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1 Introduction to Lassalle's Sequences and their q-analogs.

Michel Lassalle [START_REF] Lassalle | Two integer sequences related to Catalan numbers[END_REF] has discussed two related sequences of numbers A k and α k . {A k } is generated by the following recurrence:

A n = (-1) n-1 C n + n-1 j=1 (-1) n-j-1 2n -1 2j -1 A j C n-j , A 1 = 1
The second sequence is

α n = 2A n C n
He proved that both A n and α n are positive integers and each sequence is increasing (and more). (It turns out that the second sequence is simply related to power sums of zeros of Bessel function J 0 (z)). It is intriguing to inquire whether there is a natural q-analog of these numbers. It may be generated by a q-analog of the above recurrence (with C n (q) = 1 n + 1 q 2n n q , a q-Catalan):

A n (q) = (-1) n-1 q n-1 C n (q) + n-1 j=1

(-1) n-j-1 q n-j 2n -1 2j -1 q A j (q)C n-j (q),

but a slightly renormalized version looks neater:

A n (q) = (-1) n-1 q 3-2n C n (q) + (-1) n q 3-2n 2n -1 q C n-1 (q) + n-1 j=2 (-1) n-j-1 q 2j-2n 2n -1 2j -1 q A j (q)C n-j (q) (2)

with A 1 (q) = 1. It turns out that A n (q) are monic unimodal palindromic polynomials in q with positive integer coefficients. Here are some examples:

Example 1 A 2 (q) = 1 A 3 (q) = 1 + q + q 2 + q 3 + q 4
A 4 (q) = 1 + 2q + 3q 2 + 5q 3 + 6q 4 + 7q 5 + 8q 6 + 7q 7 + 6q 8 + 5q 9 + 3q 10 + 2q 11 + q 12

A 5 (q) = 1 + 3q + 6q 2 + 12q 3 + 19q 4 + 29q 5 + 41q 6 + 54q 7 + 67q 8 + 80q 9 + 89q 10 + 96q The second Lassalle's sequence α k has the following q-analog:

α n = (1 + q n )A n (q) C n (q) (3) 
And each of α n (q) is also a monic unimodal palindromic polynomial in q with positive integer coefficients.

Here are examples of α n (q)

Example 2

α 1 (q) = 1 + q α 2 (q) = 1 α 3 (q) = 1 + q α 4 (q) = 1 + 2q + 2q 2 + 2q 3 + q 4
α 5 (q) = 1 + 3q + 5q 2 + 8q 3 + 9q 4 + 9q 5 + 8q 6 + 5q 7 + 3q 8 + q 9

The proof of positivity of α k relies (in addition to certain divisibility properties) on the positivity of

n k -1 n k - n k -2 n k + 1
and Lassalle used the combinatorial interpretation of this difference of binomial coefficients as a generating function of the number of NSEW walks on a square lattice that start at the origin and finish at (2k -n -1, 1) [START_REF] Guy | Lattice paths, reflections, and dimension-changing bijections[END_REF]. Similarly, the positivity of α k (q) requires the positivity of

n k -1 q n k q -q 2 n k -2 q n k + 1 q (4)
However in this case a combinatorial interpretation has to be developed.

Introduction to q-enumeration of Lattice walks

To understand the positivity of (4) combinatorially, i.e. as a generating function of certain weighted lattice walks, I first interpret the q-version of the generating function of all NSEW walks as a generating function of a certain (new) inversion statistics on lattice walks. The total number of lattice walks from (0, 0) to (c, d) of length n is given by [DR84] c,d)). The q-analog of the walk enumeration formula is the following generating function.

n 1 2 (n -c + d) n 1 2 (n -c -d)
W N EN = 2 • 1 + 1 = 3 EN W N = 1 + 1 = 2 N W N E = 1 + (2 + 2 • 1) = 5 N EN W = 1 + (2 + 1) = 4 W N N E = 2 + 2 • 1 = 4 EN N W = 1 + 2 = 3
Proposition 1 n 1 2 (n -c + d) q n 1 2 (n -c -d) q = w∈Pn((0,0)|(c,d))
q winv(w) (5)

The following is true for the walks restricted to the upper half plane. Denote the set of walks starting at (0, 0) and ending at (c, d) in n steps and never going below the x-axis by

P + n ((0, 0) | (c, d)), then Proposition 2 n 1 2 (n + c + d) q n 1 2 (n + c -d) q -q d+1 n 1 2 (n + c + d) + 1 q n 1 2 (n + c -d) -1 q = w∈P + n ((0,0)|(c,d))
q winv(w) (6)

In Section 6 I will also introduce an analog of a major index, wmaj(w), which is, conjecturally, equally distributed with winv(w) over lattice walks.

