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We give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo's β-invariant appears as the key factor relating weighted combinatorial Laplacians and weighted tree-numbers for matroid complexes.

Résumé. Nous présentons une nouvelle formule pour les nombres d'arbres pondérés de grande dimension des matroïdes complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des matroïdes complexes sont des polynômes à plusieurs variables. Dans la formule, le β-invariant de Crapo apparaît comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d'arbres pondérés des matroïdes complexes.

Introduction

The purpose of this paper is to give a new formula for the weighted tree-numbers of matroid complexes. As a high-dimensional analogue of Cayley-Prüfer theorem [START_REF] Moon | Counting labelled trees[END_REF], Kalai [19] found the formula for the weighted tree-numbers of standard simplexes. Continuing his study, Adin [START_REF] Adin | Counting colorful multi-dimensional trees[END_REF] presented a formula for the tree-numbers of complete colorful complexes and posed the problem of finding their weighted treenumbers. Duval, Klivans, and Martin [START_REF] Duval | Simplicial matrix-tree theorems[END_REF] obtained a formula of the weighted tree-numbers of shifted complexes, developing simplicial matrix-tree theorem. We derive a formula of the weighted tree-numbers of the independent set complex of matroids (Theorem 9). In particular, we answer Adin's question in [START_REF] Adin | Counting colorful multi-dimensional trees[END_REF]Section 6 (b)].

Combinatorial Laplacians and high-dimensional tree-numbers

Adin [START_REF] Adin | Counting colorful multi-dimensional trees[END_REF] studied high-dimensional tree-number of simplicial complexes via combinatorial Laplacians, and similar studies were conducted in [8, 11-13, 20, 26-28, 30, 34]. For a finite graph, Temperley's formula demonstrates how the number of spanning trees and the detereminant of a combinatorial Laplacian are related.

Theorem 1 [START_REF] Temperley | On the mutual cancellation of cluster integrals in Mayer's fugacity series[END_REF]Temperley's formula] Let G be a finite loopless graph with n vertices with its Laplacian matrix L(G), and J the all 1 ′ s matrix. If we denote the number of spanning trees of G by k(G), then

det(L(G) + J) = n 2 ⋅ k(G).

◻

As we shall see, L(G) + J is the 0-th combinatorial Laplacian for the chain complex of G as a 1dimensional complex.

Temperley's formula has been generalized to high-dimensional complexes [START_REF] Duval | Simplicial matrix-tree theorems[END_REF][START_REF] Duval | Cellular spanning trees and Laplacians of cubical complexes[END_REF][START_REF] Kim | Logarithmic tree-numbers for acyclic complexes[END_REF]. In this paper, we will focus on the following type of complexes. A finite simplicial complex will be called Z-APC (Z-acyclic in positive codimension) if its reduced homology over Z is trivial except possibly in the top dimension (refer to [START_REF] Duval | Simplicial matrix-tree theorems[END_REF] for the origin of this terminology). The independent set complex IN (M ) of a matroid M , which is the main object of study in this paper, is Z-APC because it is shellable [START_REF] Björner | The homology and shellability of matroids and geometric lattices[END_REF]. We may refer to IN (M ) as a matroid complex, also.

Let {C i , ∂ i } be an augmented chain complex of a finite Z-APC complex Γ of dimension d with the augmentation

∂ 0 ∶ C 0 → Z given by ∂ 0 (v) = 1 for every vertex v in Γ. Recall that, for i ∈ [-1, d], the i-th combinatorial Laplacian ∆ i ∶ C i → C i is defined by ∆ i = ∂ t i ∂ i + ∂ i+1 ∂ t i+1 .
Note that if Γ is a finite graph, then ∂ t 0 ∂ 0 = J and ∂ 1 ∂ t 1 = L(G). Hence, Temperley's formula can be restated as det(∆ 0 ) = n 2 k(G).

Let Γ i be the set of all i-simplices, and Γ (i) the i-skeleton of Γ. For a non-empty subset S ⊂ Γ i , define Γ S = S ∪ Γ (i-1) as an i-dimensional subcomplex of Γ. For i ∈ [-1, d], a non-empty subset B ⊂ Γ i is an i-dimensional tree (or, simply, i-tree) if 1) . We will denote the set of all i-trees in Γ by B i = B i (Γ) with B -1 = {∅}. Define the i-th tree-number of Γ to be

(1) H i (Γ B ) = 0, (2) H i-1 (Γ B ) is finite, and (3) H j (Γ B ) = 0 for j ≤ i -2. Note that condition (3) is a consequence of the fact Γ (i-1) B = Γ (i-
k i = k i (Γ) = B∈Bi H i-1 (Γ B ) 2 .
The following is a generalization of Temperley's formula showing a relationship between ∆ i and unweighted high-dimensional tree-numbers k i .

