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Generalized Tesler matrices, virtual Hilbert
series, and Macdonald polynomial operators

Andrew Timothy Wilson †

UC San Diego, La Jolla, CA, USA

Abstract. We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook
sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation
uses virtual Hilbert series, a new class of symmetric function specializations which are defined by their values on
(modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the
Hall inner product 〈∆fen, p1n〉, where ∆f is a symmetric function operator from the theory of diagonal harmonics.
We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for
〈∆e1en, p1n〉 and 〈∆eken, p1n〉|t=0 involving q, t-binomial coefficients and ordered set partitions, respectively.

Résumé. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice
négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une cer-
taine somme pondérée sur ces matrices. Notre interprétation utilise série de Hilbert virtuel, une nouvelle classe de
spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (mod-
ifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit
〈∆fen, p1n〉, où ∆f est un opérateur de fonction symétrique de la théorie harmoniques de diagonale. Nous utilisons
notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules sim-
ples pour 〈∆e1en, p1n〉 et 〈∆eken, p1n〉|t=0 impliquant q, t-coefficients binomial et ensemble ordonné partitions,
respectivement.

Keywords: Tesler matrices, Macdonald polynomials, Shuffle Conjecture, ordered set partitions

1 Introduction
Given a vector α ∈ Zn, we define the Tesler matrices with hook sums α to be the set of all n by nmatrices
A with entries in Z such that

1. A is upper triangular,

2. A has no zero rows,

3. each row of A is either entirely non-negative or entirely non-positive, and
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4. the kth hook sum of A, defined by

(ak,k + ak,k+1 + . . . ak,n)− (ak,1 + ak,2 + . . . ak,k−1), (1)

equals αk for every 1 ≤ k ≤ n.

We will sometimes refer to a matrix that satisfies condition 2 as essential and a matrix that satisfies
condition 3 as signed. Since previous work on Tesler matrices primarily addresses matrices with positive
hook sums, and conditions 2 and 3 are trivial in that setting, our definition generalizes previous definitions
of Tesler matrices. We denote the set of Tesler matrices with hook sums α by T (α).

The cases α = (1, 1, . . . , 1) and α = (1,m, . . . ,m) for any positive integer m are studied in [Hag11],
where they are used to give an expression for the Hilbert series of the (generalized) module of diagonal
harmonics. More values of α have appeared in the study of Hall-Littlewood polynomials [AGR+12],
Macdonald polynomial operators [GHX14], and flow polytopes [MMR14]. It would be particularly inter-
esting to see which methods from [MMR14] can be extended to our (essential, signed) Tesler matrices.

We set the weight of an n by n Tesler matrix A to be

wt(A) = (−1)entries
+(A)−rows+(A)Mnonzero(A)−n

∏
ai,j 6=0

[ai,j ]q,t (2)

where M = (1− q)(1− t), entries+(A) is the number of positive entries in A, rows+(A) is the number
of rows of A whose nonzero entries are all positive, nonzero(A) is the number of nonzero entries of A,
and [k]q,t = qk−tk

q−t , the usual q, t-analogue of an integer k. Since A is essential, the exponent of M is
nonnegative and wt(A) ∈ Z[q, t, 1/q, 1/t]. When A has no negative entries, this weight function is equal
to the weight function defined in [Hag11]. It is also worth noticing that the weight of a Tesler matrix is
independent of α. We define the Tesler polynomial with hook sums α to be

Tes(α; q, t) =
∑

A∈T (α)

wt(A). (3)

In [Hag11], Haglund showed that Tes(1n; q, t) is equal to the Hilbert series of the module of diago-
nal harmonics, which can also be written in terms of Macdonald polynomial operators as 〈∇en, p1n〉
or 〈∆enen, p1n〉. [GHX14] contains an algebraic interpretation for Tes(α; q, t) for any α with positive
integer entries. We summarize these results, along with the necessary notation, in Section 2.

