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We give a new representation-theoretic proof of the branching rule for Macdonald polynomials using the Etingof-Kirillov Jr. expression for Macdonald polynomials as traces of intertwiners of Uq(gl n ). In the Gelfand-Tsetlin basis, we show that diagonal matrix elements of such intertwiners are given by application of Macdonald's operators to a simple kernel. An essential ingredient in the proof is a map between spherical parts of double affine Hecke algebras of different ranks based upon the Dunkl-Kasatani conjecture.

Résumé. Nous donnons une nouvelle preuve représentation-théorique de la règle de branchement pour les polynômes de Macdonald en utilisant l'expression Etingof-Kirillov Jr. pour les polynômes de Macdonald comme des traces de intertwiners de Uq(gl n ). Dans la base de Gelfand-Tsetlin, nous montrons que les éléments de matrice diagonaux de ces intertwiners sont donnés par action des opérateurs de Macdonald à un noyau simple. Un ingrédient essentiel dans la preuve est une application entre les parties sphériques des algèbres de Hecke double affines de rangs différents basés sur la conjecture Dunkl-Kasatani.

Introduction

The Macdonald polynomials P λ (x; q, t) are a two-parameter family of symmetric polynomials indexed by partitions λ which form an orthogonal basis for the ring of symmetric functions with respect to a (q, t)deformation of the standard inner product. They were originally introduced by Macdonald (see [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]) as a generalization of many known families of special functions, including Schur functions, Jack and Hall-Littlewood polynomials, and Heckman-Opdam hypergeometric functions. Macdonald proved a branching rule for the P λ (x; q, t) and conjectured three additional symmetry, evaluation, and norm identities collectively known as Macdonald's conjectures. These conjectures were proven by Cherednik using techniques from double affine Hecke algebras. Etingof and Kirillov Jr. realized the Macdonald polynomials in [START_REF] Etingof | Macdonald's polynomials and representations of quantum groups[END_REF] in terms of traces of intertwiners of the quantum group U q (gl n ); using this interpretation, they gave new proofs of Macdonald's conjectures in [START_REF] Etingof | Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials[END_REF].

The purpose of this work is to give a representation-theoretic proof and interpretation of Macdonald's branching rule from the perspective of quantum groups. We give a new expression for diagonal matrix Yi Sun elements of U q (gl n )-intertwiners in the Gelfand-Tsetlin basis as the application of Macdonald's difference operators to a simple kernel. We then show that the resulting summation expression for P λ (x; q, t) becomes Macdonald's branching rule after a summation by parts procedure. A key ingredient is the construction of a map Res l (q 2 ) between spherical parts of double affine Hecke algebras of different ranks. Our construction makes use of the Dunkl-Kasatani conjecture and is compatible with Cherednik's SL 2 (Z)action on spherical DAHA.

In the remainder of this extended abstract, we state our results on matrix elements of quantum group intertwiners and maps between spherical double affine Hecke algebras and then explain in more detail how they may be used to give a new proof of Macdonald's branching rule. Full details, background, and a complete list of references can be found in [START_REF] Sun | A representation-theoretic proof of the branching rule for Macdonald polynomials[END_REF].

Macdonald polynomials

Let ρ = n-1 2 , . . . , 1-n 2
and let e r denote the elementary symmetric polynomial. For a partition λ, the Macdonald polynomial P λ (x; q 2 , t 2 ) is the joint polynomial eigenfunction with leading term x λ and eigenvalue e r (q 2λ t 2ρ ) of the operators

D r n,x (q 2 , t 2 ) = t r(r-n) |I|=r i∈I,j / ∈I t 2 x i -x j x i -x j T q 2 ,I ,
where T q 2 ,I = i∈I T q 2 ,i and

T q 2 ,i f (x 1 , . . . , x n ) = f (x 1 , . . . , q 2 x i , . . . , x n ). An integral signature λ is a sequence λ = (λ 1 ≥ • • • ≥ λ n ) with λ i -λ j ∈ Z.
We extend the definition of Macdonald polynomials to arbitrary signatures by setting P (λ1+c,...,λn+c) (x;

q 2 , t 2 ) = (x 1 • • • x n ) c P λ (x; q 2 , t 2 ). Say that integral signatures µ = (µ 1 ≥ • • • ≥ µ n-1 ) and λ = (λ 1 ≥ • • • ≥ λ n ) interlace if λ 1 ≥ µ 1 ≥ λ 2 ≥ • • • ≥ µ n-1 ≥ λ n . Denote interlacing by µ ≺ λ and write |λ| = i λ i . A Gelfand-Tsetlin pattern subordinate to λ is an interlacing sequence µ = {µ l } 1≤l≤n = {µ 1 ≺ µ 2 ≺ • • • ≺ µ n-1 ≺ µ n =
λ} ending in λ. Define the q-Pochhammer symbol by (u; q) = n≥0 (1 -uq n ). In [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF], Macdonald showed that P λ (x) satisfies the following branching rule, which yields an explicit summation expression for P λ (x) over Gelfand-Tsetlin patterns subordinate to λ.

