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Introduction

Parking functions were introduced in [START_REF] Konheim | An occupancy discipline and applications[END_REF] to model hashing problems in computer science and appear in many different contexts in combinatorics. Generalized parking functions were introduced by Stanley and Pitman [START_REF] Stanley | A polytope related to empirical distributions, plane trees, parking functions, and the associahedron[END_REF]. Shortly after, Kung and Yan showed that the Goncarov polynomials form a natural basis to manipulate generalized parking functions and stated numerous enumeration formulas [START_REF] Joseph | Gončarov polynomials and parking functions[END_REF].

The (linear span of the) set F n of parking functions of length n is naturally a module over the symmetric group S n acting on positions. In [START_REF] Novelli | Noncommutative symmetric functions and lagrange inversion[END_REF] Novelli and Thibon observed that F n is also a module over the 0-Hecke algebra H n p0q. This allows us to lift canonically the Frobenius characteristic of F n , which lives in the algebra of symmetric functions, as a non commutative Frobenius characteristic in the algebra of non commutative symmetric functions. They then apply this technology to the non commutative Lagrange inversion. Implicit in the calculations of [START_REF] Novelli | Noncommutative symmetric functions and lagrange inversion[END_REF] is the use of a recursive definition of parking functions to derive functional equations on the Frobenius characteristic.

In this paper we apply the same representation-theoretic approach to generalized parking functions and derive enumeration formulas such as those of Kung and Yan. A key observation is that generalized parking functions naturally form a species and that this species can be defined recursively.

This paper is organized as follows, beginning with background on species in Section 1, we the define in Section 2 the species Fpχq of generalized parking functions. Then we will show that generalized parking functions can be defined recursively, which naturally translates into a functional equation on Fpχq (Theorem 2). We derive a closed-form expression for this species by expressing it in terms of the species E of sets.

In Section 3 we apply the previous results to the computation of the non-commutative Frobenius characteristic of the module of parking functions, expressed in the complete basis of non-commutative symmetric functions (Theorem 3.4). From there, we derive new enumeration formulas, then express chpFpχqq in the ribbon and Λ basis; the latter admits a nice combinatorial interpretation (Proposition 3.5).

Finally in Section 4 we state and prove an inclusion exclusion formula on the faces of a polytope for generalized parking functions, giving a combinatorial interpretation of [KY03, Theorem 4.2].

Species

In this paper we use the theory of species [START_REF] Bergeron | Combinatorial species and tree-like structures, volume 67 of Encyclopedia of Mathematics and its Applications[END_REF] to encode the notion of labeled and unlabeled parking functions simultaneously. We recall some definitions and some classical operations for species.

Definition: A species P is an endofunctor of the category of sets with bijections into itself. In other terms, P is a rule which produces • a finite set PrU s, for any finite set U ,

• a function Prσs, for any bijection σ : U Ñ V .

This function Prσs satisfies the functoriality conditions: Prτ ˝σs " Prτ s ˝Prσs ; PrId U s " Id PrU s , for any bijections σ : U Ñ V and τ : V Ñ W , and with the identity map Id U : U Ñ U .

Elements of PrU s are called the P-structures on U and functions Prσs are called the transports of P-structures along σ. Two structures f P PrU s and g P PrV s have the same isomorphism type if there is a bijection σ : U Ñ V such that Prσspf q " g. We denote P n the species P restricted to sets of cardinality n.

Characteristic species

The species 1 is 1rU s " tHu if U " H and H in otherwise.

Species of sets

The species of sets E is defined by ErU s " tU u, for any finite set U (endowed with the trivial action U Þ Ñ σpU q for any bijection σ : U Ñ V and any finite set U ).

Many operations on species allows a direct translation in terms of generating series: addition, multiplication, substitution, etc. These operations constitute combinatorial analogs of the usual operations on series. Here we will only use addition and multiplication. In the sequel, let P and Q be two species.

Addition The sum of P and Q, noted P `Q, is defined by: pP `QqrU s " PrU s \ QrU s ; pP `Qqrσspf q " # Prσspf q if f P PrU s, Qrσspf q if f P QrU s, for any finite set U , any bijection σ : U Ñ V and any f P pP `QqrU s.