Theorem 2 [20, Proposition 7] Let k i be the i-th tree-number of a Z-APC complex Γ . Then

(1) det ∆ -1 = k 0 (2) det ∆ i = k i-1 k 2 i k i+1 for i ∈ [0, d -1] (3) det ∆ d = k d-1 if
Γ is acyclic, and 0 otherwise. ◻

3 Weighted combinatorial Laplacians and weighted tree-numbers

As a refined enumerator of tree-numbers, we discuss weighted tree-numbers. For example, Cayley-Prüfer theorem [START_REF] Moon | Counting labelled trees[END_REF] gives an enumeration of the spanning trees of complete graphs according to their vertex degrees, and Kalai's formula [19, Theorem 3 ′ ] gives an enumeration of high-dimensional tree-numbers of standard simplexes according to their vertex degrees. Other examples of weighted Laplacians and weighted tree-numbers can be found in [START_REF] Duval | Simplicial matrix-tree theorems[END_REF][START_REF] Duval | Cellular spanning trees and Laplacians of cubical complexes[END_REF][START_REF] Martin | Pseudodeterminants and perfect square spanning tree counts[END_REF]. In [START_REF] Martin | Pseudodeterminants and perfect square spanning tree counts[END_REF], the weights of different dimensions were considered simultaneously, and we will develop similar ideas for matroid complexes in this paper.

Let Γ be Z-APC. For each vertex v ∈ Γ 0 , let x v be an indeterminate and define the weight of v to be

X v = x 2 v .
For each face σ ∈ Γ i , define x σ = ∏ v∈σ x v and define the weight of σ to be

X σ = v∈σ X v = (x σ ) 2 .
Denote by F a field containing R and all indeterminates x v . Let Ĉi be the F-vector space of i-chains in Γ. The weighted boundary operator ∂i ∶ Ĉi → Ĉi-1 is defined as follows. For each oriented i-face

[σ] = [v 0 , v 1 , . . . , v i ], ∂i [σ] = i j=0 (-1) j x vj [σ -v j ].
Equivalently, ∂i can be defined as

∂i = W -1 i-1 ∂ i W i
where W i is the diagonal matrix whose diagonal entry corresponding to the i-face σ ∈ Γ i is x σ . Define the i-th weighted combinatorial Laplacian ∆i ∶ Ĉi → Ĉi to be the i-th combinatorial Laplacian of the weighted chain complex { Ĉi , ∂i }, i.e.,

∆i = ∂t i ∂i + ∂i+1 ∂t i+1 .
Example 1 Let K be an (abstract) simplicial complex on a vertex set {1, 2, 3, 4, 5} whose facets are {124, 125, 134, 135, 145, 234, 235, 245} (see Fig. 1). Suppose that the rows and columns of ∂2 ∶ Ĉ2 → Ĉ1 are ordered lexicographically. Then ∂2 is given by

[124] [125] [134] [135] [145] [234] [235] [245] ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ [12] x4 x5 0 0 0 0 0 0 [13] 0 0 x4 x5 0 0 0 0 [14] -x2 0 -x3 0 x5 0 0 0 [15] 0 -x2 0 -x3 -x4 0 0 0 [23] 0 0 0 0 0 x4 x5 0 [24] x1 0 0 0 0 -x3 0 x5 [25] 0 x1 0 0 0 0 -x3 -x4 [34] 0 0 x1 0 0 x2 0 0 [35] 0 0 0 x1 0 0 x2 0 [45] 0 0 0 0 x1 0 0 x2 . ◻ Fig. 1: a realization of K
We introduce the definition of weighted high-dimensional tree-numbers by Kalai [START_REF] Kalai | Enumeration of Q-acyclic simplicial complexes[END_REF].

Definition 3 For i ∈ [0, d],
define the i-th weighted tree-number of Γ to be

ki = ki (Γ) = B∈Bi H i-1 (Γ B ) 2 X B . (3.1)
where

X B = σ∈B X σ is the weight of B ∈ B i . Define k-1 = 1.
For each B ∈ B i , define the degree of a vertex v ∈ Γ 0 in B to be the number of facets in Γ B containing v, denoted by deg B v. When Γ is a graph, this definition of degree is the same as that in graph theory. Then equation (3.1) becomes

B∈Bi H i-1 (Γ B ) 2 v∈Γ0 X v deg B v ,
which explains why weighted tree-numbers are often called degree-weighted tree-numbers. Note that if X v = 1 for all v ∈ Γ 0 , then we recover the i-th (unweighted) tree-number k i . An example of degree-weighted tree-numbers is the following Cayley-Prüfer [START_REF] Moon | Counting labelled trees[END_REF] theorem for complete graphs.