In Section 3, we develop an algebraic interpretation for Tes(α; q, t) for any α ∈ Zn in terms of new
symmetric function specializations which we call virtual Hilbert series. Our interpretation is equivalent to
the interpretation in [GHX14] for positive hook sums; in this sense, the Tesler matrix definition we have
used here is the natural extension of previous definitions. These specializations generalize the map that
sends a symmetric function f that is homogeneous of degree n to its inner product with p1n . In the case
that f is the Frobenius image of an Sn-module, this inner product extracts the module’s Hilbert series.
With this in mind, for any symmetric function f that is homogenous of degree n, we will often use the
notation

Hilb f = 〈f, p1n〉.
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Fig. 1: This is the Young diagram (in French notation) of the partition (4, 3). The cell c has a′(c) = 2 (represented
by dots) and l′(c) = 1 (represented by dashes).

In Section 4, we show that certain sums of virtual Hilbert series appear in the study of diagonal har-
monics, especially in connection with the Macdonald polynomial operators ∆f and modified versions of
these operators, which we denote ∆′f . We use the algebraic interpretation of Tesler polynomials from
Section 3 to produce a number of new results about these operators.

Specifically, in Subsection 4.1 we obtain a Tesler polynomial expression for Hilb ∆′fen for any sym-
metric Laurent polynomial f . This expression leads directly to a similar expression for Hilb ∆fen. If f
has coefficients in Z[q, t], then our formula is clearly in Z[q, t, 1/q, 1/t]. Moreover, if f is a symmetric
function, then our formula is in Z[q, t]. These results provide direct formulas for the Hilbert series case of
Theorem 1.3 in [BGHT99].

Subsection 4.2 contains a formula for Hilb ∆e1en that directly implies Hilb ∆e1en ∈ N[q, t], which is
not otherwise obvious as there is currently no module associated with ∆e1en.

In Subsection 4.3, we show how Hilb ∆′eken at t = 0 is related to statistics on ordered set partitions,
generalizing [Lev12]. This result completes the proof of a special case of a generalization of the Shuffle
Conjecture due to Haglund [Hag14].

2 Background

First, we fix some notation. We use Λ to denote the algebra of symmetric functions over the base field
Q(q, t). If we wish to refer to the elements of Λ which are homogeneous of degree n, we will write Λn.
Similarly, we will use Λ and Λn to refer to the algebra of symmetric Laurent polynomials. Occasionally,
we will use Z[q, t] as a subscript to refer to the subalgebra of symmetric functions or symmetric Laurent
polynomials consisting of the functions with coefficients in Z[q, t].

There are several important classical bases for the space of symmetric functions (viewed as a vector
space): the monomial symmetric functions {mλ}, the elementary symmetric functions {eλ}, the homo-
geneous symmetric functions {hλ}, the power symmetric functions {pλ}, and the Schur functions {sλ}.
The (modified) Macdonald polynomials {H̃λ} are also a basis for this space, and generalize many of the
important properties of the classical bases. We refer the reader to [Sta99, Mac95] for more material on
symmetric functions and Macdonald polynomials. The only basis we will use for the symmetric Laurent
polynomials is the monomial basis {mρ}, defined as the sum of all monomials whose exponents, when
arranged in weakly decreasing order, equal the finite, weakly decreasing vector of nonzero integers ρ. We
will refer to a finite vector of weakly decreasing nonzero integers as a Laurent partition.

When studying Macdonald polynomials, it is quite useful to have the following notation. Given a
partition µ ` n and a cell c in the Young diagram of µ (drawn in French notation) we set a′(c) and l′(c)
to be the number of cells in µ that are strictly to the left and strictly below c in µ, respectively. In Figure
1 we compute these values for a particular example.
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We set

Tµ =
∏
c∈µ

qa
′(c)tl

′(c) Bµ =
∑
c∈µ

qa
′(c)tl

′(c)

We will use this notation to define a number of operators on Λn. Each of the operators is defined by its
action on the Macdonald polynomial basis. First, we set

∇H̃µ = TµH̃µ.

The ∇ operator has become quite famous due to its connection with the module of diagonal harmonics.
Specifically, in [Hai02] Haiman proved that the Frobenius image of the character of the module of diagonal
harmonics of order n is equal to∇en. For more on this module, see [Hag08]. The main result in [Hag11]
is that

Hilb∇en = Tes(1n; q, t). (4)

Given any symmetric Laurent polynomial f , we define two more operators on Λn by

∆f H̃µ = f [Bµ]H̃µ ∆′f H̃µ = f [Bµ − 1]H̃µ.