Product Similarly the product of species of P and Q, noted P ¨Q defines ordered pairs of structures f " pg, hq:

pP ¨QqrU s " ÿ S\T "U
PrSs ˆQrT s pP ¨Qqrσspf q " pPrσ g spgq, Qrσ h sphqq , with σ g (respectively σ h ) the restriction of σ to the underlying set of the P-structure g (resp. Q-structure h).

We denote P n the product of P with itself n times: P n " P ¨¨¨P n´1 (with P 1 " P and P 0 " 1).

Parking functions

A parking function on finite set U (of cardinality u) is a function f : U Ñ N `such that #f ´1prksq ě k, for any k P rus. The generalization introduced in [SP02] modifies the condition. Let χ : N `Ñ N be a non-decreasing sequence; the function f : U Ñ N is a χ-parking function if #f ´1prχ pkqsq ě k, for any k P rus.

Remark 2.1: The usual parking functions are χ-parking functions with χ : i Þ Ñ i, the identity map.

For the following, it will be more convenient to use another equivalent definition. A (generalized) parking function f : U Ñ N `may be described as an ordered sequence of sets pQ i q iPN`w here Q i " f ´1piq.

From this definition we remark that the isomorphism types (unlabeled structures) of generalized parking functions are (generalized) Dyck paths, namely a staircase walk under a discrete curve χ. Formally this defines a species:

Definition 2.2: The species of χ-parking functions is:

• for any finite set U , the set of all sequences pQ i q iPN`o f disjoint subsets of U such that

χpkq ÿ i"1 #Q i ě k for any 1 ď k ď u , (1) 
• for any bijection σ : U Ñ V , the relabeling action is pQ i q i Þ Ñ pσpQ i qq i (for any χ-parking function on U ).

This viewpoint on generalized parking functions in terms of sequences reveals a recursive definition. A simple way to put forward the recurrence is to view a generalized parking function pQ i q as a decorated path/staircase walk defined by: the first tread (horizontal step) goes to p#Q 1 , 1q and is decorated by

Q 1 .
The second tread decorated by Q 2 starts at p#Q 1 , 1q and goes to p#pQ 1 Y Q 2 q, 2q. The third starts where the second ends, goes to p#pQ 1 Y Q 2 Y Q 3 q, 3q and is decorated by Q 3 , etc. (see Example 1).

From this graphic representation it is easy to notice that a χ-parking function pQ i q on U is either a sequence of empty sets if U " H, or a sequence of sets pQ i q iPrχp1qs of union S Ď U , concatenated with another generalized parking function on U zS defined from another non-decreasing function ψ s (See Example 2). This new map is defined by a shift of χ characterized by the cardinality s of S: ψ s pmq " χ ps `mq ´χ p1q . In the following, we will implicitly denote by ψ n the shift of χ by n.

Recursive definition

The recursive splitting described earlier involves a natural constructive definition of the χ-parking functions species in terms of species operations based on the species of sets E.

Example 1: Let χ be the sequence 2, 2, 3, 5, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, . . . and it is pictured in red. Let pQ i q " ptd, f, mu, tgu, ta, hu, H, tc, e, j, k, n, pu, H, H, H, tb, i, l, o, q, r, s, tu, Hq be a χparking function on ta, b, c, ¨¨¨, tu. The parking function is represented by the decorated blue path.

χ td,f,mu tgu ta,hu H tc,e,j,k,n,pu H H H tb,i,l,o,q,r,s,tu

H

Theorem 2.3: The species of χ-parking functions is isomorphic to the species Fpχq recursively defined as

Fpχq " pE χp1q q 0 `ÿ ně1 pE χp1q q n ¨Fpψ n q.

(2) PROOF: A generalized parking function pQ i q is an infinite sequence of disjoint subsets of a finite set U and with Q i " H for i ą χ puq, so pQ i q may be seen as a sequence of length χ pu `1q. The relabeling action is trivially the same. By induction, any Fpχq-structures satisfies the generalized parking functions condition (1). Finally, any χ-parking functions on U can be divided into factors D p " pQ i q i with χpp ´1q ă i ď χppq for any p P rus. By induction again, each factor D p corresponds to a structure on the left term of the sum 2, (pE ψα p p1q q βp ) with α p " β p´1 .