T ∈B1(Kn) n i=1 X deg T (i) i = X 1 X 2 ⋯X n (X 1 + X 2 + ⋯ + X n ) n-2 . A high-dimensional analogue of this theorem is Kalai's formula [19, Theorem 3 ′ ] B∈Bi(Σ) H i-1 (Γ B ) n i=1 X deg B (i) i = (X 1 X 2 ⋯X n ) n-2 i-1 (X 1 + X 2 + ⋯ + X n ) n-2 i (3.2)
where Σ is the standard simplex on n vertices.

The following is the weighted version of Theorem 2.

Theorem 4

The following holds for a Z-APC complex Γ of dimension d:

(1) det ∆-1 = k0 (2) det ∆i = (∏ σ∈Γi-1 X σ ) -1 (∏ σ∈Γi X σ ) -1 ki-1 k2 i ki+1 for i ∈ [0, d -1] (3) det ∆d = (∏ σ∈Γ d-1 X σ ) -1 kd-1 (∏ σ∈Γ d X σ ) if Γ is
acyclic, and 0 otherwise. ◻

From now on, let Γ be an acyclic complex of dimension d + 1. The reason for considering dimension d + 1 is that we will apply an acyclization to a Z-APC complex of dimension d.

By using Theorem 2, a relation was found between the generating function of the logarithmic determinants of combinatorial Laplacians and that of the logarithmic tree-numbers, which makes it efficient to compute the tree-numbers [20, Theorem 8]. The following theorem is the weighted version of this relation. We introduce formal logarithm having the following property: log XY = log X + log Y for nonzero X, Y ∈ F.

Theorem 5 Let D(x), K(x), and F (x) be given as follows.

(1) D(x) = ∑ d+1 i=-1 ωi x i+1 where ωi = log det ∆i

(2) K(x) = ∑ d i=0 κi x i where κi = log ki (3) F (x) = ∑ v∈Γ0 log X v (∑ d i=0 f v,i x i+1 ) -f v,d+1
x d+1 where f v,i is the number of i-faces in Γ containing v.

Then we have

D(x) = (1 + x) 2 K(x) -(1 + x)F (x), or K(x) = (1 + x) -2 D(x) + (1 + x) -1 F (x).

◻

From this theorem, one can recover Kalai's formula (equation (3.2)).

In addition, we express weighted tree-numbers in terms of the monomials corresponding to all vertices and eigenvalues of weighted combinatorial Laplacians. The following theorem is the weighted version of [12, equation (11)] obtained from Theorem 5.

Theorem 6 Let Λ be the set of all distinct eigenvalues of the total weighted Laplacian ⊕ d+1 i=-1 ∆i and let m λ,i be the multiplicity of λ in ∆i , i.e., det ∆i = ∏λ ∈ Λ λm λ,i . The d-th weighted tree-number kd of Γ is

vertices v of Γ (X v ) χ((lk v) (d-2) ) λ∈ Λ λa λ,d
where

a λ,d = ∑ d-1
j=-1 (-1) d-j-1 (dj)m λ,j and the link of a vertex v is given by

lk v = {σ ∈ Γ σ ∩ {v} = ∅, σ ∪ {v} ∈ Γ},
and (lk v) (d-2) denotes the (d -2)-skeleton of lk v. ◻

One can regard the characteristic polynomial of ∆ as an element in F[x], and its eigenvalues as elements in the algebraic closure of F.

Weighted combinatorial Laplacians of matroid complexes

An interesting question concerning combinatorial Laplacians is which complexes have integral spectra.

There are some known complexes with this property: chessboard [START_REF] Friedman | On the Betti numbers of chessboard complexes[END_REF], matching [START_REF] Dong | Combinatorial Laplacian of the matching complex[END_REF], matroid [START_REF] Kook | Combinatorial Laplacians of matroid complexes[END_REF], shifted [START_REF] Duval | Shifted simplicial complexes are Laplacian integral[END_REF], and shifted cubical complexes [START_REF] Duval | Cellular spanning trees and Laplacians of cubical complexes[END_REF]. Then a natural question for the weighted combinatorial Laplacians is which complexes have spectra that consist of polynomials. Duval, Klivans, and Martin showed that the spectra of the weighted combinatorial Laplacians of shifted complexes consist of polynomials and used their result to give the weighted tree-numbers of shifted complexes [START_REF] Duval | Simplicial matrix-tree theorems[END_REF]. We show that matroid complexes have polynomial spectra and will use these to find the weighted tree-numbers of matroid complexes. First, we review the spectra of the unweighted combinatorial Laplacians of matroid complexes [START_REF] Kook | Combinatorial Laplacians of matroid complexes[END_REF]. Let M be a loopless matroid, r its rank function, L(M ) its lattice of flats, and µ(V, W ) the Möbius function on L(M ) × L(M ). Define the α-invariant α(M ) of M to be the unsigned reduced Euler characteristic of its matroid complex IN (M ). For convenience, we will denote µ(W V ) = µ(V, W ) and d = r(M ) -1.