3 q-Lassalle Numbers

The purpose of this section is to derive a bilinear recursion relations for A k (q) and α k (q), from which the positivity and integrality follow. The strategy is to rewrite the recursion relation between A (q) (as in (1)) as a difference equation. Then, using the q-difference equation for the generating function of q-Catalan, to obtain the q-difference equation for the generating function of the q-Lassalle numbers.

A n (q) = (-1) n-1 q n-1 C n (q) + n-1 j=1 (-1) n-j-1 q n-j 2n -1 2j -1 q A j (q)C n-j (q) - (-1) n q n 2n q C n (q) 2n q ! = qA n (q) 2n -1 q ! + n-1 j=1 qA j (q) 2j -1 q ! (-1) n-j q n-j C n-j (q) 2n -2j q ! (7)
Introduce generating functions and the finite q-difference operator:

H(t; q) = k≥0 (-1) k q k C k (q)t 2k 2k q ! ≡ k≥0 (-1) k q k t 2k k q ! k + 1 q ! P (t; q) = k≥1 qA k (q)t 2k-1 2k -1 q ! D q f (t) = f (t) -f (qt) (1 -q)t
then ( 7) is equivalent to -D q H(t, q) = P (t; q)H(t; q) (8) Recall Jackson's basic q-Bessel function ([Ism82]):

J (1) ν (x; q) = (q ν+1 ; q) ∞ (q; q) ∞ n≥0 (-1) n (q; q) n (q ν+1 ; q) n x 2 2n+ν , where (a; q) n = n-1 j=0 (1 -aq i ) (9) For ν = 1 J (1) 1 (x; q) = 1 1 -q n≥0 (-1) n (q; q) n (q 2 ; q) n x 2 2n+1 = n≥0 (-1) n n q ! n + 1 q ! x 2(1 -q) 2n+1 So that H(t; q) = 1 √ q t J (1)
1 (2(1 -q) √ q t; q), i.e.

q-Bessel function J

(1) 1 (x; q) is a generating function for q-Catalan numbers. J

(1) 1 (x; q) satisfies the following q-Bessel difference equation:

J (1) 1 (qx; q) -q 1 2 + q -1 2 J (1) 1 ( √ q x; q) + 1 + x 2 4 J (1) 1 (x; q) = 0 (10) 
For H(t; q), (10) translates to:

H(qt; q) -1 + 1 q H( √ qt; q) + 1 q + (1 -q) 2 t 2 H(t; q) = 0 (11) 
Through the q-difference equation (8) this implies the following ungainly looking q-difference equation for P (t; q):

(1 + q + q(1 -q) 2 t 2 )q(1 -q) √ qtP ( √ qt; q) + q 2 (1 -q) 2 tP (t; q) √ qtP ( √ qt; q)+ + (1 + q + q(1 -q) 2 t 2 )q 2 (1 -q) 2 t 2 + q 2 (1 -q) 2 t 2 q(1 -q)tP (t; q) = (1 -q 2 )tP (t; q) -q(1 -q)(1 -q 2 )t 2
But collecting coefficients of t 2n on both sides makes things look better:

A 1 (q) = 1 A 2 (q) = q 2 [2] q [s + 1] q [2s -1] q ! A s (q) = q 3 + q s+1 [2s -3] q ! A s-1 (q) + s-2 k=2 q k+3 A k (q)A s-k (q) [2k -1] q ![2s -2k -1] q ! It's time to rescale, so let A k (q) = q 3k-4 A k (q)
then the recursion relation for A k (q) is:

A s (q) = [2s -1] q [2] q [s + 1] q s-1 k=1 q k-1 [2s -2] q ! [2k -1] q ![2s -2k -1] q ! A k (q)A s-k (q) (12) 
Translating this recursion into that for α n (q) (as in (3)) produces:

α n (q) = 1 2 q n q n-1 k=1 q k-1 n k + 1 q n k -1 q α k (q)α n-k (q) (13) 
The ratio of the q-binomial coefficients can be rewritten as

1 n q n k + 1 q n k -1 q = 1 [2] q n -1 r -1 q n -1 r q -q 2 n -1 r -2 q n -1 r + 1 q
Therefore, the proof depends on

• positivity and integrality of

c n,k (q) = n -1 r -1 q n -1 k q -q 2 n -1 k -2 q n -1 k + 1 q
• divisibility of c n,k (q) and α k (q) by powers of 2 q .