Thanks to species theory [START_REF] Bergeron | Combinatorial species and tree-like structures, volume 67 of Encyclopedia of Mathematics and its Applications[END_REF], this constructive definition of the χ-parking functions gives automatically a cycle index series: the series of (commutative) Frobenius characteristic of the natural symmetric group action on F n pχq. Furthermore, the terminal elements of our grammar pE k q n are well-known to be characterized by the permutational 0-Hecke modules.

Closed-form equivalent definition

In order to give a closed-form expression of the species Fpχq one needs to understand the map ψ n according to χ. Tracking the recursion of the definition is only about following the different choices of n in (2). This recursive definition is mainly defined by the map ψ n of equation (2). When expanding Fpχq, we remark that the map evolves as follows: On the other hand each ψ n is always called with m " 1 by definition and each n is always a positive integer. So the sequence pn, n 1 , n 2 , ¨¨¨q is finite sequence of positive integer: a composition π.

ψ n : m Þ Ñ χpm `nq ´χp1q ψ 1 n1 : m Þ Ñ χpm `n `n1 q ´χp1 `n1 q ψ 2 n2 : m Þ Ñ χ pm `n `n1 `n2 q ´χ p1 `n1 `n2 q . . .
Definition 2.4: Let π " π 1 ¨¨¨π k be a composition of n. The map Υ is defined by:

Υpχ; π, iq " # χ p1q if i " 1, χ p1 `πpi ´1qq ´χ p1 `πpi ´2qq otherwise. (3) 
with πpiq " π 1 `¨¨¨`π i the partial sum of the first i parts of π.

By expanding the recurrence (2) of theorem 2.3 we have:

Proposition 2.5:

Fpχq " 1 `ÿ ně1 F n pχq with F n pχq " ÿ π|ùn pπq ź i"1 ´EΥpχ;π,iq ¯πi . (4) 
PROOF: The exact formula obtained is

Fpχq " pE χp1q q 0 `ÿ ně1 ¨ÿ π|ùn pπq ź i"1 ´EΥpχ;π,iq ¯πi '¨´E χpn`1q´χpnq ¯0 .
It can be simplified by turning all pending empty sets at the end into the species 1 (remember that 1 is a neutral element for product of species).

Non-commutative Frobenius characteristic of Fpχq

In species theory, there are many combinatorial operations on structures, which are translated on operations in the cycles index series. In the case of generalized parking functions, the functional equation/grammar (2) is terminating on (and only on) finite sequences of sets. Those structures are well-known to have a more expressive non-commutative Frobenius characteristic.

We recall those characteristic in the first subsection, we then give the non-commutative characteristic of Fpχq in bases: pS π q the completes, pR π q the ribbons Schur and pΛ π q the elementaries of the noncommutative symmetric functions. (Refer to [GKL `95] for an overview on non-commutative symmetric functions.)

Species of sequence of k-sets

In this subsection we focus on the species `EΥpχ;π,iq ˘πi » `Ek ˘n. In [START_REF] Krob | Noncommutative symmetric functions iv: Quantum linear groups and hecke algebras at q= 0[END_REF], the authors lift the right action of S n on rks n by considering the natural right action of H n p0q on Crks n . In the same way, we consider here the natural action of H n p0q on the linearized species CE k rns. Using species theory notations, we translate some classical results appearing in [START_REF] Krob | Noncommutative symmetric functions iv: Quantum linear groups and hecke algebras at q= 0[END_REF] (and [START_REF] Novelli | Noncommutative symmetric functions and lagrange inversion[END_REF]).

Let Q " pQ i q iPrks be a structure in E k rns that is a sequence of k disjoint subsets which covers the finite set rns; more generally we could replace rns by any finite set U endowed with a fixed total order so that the elementary transpositions are well defined. The Hecke algebra H n p0q acts on CE k rns on the left by permuting the elements. By abuse of notations we note Q ´1piq " k if i P Q k . For q " 0, the action of T i is defined by:

Q ¨Ti " $ & % σ i pQq if Q ´1piq ă Q ´1pi `1q 0 if Q ´1piq " Q ´1pi `1q ´Q otherwise, (5)
where σ i is the corresponding elementary transposition (σ i is defined as the bijection with i Þ Ñ i `1, i `1 Þ Ñ i and stays fixed otherwise ); for example p13| ¨|2q ¨T1 " p23| ¨|1q.