Theorem 7 [25, Corollary 18] Let Λ be the set of all distinct eigenvalues of the total Laplacian

⊕ d i=-1 ∆ i of a matroid complex IN (M ). Then Λ = { E ∖ V ∶ V ∈ L(M ) and α(V ) ≠ 0}
and, for each λ ∈ Λ, its multiplicity m λ,i in ∆ i is given by

V ∶ E∖V =λ W ∶r(W )=i+1 α(V )µ(W V ).

◻

We present the weighted version of the above theorem. Let F be a field containing R and all indeterminates x e for each element e in the ground set E of M . For each e ∈ E, define the weight of e to be X e = x 2 e . For each non-empty set S ⊂ E, define S = ∑ e∈S X e and ∅ = 0. Theorem 8 Let Λ be the set of all distinct eigenvalues of the total weighted Laplacian ⊕ d i=-1 ∆i of a matroid complex IN (M ) where ∆i is the i-th weighted combinatorial Laplacian of M . Then

Λ = { E ∖ V ∶ V ∈ L(M ) and α(V ) ≠ 0}
and, for each λ = E ∖ V ∈ Λ, its multiplicity m λ,i in ∆i is given by

W ∶r(W )=i+1 α(V )µ(W V ).
In particular, the spectra of ⊕ d i=-1 ∆i consist of polynomials in X e 's. ◻

Weighted tree-numbers of matroid complexes

We show that the weighted tree-numbers of matroid complexes have a nice factorization according to the degrees of their vertices. Our method is different from what was used to find the formula for the weighted tree-numbers of a shifted complex [START_REF] Duval | Simplicial matrix-tree theorems[END_REF]. While the reduced Laplacian in the top dimension was used in [START_REF] Duval | Simplicial matrix-tree theorems[END_REF], we use all of the combinatorial Laplacians.

To begin, we review two important invariants of a matroid M which will appear in the formula. One is α(M ) which equals the unsigned reduced Euler characteristic χ(IN (M )) of IN (M ). Note that α(M ) has other interpretations as follows:

α(M ) = µ L(M * ) ( 0, 1) = rk Hr(M)-1 (IN (M )) = T M (0, 1),
where M * is the dual matroid of M , and T M (x, y) the Tutte polynomial of M .

The other is Crapo's β(M ) which is defined as follows [START_REF] Crapo | A higher invariant for matroids[END_REF]:

β(M ) = (-1) r(M ) A⊂E(M ) (-1) A r(A) .
For our purpose, it will be useful to take the following equivalent definition of β(M ) (used in [START_REF] White | Combinatorial Geometries[END_REF]Chapter 7.3]).

β(M ) = (-1) r(M ) V ∈L(M ) µ( 0, V )r(V ).
It is also known that β(M ) equals the unsigned reduced Euler characteristic of the reduced broken circuit complex [START_REF] Björner | The homology and shellability of matroids and geometric lattices[END_REF]. The following is the main theorem of this paper.

Theorem 9 The d-th weighted tree-number kd

(M ) = kd (IN (M )) of a matroid complex IN (M ) is e∈E X ( B(M e) -α(M e)) e flats V of M ( e∉V X e ) α(V )β(M V ) .
where B(M ) denotes the number of bases of a matroid M . Here, 2) ) .

B(M e) -α(M e) = χ(IN (M e) (d - 
(This equality comes from the shellability of matroid complexes.) ◻

This theorem is proved using Theorem 6 and Theorem 8. By setting X e = 1 for all e ∈ E, we can recover (unweighted) tree-numbers of matroid complexes [24, Theorem 2]. To simplify their formulas, we introduce a convolution of α-invariant and β-invariant. 2). Then the cycle matroid complex IN ) of M is the simplicial complex K in Example 1 (see Fig. 1). We apply our theorem to compute the weighted tree-numbers of the matroid complex IN (M ).

First, for each vertex e in IN (M ), the matroid complex IN (M e) of the contraction M e consists of 4 vertices and so χ((IN (M e)) (0) ) = 3.