Here, we have used the notation that, for a symmetric Laurent polynomial f and a sum S = s1+. . .+sk of
monic monomials, f [S] is equal to the specialization of f at x1 = s1, . . . , xk = sk, where the remaining
variables are set equal to zero. Note that both operators are linear in their subscripts. The operator ∆f ,
at least in the case where f is a symmetric function, appears often in the study of diagonal harmonics
[Hag08]. Furthermore, it is clear that ∆en = ∇ when applied to Λn, so ∇en = ∆enen. Although the
operator ∆′f is not as common, it can be connected to ∆f via the identity

∆mρ
= ∆′mρ +

∑
ν∈ρ̂

∆′mν (5)

where ρ̂ is defined to be the set of all Laurent partitions which can be obtained by removing one part from
ρ. In particular,

∆ek = ∆′ek + ∆′ek−1
(6)

which, combined with the fact that ∆′fg = 0 if the degree of f is greater than or equal to the degree of
g, implies ∇en = ∆′en−1

en. We allow for f to be a symmetric Laurent polynomial because it provides a
way to obtain negative powers of∇ in terms of our operators via the identity

∇−1 = ∆m(−1)n
(7)

on Λn.
We will also make use of the skew Pieri coefficients of H̃µ. We define the skewing operator on Λ by

insisting that

〈f⊥g, h〉 = 〈g, fh〉
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for any symmetric functions f , g, and h. Here and in the sequel, we use the Hall inner product on
symmetric functions. Then the skew Pieri coefficients cµ,ν are defined by

e⊥1 H̃µ =
∑
ν→µ

cµ,νH̃ν

where the sum is over all partitions ν that can be obtained by removing a single cell from µ. In [GHX14],
the authors use a constant term algorithm to provide a formula for Tes(α; q, t) for any vector α of positive
integers in terms of the skewing operator.

Finally, we will employ the following standard notation for q, t- and q-analogues of integers:

[n]q,t =
qn − tn

q − t

[n]q = [n]q,1 =
qn − 1

q − 1
.

Note that [n]q,t ∈ N[q, t] if n ≥ 0 and [n]q,t ∈ Z[1/q, 1/t] if n ≤ 0. This implies Tes(α; q, t) ∈
Z[q, t, 1/q, 1/t] for any α ∈ Zn.

3 Virtual Hilbert Series
In this section, we use new symmetric function specializations to derive an algebraic interpretation for
Tes(α; q, t) for any vector of integers α. Our interpretation generalizes the formulas in [Hag11, GHX14].
Given any α ∈ Zn−1 and µ ` n, we make the following recursive definition.

Fαµ =
∑
ν→µ

cµ,ν(Tµ/Tν)α1F (α2,...,αn−1)
ν (8)

F
()
(1) = 1 (9)

It is worth noting that F 0n−1

µ = Hilb H̃µ, the Hilbert series of the Garsia-Haiman module associated with
H̃µ, which is sometimes denoted Fµ. As a result, Fαµ can be thought of as a generalization of this Hilbert
series. The famous n! conjecture of Garsia and Haiman, proved in [Hai01], is simply the statement that
setting q = t = 1 in Fµ yields n!. We list some open questions about the Fαµ below.

• Computations in Sage suggest that Fαµ is always a polynomial. Is this true?

• For which α, µ is Fαµ ∈ N[q, t]?

• [HHL05a] gives a combinatorial formula for Fµ. Is there a similar combinatorial formula for Fαµ ?

Now we define a map

Hilbα : Λn → Q(q, t) (10)

H̃µ 7→ Fαµ (11)



822 A. T. Wilson

We will sometimes refer to Hilbα f as the virtual Hilbert series of f with respect to α. We can justify this
terminology by noting that F 0n−1

µ = Fµ implies

Hilb0n−1 = Hilb . (12)

Furthermore, we have

Hilbmn−1 = Hilb∇m. (13)

for any integerm. The following result gives an algebraic interpretation for Tes(α; q, t) for any α ∈ Zn−1.
We note that the right-hand side is equivalent to the right-hand side of I.9 in [GHX14].