The action of any element T i of H n p0q on Q is either 0 or a rearrangement of Q. The orbits (isomorphism types) are indexed by decompositions d " pd 1 , . . . , d k q of n in k parts with d i " #Q i , that is generalized compositions including null parts. The rearrangements of Q form a basis of an H n p0q-projective module M whose non-commutative characteristic is chpM q " S π , where π is the underlying composition of d obtained by stripping away null parts.

The non-commutative characteristic of CE k rns is therefore

chpCE k rnsq " ÿ π|ùn M π pkqS π " ÿ π|ùn ˆk pπq ˙Sπ " S n pkAq , (6) 
where the binomial coefficients account for the number of ways to insert k ´ pπq empty sets in a sequence of pπq non-empty sets. The non-commutative complete function S π is used here as a way to encode the relabeling action of a sequence of pπq-sets with π 1 elements in the first set, π 2 elements in the second set etc. In the enumeration formula of structures (7), S π pEq is specialized into the multinomial `n π1,¨¨¨,πj (the reader may consult the specialization S π pEq in [START_REF] Hivert | The (1-E)-transform in combinatorial hopf algebras[END_REF]). In terms of Hopf algebras operations S n pkAq is equivalent to the Adams operations which iterate k times the coproduct and then the product: µ k ˝∆k pS n q with ∆ k " p∆ b Id k´1b q ˝∆k´1 and µ k " µ ˝pId b µ k´1 q.

E k -structures enumeration From the characteristic of permutation representations, we recover easily the enumeration formula of pE k q n -structures (or words on rks of length n):

e k pnq " ÿ π|ùn π"π1¨¨¨πj ˆk j ˙ˆn π 1 , ¨¨¨, π j ˙" k n . (7) 
E k -isomorphism types enumeration Similarly we recover the enumeration formula of pE k q n -isomorphism types (or non-decreasing words) by specializing S π Þ Ñ 1:

ẽk pnq " ÿ π|ùn ˆk pπq ˙" ˆn `k ´1 k ´1 ˙. ( 8 
)

Complete basis formula

Using (6) and the recursive definition (2) we naturally obtain a recursive formula for the non-commutative Frobenius characteristic series of the χ-parking functions:

chpFpχqq " 1 `ÿ ně1 chpCE χp1q rnsqchpFpψ n qq " 1 `ÿ ně1 S n pχ p1q AqchpFpψ n qq .
By specializing S π to `n π1,¨¨¨,π k ˘and to 1, we obtain (new) formulas to enumerate Fpχq-structures and types. Namely from (7), we obtain the following recursive enumeration formula for the number fpχ; nq of Fpχq-structures on a set of cardinality n:

fpχ; nq " n ÿ k"1 ˆn k ˙χ p1q k fpψ k ; n ´kq (9)
with fpχ; 0q " 1. Similarly, we derive from (8) the number of isomorphism types:

fpχ; nq " n ÿ k"1 ˆn ´χp1q ´1 χp1q ´1 ˙fpψ k ; n ´kq , (10) 
also with fpχ; 0q " 1. From Proposition 2.5, we have a non-recursive version of chpFpχqq:

Lemma 3.1:

chpF n pχqq " ÿ π|ùn pπq Ñ ź i"1
S πi pΥpχ; π, iqAq .

In §3.1 we stated that S n pkAq is given by the non-commutative Cauchy identity (6). This characteristic, expressed as a sum of products of Adams operations according to χ, lifts trivially [KY03, Corollary 5.6] in non-commutative symmetric functions:

Proposition 3.2: Let χ, ψ be two non-decreasing functions such that χpmq " αψpmq, for any m P N `. chpFpχqq " chpFpψqqpαAq .