As may be seen from ( 6), the positivity and integrality of c n,k (q) follows from its combinatorial interpretation as the generating function of winv statistics of upper half-plane lattice walks, namely the walks that start at (0, 0) and end up at (2k -n -1, 1) in (n -1) steps. Therefore I continue with the lattice walk part of the story.

Walk Inversion Generating Function

In order to prove the walk inversion generating function formula, as in ( 5)

n 1 2 (n -c + d) q n 1 2 (n -c -d) q = w∈Pn((0,0)|(c,d))
q winv(w)

I will need the following lemma. Denote the set of all walks of length n from (0, 0) to (c, d) with exactly k W steps by P n ((c, d); k). Of course this fixes the number of S steps, r as well. The total number of steps in n, (c + k) of which are E, k -W, (d + r) -N, and r -S.

r = 1 2 (n -c -d) -k
As words, these walks are permutations of each other. Their total number is n!

(c+k)!k!(d+r)!r! . Lemma 1 The generating function of the walk inversion statistics of n-step walks with k W steps is given by

q k 2 +ck [n] q ! [c + k] q ![ 1 2 (n -c + d) -k] q ![k] q ![ 1 2 (n -c -d) -k] q ! = w∈Pn((c,d);k) q winv(w) (14)
Now, in general, to get to (c, d) from (0, 0) in n steps one might take just one W step, or two, etc. The maximal number of W steps (i.e. no S steps) is

1 2 (n -c -d)

So that

Lemma 2 The walk inversion generating function is w∈Pn((0,0)|(c,d))

q winv(w) = 1 2 (n-c-d) k=0 q k 2 +ck [n] q ! [c + k] q ![ 1 2 (n -c + d) -k] q ![k] q ![ 1 2 (n -c -d) -k] q ! (15) 
Now, consider how a walk can end up at (c, d) in n steps, i.e. where could it be at the previous step?

• either at (c -1, d), with the last step E; adding an E step changes winv by

#S + #N + 2#W = r + (d + r) + 2k = d + 2r + 2k = n -c
The contribution of walks coming from the West is

q n-c 1 2 (n-c-d) k=0 q k 2 +(c-1)k [n -1] q ! [c -1 + k] q ! 1 2 (n -c -d) -k q ![k] q ! 1 2 (n -c + d) -k q !
• or at (c, d + 1) with the last step S; adding an S step does not change winv.

The contribution of the walks coming from the North:

1 2 (n-c-d)-1 k=0 q k 2 +ck [n -1] q ! [c + k] q ! 1 2 (n -c + d) -k -1 q ![k] q ! 1 2 (n -c -d) -k -1 q !
Now consider a generic w with blocks of S and N letters: with

w 2 = S . . . S s1 
n 1 + n 2 + . . . + r = d + 1 winv(w) -winv( w) = {n 1 (s 1 + k) -n 1 (s 1 -1 + k)} + {n 2 (s 1 + s 2 + k) -n 2 (s 1 + s 2 -1 + k)} + . . . + {r(s 1 + . . . + s i + k) -r(s 1 + . . . + s i -1 + k)} + {(n i -r)(s 1 + . . . + s i + k) -(n i -r)(s 1 + . . . + s i + k)}+ + . . . + {n r (s 1 + . . . + s r ) -n r (s 1 + . . . + s r )} = i n i + r = d + 1 winv( w) = q -(d+1) winv(w)
So the total contribution of negative walks is q winv(w) = w∈Pn((0,0)|(c,d))

q d+1 P n ((0, -2) | (c, d)) = q d+1 n 1 2 (n + 2 + c + d) q n 1 2 (n -2 + c -d) q Hence (6).

Major Walk Index

q wmaj(w) (17)

• w∈P + n ((0,0)|(c,d)) q winv(w) = w∈P + n ((0,0)|(c,d))
q wmaj(w) (18)

7 q-Integers Associated with q-super Ballot Numbers

Computer experiments indicate that there is a family of q-numbers related to several generalizations of q-Catalan. For instance, following [START_REF] Gessel | Super ballot numbers[END_REF] define q-super Ballot numbers

B n,k,r (q) = [k + 2r] q ![2n + k -1] q ! (k -1) q !r q !n q ![n + k + r] q !
Then, I venture to make the following conjecture Conjecture 2 Define a new sequence A n,k,r (q) with A 1,k,r = B 0,k,r (q) through the recurrence (-1) n-1 A n,k,r (q) = q n-1 B n,k,r (q) + n-1 j=1 (-1) j q n-j-1 2n -1 2j -1 q A j,k,r (q)B n-j,k,r (q) (19) then the A n,k,r (q) are polynomials in q with positive integers coefficients for all values of n, k, r > 0.