Theorem 3.1. For any α ∈ Zn−1, we have

Tes(α; q, t) =
(−1)n−1

[n]q[n]t
Hilbα pn. (14)

If we are willing to restrict our attention to vectors that begin with a 1, we can simplify the right-hand
side of Theorem 3.1 slightly. We also obtain a direct generalization of the results in [Hag11].

Corollary 3.1. For any α ∈ Zn−1, we have

Tes((1, α); q, t) = Hilbα en. (15)

4 Applications to Delta Operators
The right-hand sides of Theorem 3.1 and Corollary 3.1 bear some similarity to symmetric function ex-
pressions popular in the study of diagonal harmonics. In this section, we explore these connections and
use the connections to prove new results about the Macdonald polynomial operators ∆f and ∆′f .

4.1 Polynomial Expressions
Recall that we have defined an operator ∆′f on Λn by stating that it acts on the Macdonald polynomials
by

∆′f H̃µ = f [Bµ − 1]H̃µ. (16)

Although we will not be able to describe every virtual Hilbert series in terms of this operator, we do have
the following result involving certain symmetric sums of virtual Hilbert series. We let sort be the map
that removes the zeros from α and then sorts the remaining entries in weakly decreasing order.

Theorem 4.1. For any Laurent partition ρ,

Hilb ∆′mρ =
∑

α:sort(α)=ρ

Hilbα (17)

Using the Tesler polynomial expressions obtained in Section 3, we obtain the following identities.
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Corollary 4.1.

(−1)n−1

[n]q[n]t
Hilb ∆′mρpn =

∑
α:sort(α)=ρ

Tes(α; q, t) (18)

Hilb ∆′mρen =
∑

α:sort(α)=ρ

Tes((1, α); q, t) (19)

As a result, both left-hand sides are in Z[q, t, 1/q, 1/t]. Furthermore, by the linearity in the subscript of
∆′f we have

(−1)n−1

[n]q[n]t
Hilb ∆′fpn, Hilb ∆′fen ∈ Z[q, t, 1/q, 1/t] (20)

(−1)n−1

[n]q[n]t
Hilb ∆′gpn, Hilb ∆′gen ∈ Z[q, t] (21)

for any f ∈ ΛZ[q,t], g ∈ ΛZ[q,t]. Finally, by (5) we could replace ∆′ by ∆ in (20), (21).

Corollary 4.1 can be thought of as a more concrete version of a special case of Theorem 1.3 in
[BGHT99], in which the authors showed that ∆fΛZ[q,t] ⊆ ΛZ[q,t] for any f ∈ ΛZ[q,t]. Corollary 4.1
provides the first direct formulas for Hilbert series of expressions of this type.

It may be of interest to the reader to use Corollary 4.1 in order to explicitly compute some Hilb ∆fen.
Rather than state the exact analogue of (19) for this case, we mention that the following process accom-
plishes this task.

1. Expand f into variables x1, x2, . . . , xn−1, 1.

2. Replace each monomial xα in this expansion with Tes((1, α); q, t).

As an example, we compute Hilb ∆s3,2,1e3.

s3,2,1(x1, x2, 1) = x31x
2
2 + x21x

3
2 + x31x2 + 2x21x

2
2 + x1x

3
2 + x21x2 + x1x

2
2. (22)

Replacing each monomial with its associated Tesler polynomial, we get

Hilb ∆s3,2,1e3 = Tes((1, 3, 2); q, t) + Tes((1, 2, 3); q, t) + Tes((1, 3, 1); q, t) (23)
+ 2 Tes((1, 2, 2); q, t) + Tes((1, 1, 3); q, t) (24)
+ Tes((1, 2, 1); q, t) + Tes((1, 1, 2); q, t). (25)

We have not explored how this method compares to current methods for computing Hilb ∆fen from a
computational perspective.

4.2 Positive Formulas
In this subsection, we use Corollary 4.1 to obtain formulas for Hilb ∆e1en, Hilb (−1)n−1

[n]q [n]t
Hilb ∆e2pn,

and Hilb ∆m−1en. Each formula shows that the Hilbert series of the given symmetric function is positive
with respect to some set of variables. The operator ∆e1 can be thought of as a translation of Macdonald’s
original E operator in [Mac95] to the context of the modified Macdonald polynomials H̃µ.
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Corollary 4.2.