By expanding the formula of Lemma 3.1 we now have a new sum over compositions, where terms are products of binomials on parts of each composition (see Table 3). To get rid of any specialization alphabet, we first need to refine Υ into Ψ τ ; namely for π a composition of n and τ a composition of pπq we set

Ψ τ pχ; π, iq " # χ p1q if i " 1, χ p1 `πpτ piqqq ´χ p1 `πpτ pi ´1qqq otherwise . Remark 3.3: Ψ p1,...,1q " Υ.
The non-commutative characteristic chpF n pχqq of Lemma 3.1 can now be expanded into the following theorem: Tab. 2: Some enumerations of Fpχq-types for n " 0 to 8.

χzn
Theorem 3.4: The non-commutative characteristic of F n pχq is given by:

chpF n pχqq " ÿ π|ùn γ π S π , with γ π " ÿ τ |ù pπq pτ q ź i"1 ˆΨτ pχ; π, iq τ i ˙. (11) 
Using again Proposition 2.5, from ( 9) and (10), we get the following non recursive enumeration formula for χ-structures and isomorphism types:

fpχ; nq " ÿ π|ùn π"π1¨¨¨π k ˆn π 1 , ¨¨¨, π k ˙k ź i"1
Υpχ; π, iq πi , fpχ; nq "

ÿ π|ùn pπq ź i"1 ˆn ´Υpχ; π, iq ´1 Υpχ; π, iq ´1 ˙.
Example 3: The first values of the non-commutative characteristic of Fpm 2 ´m `1q are given by: chpF 1 pm 2 ´m `1qq " S 1 , chpF 2 pm 2 ´m `1qq " 2S 11 `S2 chpF 3 pm 2 ´m `1qq " 9S 111 `2S 12 `6S 21 `S3 chpF 4 pm 2 ´m `1qq " 70S 1111 `9S 112 `21S 121 `2S 13 `51S 211 `6S 22 `12S 31 `S4

We now investigate how the formula of Theorem 3.4 translates in other natural bases of non-commutative functions.

Ribbon Schur basis formula

Recall that the change of basis from the complete basis to the ribbon Schur functions basis pR π q is given by S π " ř τ ĺπ R τ , where ĺ denotes the reverse refinement order.

Example 4: The compositions τ of 5 such that τ ĺ 212 are 212, 32, 23 and 5.

chpF 0 pχqq " 1 , chpF 1 pχqq " a 1 S 1 , chpF 2 pχqq " a 1 S 2 `"ˆa 1 2 ˙`a 1 a 2  S 11 chpF 3 pχqq " a 1 S 3 `"ˆa 1 2 ˙`a 1 pa 2 `a3 q  S 21 `"ˆa 1 2 ˙`a 1 a 2  S 12
`"ˆa

1 3 ˙`ˆa 1 2 ˙pa 2 `a3 q `a1 ˆa2 2 ˙`a 1 a 2 a 3  S 111
Tab. 3: The first values of the non-commutative characteristic with χ pmq " a m `χ pm ´1q and χ p1q " a 1 in the complete basis.

This change of basis gives the formula:

chpF n pχqq " ÿ π|ùn ˜ÿ πĺτ γ τ ¸Rπ
Example 5: The first values of the non-commutative characteristic of Fp2m ´1q are given by: chpF 1 p2m ´1qq 

Lambda basis formula

Recall that both bases pS π q and pΛ π q are multiplicative and related by the formula S π " ř τ ĺπ p´1q pτ q´ pπq Λ τ . Furthermore, the change of base from ribbon pR π q to lambda pΛ π q is given by R π " ř s τ ĺπ˜p ´1q pπ˜q´ pτ q Λ τ (where s τ is the complement of τ and π˜is the conjugate of π). It follows that, in the Lambda basis, the characteristic of the module of parking functions is given by an alternating sum:

chpF n pχqq " ÿ π|ùn ¨ÿ τ |ù pπq p´1q n´ pτ q pτ q ź i"1 ˆχ p1 `πpτ pi ´1qqq τ i ˙' Λ π . Example 6: chpF 1 pm 2 ´m `1qq " Λ 1 , chpF 2 pm 2 ´m `1qq " 3Λ 11 ´Λ2 chpF 3 pm 2 ´m `1qq " 18Λ 111 ´3Λ 12 ´7Λ 21 `Λ3 chpF 4 pm 2 ´m `1qq " 172Λ 1111 ´18Λ 112 ´36Λ 121 `3Λ 13 ´70Λ 211 `7Λ 22 `13Λ 31 ´Λ4
The coefficients once again admit a combinatorial interpretation.