Example 4

A 2,1,1 (q) = 1 + 2q + 4q 2 + 4q 3 + 3q 4 + q 5

A 2,2,1 (q) = 1 + 3q + 7q 2 + 11q 3 + 13q 4 + 12q 5 + 8q 6 + 4q 7 + q 8

A 2,2,2 (q) = 1 + 3q + 9q 2 + 18q 3 + 33q 4 + 51q 5 + 72q 6 + 89q 7 + 100q 8 + 101q 9 + 93q 10 + 77q 11 + 57q 12 + 38q 13 + 22q 14 + 11q 15 + 4q 16 + q 17

A 3,1,1 (q) = 1 + 3q + 9q 2 + 17q 3 + 28q 4 + 38q 5 + 44q 6 + 43q 7 + 35q 8 + 24q 9 + 13q 10 + 5q 11 + q 12 A 3,2,1 (q) = 1 + 5q + 19q 2 + 51q 3 + 110q 4 + 199q 5 + 307q 6 + 412q 7 + 484q 8 + 499q 9 + 452q 10 + 358q 11 + 245q 12 + 143q 13 + 69q 14 + 26q 15 + 7q 16 + q 17

A 3,2,2 (q) = 1 + 5q + 22q 2 + 68q 3 + 181q 4 + 414q 5 + 848q 6 + 1567q 

  Think of a given walk as a word w composed of letters N, S, E, W . Then, the walk inversion statistics is defined Definition 1 winvN (w) = N ∈w #S to the left of N winvW (w) = W ∈w #S + #N + #E to the left of W winvE(w) = E∈w #S + #N + 2#W to the left of E wpinv(w) = winvN (w) + winvW (w) + winvE(w) Example 3 Here are the inversions of the walks (from left to right) on Fig. 1:

Fig. 1 :

 1 Fig.1: Some walks from (0, 0) to (0, 2) with n = 4 steps.

w2

  s i = dBy swapping the last S in the each string of s i with the last N letter in n i until d + 1 letters N have been moved, transforms w 2

  Setting up the following order S > N > E > W , and with the usual definition of a descent set desN (w) = {i : S occurs as i th letter and N occurs as i + 1 st letter} majN (w) = i∈desN (w) i desE(w) = {i : S or N occur as i th letter and E occurs as i + 1 st letter} majE(w) = i∈desE(w) i desW (w) = {i : S, N, or E occur as i th letter and W occurs as i + 1 st letter} majW (w) = i∈desW (w) i one can give the following Definition 2 wmaj(w) = majN (w) + majE(w) + majW (w) + #E × #W (16) Notice the unusual last term... Nevertheless, experiments show that winv and wmaj are equally distributed over all lattice walks as well as over upper half-plane walks. Conjecture 1 • w∈Pn((0,0)|(c,d))

  7 + 2652q 8 + 4134q 9 + 5980q 10 + 8058q 11 + 10155q 12 + 11997q 13 + 13313q 14 + 13892q 15 + 13639q 16 + 12597q 17 + + 10937q 18 + 8913q 19 + 6802q 20 + 4845q 21 + 3206q 22 + 1958q 23 + 1094q 24 + +552q 25 + 247q 26 + 95q 27 + 30q 28 + 7q 29 + q 30
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• or at (c + 1, d) with the last step W; adding a W step changes winv by #S + #N + #E = r + (d + r)

The contribution of walks coming from the East is

• or at (c, d -1) with the last step N; an addition of an N step with r prior S steps changes winv by

The contribution of the walks coming from the South:

The sum of these contributions gives a recursion that establishes (5).

Upper Half-Plane walks

Following the logic of walks reflection [START_REF] Guy | Lattice paths, reflections, and dimension-changing bijections[END_REF], to every negative path from (0, 0) to (c, d) will associate a walk from (-2, 0) to (c, d) so that the change in winv is the same for every walk.

Here is the algorithm.

1. Separate each negative walk in two segments w = w 1 • w 2 , where • means concatenation of words:

(a) w 1 : the part of the walk that starts at (0, 0) and ends at ( * , 0) (before it dips below the x-axis the first time) (b) w 2 : the rest of the walk that runs from ( * , 0) to (c, d); Notice that w 2 starts with S and necessarily has at least d + 1 N steps. More precisely, if the walk has k S steps, it has d + k N steps.

2. w1 : move w 1 down two steps, so that it starts at (0, -2) and ends at ( * , -2);