Hilb ∆e1en =

n∑
k=1

(
n

k

)
[k]q,t (26)

(−1)n−1

[n]q[n]t
Hilb ∆e2pn =

n−1∑
k=1

(
n− 1

k

)
[k]q,t (27)

Hilb ∆m−1
en =

(
1− 1

qt

)n−1
. (28)

As a result, the left-hand sides of (26) and (27) are in N[q, t] and the left-hand side of (28) is in N[(qt)−1].

In forthcoming work of the author with Haglund and Remmel, we use a reciprocity identity to give
the full Schur expansion of ∆e1en, which implies (26). The advantage of our approach here is that it is
somewhat more combinatorial.

We sketch the proof of (26), since the proofs of (27) and (28) are quite similar. By (6), the left-hand
side of (26) is equal to

Tes((1, 0n−1); q, t) +

n−2∑
i=0

Tes((1, 0i, 1, 0n−i−2); q, t). (29)

In order to simplify the right-hand side, we make the following observation about Tesler polynomials.

Lemma 4.1. For any α ∈ Zn,

Tes((1, α); q, t) = Tes(α; q, t) +

n∑
i=1

Tes((α1, . . . , αi−1, αi + 1, αi+1, . . . , αn); q, t). (30)

Proof. Consider a Tesler matrix A with hook sums (1, α). Its first row must consist of a single nonzero
entry, which must be equal to 1. Say this entry occurs in column j, i.e. a1,j = 1. If j = 1, removing
the first row of j produces a Tesler matrix with hook sums α, and this process is a weight-preserving
bijection. If j > 1, the process is still a weight-preserving bijection, but now we have produced a Tesler
matrix with hook sums (α1, . . . , αj−2, αj−1 + 1, αj , . . . , αn).

Since Tes(α; q, t) = 0 if α1 = 0, Lemma 4.1 implies (29) is

= Tes((1); q, t) +

n−2∑
i=0

Tes((1, 1, 0i); q, t) (31)

= Hilb ∆e1en−1 + Tes((1, 1, 0n−2); q, t). (32)

Furthermore, applying Lemma 4.1 again, we get

Tes((1, 1, 0n−2); q, t) = Tes((2, 0n−2); q, t) + Tes((1, 1, 0n−3); q, t) + . . .+ Tes((1, 0n−3, 1); q, t)
(33)

= Tes((2, 0n−2); q, t) + Hilb ∆e1en−1 − 1. (34)
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Therefore

Hilb ∆e1en = 2 Hilb ∆e1en−1 − 1 + Tes((2, 0n−2); q, t). (35)

Finally, we consider what happens when we remove the first row of a Tesler matrix with hook sums
(2, 0n−2). We claim that a detailed analysis of this situation implies

Tes((2, 0k); q, t) = [2]q Tes((2, 0k−1); q, t)−M Hilb ∆e1ek (36)

Iterating this recursion, we obtain

Hilb ∆e1en = 2 Hilb ∆e1en−1 − 2 + [2]n−1q −M
n−2∑
k=1

[2]n−k−2q Hilb ∆e1ek (37)

which we can prove satisfies (26) by induction.

4.3 The t = 0 case
In this subsection, we show how to relate Hilb ∆′eken

∣∣
t=0

to the distribution of an inversion statistic on
ordered set partitions studied in [RW13]. Together with [RW13], this completes the proof of a new special
case of a conjectural combinatorial interpretation for ∆′eken made recently by Haglund [Hag14].

First, we set OPn,k to be the ordered partitions of the set {1, 2, . . . , n} into exactly k blocks. Given a
subset S of {1, 2, . . . , n}, we set OPn,S to be the ordered set partitions in which the minimal elements
of the blocks are exactly the elements of S. For example, 7|236|45|1 is an element of OP7,{1,2,4,7} and
OP7,4.

The inversion number (inv) of an ordered set partition π is defined to be the number of pairs (i, j) with
i > j such that

• i’s block is strictly to the left of j’s block in π, and

• j is the smallest element in its block in π.