Proposition 3.5: Let π be a composition of n. The coefficient of rΛ π s is the number of non-decreasing χ-parking functions constant on each part of π, up to the sign.

Example 7: The coefficient rΛ π schpF 4 pm 2 ´m `1qq of the previous example is 7; this is the number of non-decreasing parking functions that are constant on each part of the composition 22: p1234| ¨| ¨| ¨¨¨q, p12|34| ¨| ¨¨¨q, . . . , p12| ¨| ¨| ¨| ¨| ¨|34| ¨¨¨q.

An inclusion-exclusion formula

Originally we expected the formula fpχ; nq "

ÿ π|ùn π"π1¨¨¨π k p´1q n´k ˆn π 1 , . . . , π k ˙k ź i"1 χ p1 `πpi ´1qq πi [KY03, Theorem 4.2]
to be the specialization at Λ π Þ Ñ `n π1,¨¨¨,π k ˘of the non commutative characteristic of the module of generalized parking functions. This it turned out is not to be the case, therefore the aim of this section is to investigate this formula, in particular to try to find a representation theoretic interpretation of it. First we need a few definitions; given an ordered alphabet A, recall that the standardization of a word w P A ˚is the permutation obtained by scanning iteratively w from left to right and relabeling 1, 2, . . . , n the occurrences of the smallest letters. For any non-decreasing sequence χ of integers, the χ-standardization of a word w is the word obtained by applying the same algorithm and then relabeling with χp1q, χp2q, ¨¨¨, χpnq. The word (in fact a generalized parking function) obtained is no longer a permutation. We denote by Std χ this operator.

Example 8: Let χ be the Catalan numbers 1, 1, 2, 5, 14, 42, ¨¨¨we have, Std χ p1, 4, 11, 1, 31, 1q " p1, 5, 14, 1, 42, 2q.

Definition 4.1: A χ-parking function pQ i q of size n is primitive if the following is verified:

Q i ‰ H ðñ i " χ ¨1 `ÿ jăχpiq #Q j '.
We denote by P n´1 the set of primitive parking functions of size n.

In other words, in the sorted of f , all vertical paths join χ.

An obvious bijection between primitive parking functions and ordered set partitions of n is obtained by considering the sequence of non empty Q i in the same order. The inversion set of a primitive parking function f is : Invpf q " tpi, jq : i ă j and f piq ě f pjqu.

Example 9: Let χ the sequence of prime numbers, the function p13, 2, 3, 11, 3, 3q is primitive and its associated ordered set partition is t2u|t3, 5, 6u|t4u|t1u. The inversion set of f is Invpf q " tp1, 2q, p1, 3q, p1, 4q, p1, 5q, p1, 6q, p3, 5q, p3, 6q, p4, 5q, p4, 6q, p5, 6qu.

The collection of ordered set partitions admits a nice representation as indexing the faces of a polytope (see [START_REF] Ziegler | Lectures on polytopes[END_REF]). In this polytope the faces of dimension i are the ordered set partitions with n ´i parts. In particular the ordered partition with only one part corresponds to the only face of dimension n ´1.

Through the aforementioned bijection we may alternatively label the faces of this polytope with the χ primitive parking functions; the dimension of the face indexed by f is then dpf q " n ´Imgpf q.

We name P n´1 the n ´1 dimensional polytope of primitive parking function of size n. If χ is strictly increasing this is the permutohedron. Generalized parking functions (on rns) can naturally be endowed with the product order inherited from N n : namely f ď g if and only if @i ď n, f piq ď gpiq. Seeing each

  Example 2: Let pQ i q be the χ-parking function defined in Example 1; it is the concatenation of the sequence of the two first sets ptd, f, mu, tguq and the ψ-parking function pta, hu, H, tc, e, j, k, n, pu, H, H, H, tb, i, l, o, q, r, s, tu, Hq on ta, b, c, ¨¨¨, tuztd, f, g, mu with ψ the sequence 3, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, . . . In other terms we have ψ pmq " χ pm `4q ´χ p1q.

