From now on
we set a total order on N associated to any Fpχq-structures. We suppose that we are given a total order
ăN on N (in examples we use the natural order on rns) and let pQjq be a χ-parking function on N . We
define a second total order ăq by:

q ăq q
1 ðñ

#

q P Qk and q1 P Qk1 with k ă k1 or
q, q1 P Qk and q ăN q1 .

Remark 7: The order ăq is the linear order defined by the inverse of the standardization of the parking
functions seen as words. (In Example 6, the parking function pQjq could be represented by the word
w “ 351 (with wi “ j iff i P Qj) and the inverse of it standardization is 312)

Example 7: The m2-parking functions p 4 | 12 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | 3 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ q on r4s and
p 3 | ¨ | ¨ | 25 | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | ¨ | 1 | ¨ | ¨ | ¨ | ¨ | ¨ | 4 | ¨ | ¨ | ¨ | ¨ q on r5s define respectively the
orders 4 ăq 1 ăq 2 ăq 3 and 3 ăq 2 ăq 5 ăq 1 ăq 4.

2.4.3 Non-initial ADFA from 2mk-parking functions
In this subsection, we associate to any Fp2mkq-structure a non-initial ADFA pA, δq of N k. By definition
this bijection will transport interesting properties on the right language of states. This construction will be
easily generalized to (extended) non-initial ADFA with constraints, and finally extended to coreachable
simple non-initial ADFA. Let pQjq be a Fp2mkq-structures on N and pDpqpPrns its division factors. We
complete the total order ăq with an other element/state, the absorbing state: H ăq j for any j P N . So we
haveH “: q0 ăq q1 ăq q2 ăq ¨ ¨ ¨ ăq qn.

Proposition 4: There is exactly pk ´ pp´ 1qk maps ν : Σ Ñ tq1, ¨ ¨ ¨ , qp´1u Y tHu such that we have
νpaq “ qp´1 for at least one a P Σ.

This proposition is obvious. By definition of pDpq each factor Dp is a sequence of 2ppk ´ pp´ 1qkq sets.
EachDp is associated to the set of all maps ν : Σ Ñ tq1, ¨ ¨ ¨ , qp´1uYtHu such that we have νpaq “ qp´1

for at least one symbol a P Σ. (In others terms, we associate the unique map ν : Σ Ñ tHu to D1, the
maps ν : Σ Ñ tq1u Y tHu such that νpaq “ q1 for at least one a P Σ, are associated to D2 and so on.)

For a fixed total order ăΣ on Σ: a1 ăΣ a2 ăΣ ¨ ¨ ¨ ăΣ ak, the lexicographical order on the sequence
of the image of ν seen as words: νpa1qνpa2q ¨ ¨ ¨ νpakq defines a total order on maps ν: ν1 ă ν2 ă ¨ ¨ ¨ ă

νpk´pp´1qk in each division factors. We denote νppqj the maps associated to the factor Dp. We whizz up all
that to finally define the bijection. Let ζ be the map which associates to any pQjq the automaton structure
pA, δq defined by:
• the set of states is N and the absorbing state isH,
• the set of accepting states A is the union of Qj with j even,
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• the transition function δ is setting by δq :“ ν
ppq
j iff q P Q2pp´1qk`2j´1 or q P Q2pp´1qk`2j .

Example 8: Let pQiq be the 2m2-parking functions de-
scribed by the division factors: D1 “ p ¨ | 4 q,
D2 “ p ¨ | ¨ | ¨ | ¨ | 3 | 1 q, D3 a sequence of
10 empty sets and D4 a sequence of 16 sets with only the
7th is non-empty set is: Q25 “ t2u (25 “ p4´ 1q2 ` 7).

The non-initial ADFA ζpQiq.

3

2 4 H

1

a,b

a,b

b

a

a,b

Let pQiq be a 2mk-parking function.

Proposition 5: The automaton structure ζpQiq is a non-initial ADFA of N k
n .

PROOF: From the construction, each state has transitions defined, so it is a well defined non-initial DFA.
Then the parking function condition (2) and the definition of δ assert that the structure is acyclic.

Lemma 3: The map ζ is a bijection.

PROOF: The different total orders (ăN , ăq , ăΣ and the lexicographical order on maps ν) assert that each
non-initial ADFA is produced once and Theorem 2 asserts that each is produced.

The map ζ associates the same transitions to each state in the same set Qj . Furthermore, the order on
Qj defined by the parking function involves a “height property” as in [Rev92] to define an efficient
minimization.

Lemma 4: The non-initial ADFA ζpQjq is simple and coreachable if and only if #Qj ď 1, for any
j P r2nks and Q1 “ H.

PROOF: The idea is that if there exists distincts states q and s such that RLpqq “ RLpsq then there is a Qj
such that #Qj ą 1 in pQjq as in [Rev92]. So if #Qi ď 1 for any i then ζpQiq is simple and the reciprocal
is trivial. As seen in the previous section, a non-initial ADFA is coreachable if the states whose transitions
going only to the absorbing state, are accepting.

2.4.4 Simple parking functions
We define simple parking functions as the χ-parking function pQjq satisfying #Qj ď 1 for any j.

Remark 8: The simple m-parking functions are permutations.

Example 9: In F2pm
2q all parking functions are simple except p12 | ¨ | ¨ | ¨q (see Example 4).

The interpretation of Frobenius characteristic chpFpχqq (5) reveals an easy way to extract an enumeration
formula. The term S1n in chpFnpχqq encodes χ-parking functions such that #Qi ď 1 (cf. Remark 6 and
see [PV, Eq. (7) and (9)]).

Lemma 5: The simple χ-parking functions are enumerated by:

spχ;nq “ n!
ÿ

τ |ùn

`pτq
ź

i“1

ˆ

Ξpχ; τ, iq

τi

˙

with Ξpχ; τ, iq “

#

χ p1q if i “ 1

χ p1` τpiqq ´ χ p1` τpi´ 1qq in otherwise.

Remark 9: Simple χ-parking functions do not have non-trivial automorphisms.
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2.4.5 Coreachability and parking functions
From ζ definition, the sets Q1 and Q2 (of a parking function) encode the states which have transitions to
the absorbing states. States of Q1 are non-accepting. The idea is to fix a constraint such that it is forbidden
to have states in Q1. More generally from the subsection 1.4, we want to consider t ` 1 constraints.
The construction ζ can be easily generalized to extended ADFA, then we remark that all transitions to all
absorbing states (extra ones andH) are associated to the first division factors.

The present parking function formalism allows us to easily consider structures with those constraints.
The first division factor depends only of χ p1q and adding a (negative) constant to χ influence only the size
of that first factors.

Theorem 3: There is a bijection between extended coreachable simple non-initial ADFA with t ` 1
constraints and simple p2pm` tqk ´ t´ 1q-parking functions.

3 Main result
In section 1 we showed that simple non-initial ADFA Θ can be described by couples pΘpiq, sΘpiqq of MADFA,
and extended coreachable simple non-initial ADFA with constraints (Lemma 2). Thanks to Lemma 5, these
sets of extended coreachable simple non-initial ADFA with t` 1 constraints have same cardinality. Finally
thanks to Theorem 3 we can enumerate the (extended) coreachable simple ADFA.

Theorem 4: The MADFA over an alphabet of k symbols with n states (with i the initial state fixed) are
enumerated by mpk;nq satisfying following relation:

sp2mk ´ 1;nq “
n
ÿ

t“1

ˆ

n´ 1

t´ 1

˙

sp2pm` tqk ´ t´ 1;n´ tqmpk; tq

with mpk; 1q “ 1.
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