For example, inv(7|236|45|1) = 9.
Investigating the connection between virtual Hilbert series and Tesler polynomials at t = 0, we obtain

the following corollary.

Corollary 4.3. For any β ∈ {0, 1}n−1, set

S(β) = {1} ∪ {i+ 1 : βi = 1}. (38)

Then we have

Hilbβ en|t=0 =
∑

π∈OPn,S(β)

qinv(π) (39)

Hilb ∆′eken
∣∣
t=0

=
∑

π∈OPn,k+1

qinv(π). (40)
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In order to sketch the proof of Corollary 4.3, we first note that, in [Lev12], Levande defined a map from
Tesler matrices with hook sums 1n to Sn. We will denote this map by Ln. Furthermore, Levande used a
weight-preserving, sign-reversing involution to prove that

∑
A:Ln(A)=σ

wt(A)

∣∣∣∣∣∣
t=0

= qinv(σ). (41)

for any σ ∈ Sn. Here inv is the usual inversion number (or Coxeter length) of a permutation, which can
be defined as

inv(σ) = |{(i, j) : 1 ≤ i < j ≤ n : σi > σj}|. (42)

Summing (41) over all permutations σ ∈ Sn yields

Tes(1n; q, 0) = [n]q!. (43)

We extend Levande’s results to our setting as follows. For any β ∈ {0, 1}n−1, we define a map Lβ
from Tesler matrices with hook sums (1, β) onto OPn,S(β). To define Lβ , we first map a Tesler matrix A
with hook sums (1, β) to an intermediary array. This array is created as follows:

1. First, read the entries of the diagonal aj,j for j = n to 1. If aj,j > 0, write a j in the rightmost
column of the array aj,j times. After this step, the array will have a single column of length k which
weakly decreases from top to bottom.

2. For every j = n to 1, read up the jth column from aj−1,j to a1,j . For every ai,j > 0, find the
highest j in the array that currently has no entries to its left. Place an i to its left. Place an i in this
manner ai,j times.

For example, we send 
0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 2

 7→
 1 4

4
2 3

 .

Given such an array, we produce an ordered set partition by the following process.

1. Read the leftmost entries in each row of the array from bottom to top. Make these the minimal
elements in k different blocks, from left to right.

2. For each i = 1 to n which is not yet placed into the ordered set partition, find the lowest row in the
array in which it appears. Place it in the block which contains the leftmost entry of that row.

Continuing our example, we obtain the ordered set partition 23|4|1. We claim that a weight-preserving
sign-reversing involution very similar to Levande’s proves that

∑
A:Lβ(A)=π

wt(A)

∣∣∣∣∣∣
t=0

= qinv(π). (44)
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In forthcoming work of the author with Haglund and Remmel, we combinatorially define a symmetric
function(i) Valn,k(x; q, t) with coefficients in N[q, t] and conjecture that

Valn,k(x; q, t) = ∆′eken. (45)

When k = n − 1 this conjecture reduces to the Shuffle Conjecture [HHL+05b]. It is evident from the
definition of this polynomial that

Hilb Valn,k(x; q, 0) =
∑

π∈OPn,k+1

qinv(π). (46)

Hence, Corollary 4.3 can be seen as proving the t = 0 case of the generalization of the Shuffle Conjecture
in (45).

5 Future Work
In our results so far, we have relied heavily on the fact that we are taking Hilbert series of the various
symmetric functions at hand. It is reasonable to ask how Tesler matrices can be used to give formulas for
the symmetric functions themselves. For example, in [GH14], Garsia and Haglund use Tesler matrices
to give a formula for the symmetric function ∇en. A similar (but not equivalent) formula for (rational
extensions of)∇en is given in [GN13].

In a similar vein, it would be interesting to obtain symmetric functions whose Hilbert series are equal
to Fαµ . Such a result would allow us to replace virtual Hilbert series with the actual Hilbert series of these
symmetric functions.

Finally, it seems possible that the methods used in Subsection 4.2 and 4.3 could be applied when e1 is
replaced by a slightly more complicated function (e2 or m2, for example). Similarly, we may be able to
extend the results in Subsection 4.3 to β with entries not equal to 0 or 1. The computations will be more
difficult in these cases, but they may still be tractable.
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