		H	
		tb, i, l, o, q, r, s, tu		H
	χ	H		tb, i, l, o, q, r, s, tu
		H		H
	tgu ta, hu H tc, e, j, k, n, pu H	" ptd, f, mu, tguq	H tc, e, j, k, n, pu ¨ψ ta, hu H H
	td, f, mu		

  Some enumerations of Fpχq-structures for sets of cardinality n " 0 to 7.

		0 1 2	3	4	5		6	7	OEIS
	m	1 1 3 16	125	1296		16807	262144	A000272
	m `1	1 2 8 50	432	4802		65536	1062882	A089104
	2m	1 2 12 128 2000	41472		1075648	33554432	A097629
	m 2 `m 1 2 20 512 25392 2093472 260555392 45819233280 A103353
	Tab. 1: χzn	0 1 2 3	4	5	6	7	8	OEIS
		m	1 1 2 5 14 42 132	429	1430	A000108
		m `2 1 3 9 28 90 297 1001 3432 11934	A000245
		2m	1 2 7 30 143 728 3876 21318 120175 A006013
		r m`1 3 s 1 1 1 2	3	4	9	15	22	A124753

  " R 1 , chpF 2 p2m ´1qq " 2R 11 `3R 2 chpF 3 p2m ´1qq " 5R 111 `7R 12 `9R 21 `12R 3 chpF 4 p2m ´1qq " 14R 1111 `19R 112 `23R 121 `30R 13 `28R 211 `37R 22 `43R 31 `55R 4The coefficients of R 1 n are (as excepted) Catalan numbers [A000108], and the coefficients of R n are (less excepted) the number of non-crossing trees with n nodes [A001764].
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Tab. 4: The set tp P P n´1 : p ě f u for χ " id and f " p1123q. Arrows represent a possible involution. face e f of P n´1 as the sum of parking functions lower than f , our main theorem states that, by doing an inclusion-exclusion process on the dimension of the faces, we obtain each generalized-parking function once and only once.

Theorem 4.2: In the vector space C F n pχq one has

More combinatorially, one can directly count χ-parking functions from the previous theorem:

We prove it by using the signed involution principle. The aim is, for any χ-parking function f of size n, to give an involution I f from tp P P n´1 : p ě f u into itself such that:

Std χ pf q y with dpyq " dpf q ˘1 otherwise. Without loss of generality we can suppose that f is non-decreasing so that Std χ pf q " pχp1q, ¨¨¨χpnqq. The involution is defined implicitly from the inversion set of p; it is Std χ pf q if Invppq " H and another primitive parking function of another dimension but with same inversion set otherwise. The key ingredient is given a primitive parking function p with inversion set Invppq " I, to understand the set Inv p " tq P P n´1 : Invpqq " Invppq and q ě pu. For a parking function f P P n´1 the dimension is an invariant of the symmetric group action on the indices, as well as the cardinality of Inv p . We can then state the following lemma: Lemma 4.4: let I be an inversion set and h ě f a primitive χ-parking function with inversion I of maximum dimension. The generating series G I pf q of the dimensions of the faces with inversion set I is G I pf q " ÿ Invppq"I pěf

x dppq " p1 `xq dphq .

The construction of f x is straightforward from Lemma 4.4, which completes the proof of Theorem 4.2. By adding the number of χ-parking functions in each dimension we get the following formula:

Frobenius characteristic investigation

In the previous subsection the formula of Theorem 4.2 of [START_REF] Joseph | Gončarov polynomials and parking functions[END_REF] is expressed combinatorially as an alternating sum. This formula is the result of the exponential specialization of the following non-commutative characteristic:

Gpχ; nq "

Unfortunately this expression is not positive when expanded on the R basis. It's therefore not the characteristic of an indecomposable H n p0q-module. Nevertheless it might still be interpretable as the characteristic of some exact sequence of H n p0q-modules.