Second, for each flat V in M , let us compute α(V ) and β(M V ).

• If V = ∅, then α(V ) = 1 and β(M V ) = β(M ) = 1.

• If V has only one element, then α(V ) = 0 .

• If V is {1, 2, 3} or {3, 4, 5}, then α(V ) = 1 and β(M V ) = 1.

• If V = M , then β(M V ) = β(∅) = 0.

Therefore, k2 (M ) = X 3 1 X 3 2 X 3 3 X 3 4 X 3 5 (X 1 + X 2 + X 3 + X 4 + X 5 )(X 1 + X 2 )(X 4 + X 5 )

and we obtain k 2 (M ) = 2 2 ⋅ 5. ◻ 

Definition 10

 10 For λ ∈ Λ = { E ∖ V ∶ V ∈ L(M ) and α(V ) ≠ 0}, define a convolution of α-invariant and β-invariant with respect to λ asα ○ λ β = V ∈L(M )∶ E∖V =λ α(V )β(M V ).Theorem 11 [24, Theorem 5] The d-th tree-number k d (M ) = k d (IN (M )) of a matroid complex IN (M ) is λ∈Λ λ α○ λ β . ◻ Example 2 Let M = M (G) be the cycle matroid of G where G is a graph K 4e (see Fig.

Fig. 2 :

 2 Fig. 2: a graph G = K4 -e
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Applications: Complete colorful complexes

We give the weighted version of Adin's formula for the tree-numbers of complete colorful complexes, answering the question posed in [START_REF] Adin | Counting colorful multi-dimensional trees[END_REF]Section 6 (b)]. Define a complete colorful complex as follows. For each t ∈ [r], let E t = {e 1,t , e 2,t , . . . , e nt,t } be a set of vertices representing color t. Let E = ⊔ r t=1 E t . Define complete colorful complex K = K(n 1 , . . . , n r ) to be a simplicial complex on a vertex set E whose faces are subsets of E each containing at most one element from each E t , i.e.,

Note that K is isomorphic to the matroid complex of ⊕ r t=1 U 1,nt where U 1,nt is a rank 1 uniform matroid on n t elements. FThe dimension of K is d = r -1. In addition, for each i ∈ [1, d], the i-th skeleton K (i) is a matroid complex.

For each t ∈ [r], denote the weights of e 1,t , e 2,t , . . . , e nt,t by X 1,t , X 2,t , . . . , X nt,t , respectively. For each

where e j (Y 1 , . . . , Y n ) is the j-th elementary symmetric polynomial. In particular, 1) .

◻

The weighted top-dimensional tree-number of a complete colorful complex was computed by Aalipour and Duval.

We recover Adin's formula for the unweighted tree-numbers of complete colorful complexes from the above weighted version, by setting X 1,t = ⋅ ⋅ ⋅ = X nt,t = 1 for all t ∈ [r]. (The top-dimensional tree-number of a complete colorful complex was suggested by Bolker [START_REF] Bolker | Simplicial geometry and transportation polytopes[END_REF].) Corollary 13 [1, Theorem 1.5] For i ∈ [1, d], we have

In particular,

◻

Note that the 1-dimensional skeleton of a complete colorful complex is a complete multipartite graph. By using the above theorem, we obtain the weighted spanning tree-numbers of complete multipartite graphs (For that of a complete bipartite graph, see [START_REF] Stanley | Enumerative Combinatorics[END_REF]Exercise 5.30]).

Let K n1,...,nr be a complete multipartite graph with an r-partition (V 1 , . . . , V r ). For each t ∈ [r], let V t = {v 1,t , . . . , v nt,t }, and denote the weights of v 1,t , . . . , v nt,t by X 1,t , . . . , X nt,t , respectively. For a complete bipartite graph K m,n with a bipartition (A, B) where A = {u 1 , . . . , u m } and B = {v 1 , . . . , v n }, let X 1 , . . . , X m (resp. Y 1 , . . . , Y n ) be the weights of u 1 , . . . , u m (resp. v 1 , . . . , v n ).

Corollary 14

The weighted spanning tree-number of K n1,...,nr is given by

In particular, the weighted spanning tree-number of K m,n is given by

◻

When each color set has only one element, we recover Kalai's formula for the weighted tree-numbers of standard simplexes.

Corollary 15 [19, Theorem 1, 3 ′ ] Let Σ be the standard simplex on n vertices. For each vertex v j ∈ (Σ) 0 , let X j be its weight. Then the i-th weighted tree-number is given by

In particular, its i-th tree-number is given by

. ◻