Theorem 1.1 ([Mac95, VI.7.13']). The Macdonald polynomials satisfy the branching rule

P λ (x 1 , . . . , x n ) = µ≺λ ψ λ/µ (q, t)P µ (x 1 , . . . , x n-1 )x |λ|-|µ| n ,
where the branching coefficient is

ψ λ/µ (q, t) = 1≤i≤j≤ (µ)
(q µi-µj t j-i+1 ; q)(q λi-λj+1 t j-i+1 ; q)(q λi-µj +1 t j-i ; q)(q µi-λj+1+1 t j-i ; q) (q µi-µj +1 t j-i ; q)(q λi-λj+1+1 t j-i ; q)(q λi-µj t j-i+1 ; q)(q µi-λj+1 t j-i+1 ; q) .

Corollary 1.2. The Macdonald polynomials admit the summation formula

P λ (x, q, t) = µ 1 ≺•••≺µ n-1 ≺µ n =λ n i=1 ψ µ i /µ i-1 (q, t) n i=1 x |µ i |-|µ i-1 | i .
1.2 The quantum group U q (gl n )

Let U q (gl n ) be the finite type quantum group with generators e i , f i for i = 1, . . . , n -1 and q h i 2 for i = 1, . . . , n and relations

[h i , h j ] = 0, [h i , e i ] = e i , [h i , f i ] = -f i , [h i , e i+1 ] = -e i+1 , [h i , f i+1 ] = f i+1 , [h i , e j ] = [h i , f j ] = 0 for j = i, i + 1, [e i , f j ] = δ ij q hi-hi+1 -q hi+1-hi q -q -1 , [e i , e j ] = [f i , f j ] = 0 for |i -j| > 1
e 2 i e j -(q + q -1 )e i e j e i + e j e 2 i = 0,

f 2 i f j -(q + q -1 )f i f j f i + f j f 2 i = 0 for |i -j| = 1.
We take the coproduct on U q (gl n ) defined by ∆(e i ) = e i ⊗ q

h i+1 -h i 2 + q h i -h i+1 2 ⊗ e i , ∆(f i ) = f i ⊗ q h i+1 -h i 2 + q h i -h i+1 2 ⊗ f i , and ∆(h i ) = h i ⊗ 1 + 1 ⊗ h i .
Denote the subalgebra generated by f i and q hi/2 by U q (b -). For each r < n, embed U q (gl r ) inside U q (gl n ) as the subalgebra generated by e 1 , . . . , e r-1 , f 1 , . . . , f r-1 , and q h1/2 , . . . , q hr/2 . Finally, denote the finite dimensional irreducible U q (gl n )-representation corresponding to an integral signature λ by L λ .

Etingof-Kirillov Jr. approach to Macdonald polynomials

In [START_REF] Etingof | Macdonald's polynomials and representations of quantum groups[END_REF], Etingof and Kirillov Jr. realized Macdonald polynomials via traces of U q (gl n )-intertwiners.

Let W k-1 denote the representation L ((k-1)(n-1),-(k-1),...,-(k-1)) = Sym (k-1)n (C n ) ⊗ (det) -(k-1) , and choose an isomorphism W k-1 [0] C • w k-1 for some w k-1 ∈ W k-1 [0] which spans the 1- dimensional zero weight space W k-1 [0]. Define the weight ρ n = n-1 2 , . . . , 1-n 2
. Writing ρ for ρ n , for a signature λ there exists a unique intertwiner Φ n λ : L λ+(k-1)ρ → L λ+(k-1)ρ ⊗ W k-1 normalized to send the highest weight vector v λ+(k-1)ρ in L λ+(k-1)ρ to v λ+(k-1)ρ ⊗ w k-1 + (lower order terms), where (lower order terms) denotes terms of weight lower than λ + (k -1)ρ in the first tensor coordinate. Traces of these intertwiners lie in W k-1 [0] = C•w k-1 and yield Macdonald polynomials when interpreted as scalar functions via the identification w k-1 → 1.

Theorem 1.3 ([EK94, Theorem 1]). The Macdonald polynomial is given by P λ (x; q 2 , q 2k ) =

Tr(Φ n λ x h ) Tr(Φ n 0 x h ) .
Proposition 1.4 ([EK94, Main Lemma]). On L (k-1)ρ , the trace may be expressed explicitly as

Tr(Φ n 0 x h ) = (x 1 • • • x n ) -(k-1)(n-1) 2 k-1 s=1 i<j (x i -q 2s x j ).
Remark. Our notation is related to that of [START_REF] Etingof | Macdonald's polynomials and representations of quantum groups[END_REF] via P EK λ (x; q, t) = P λ (x; q 2 , t 2 ).

Gelfand-Tsetlin basis

The representation L λ of U q (gl n ) admits a basis {v µ } indexed by Gelfand-Tsetlin patterns µ subordinate to λ. The weight of a basis vector v µ is wt

(v µ ) = |µ n | -|µ n-1 |, . . . , |µ 2 | -|µ 1 |, |µ 1 | . It was shown in [UTS90]
that these basis vectors may be expressed in terms of lowering operators d r,i in U q (gl r ) ∩ U q (b -) ⊂ U q (gl n ) applied to the highest weight vector v λ .

Proposition 1.5 ([UTS90, Theorem 2.9]). The Gelfand-Tsetlin basis vectors may be realized as

v µ = d µ 1 1 d µ 2 -µ 1 2 • • • d µ n -µ n-1 n v λ for d r,i ∈ U q (gl r ) ∩ U q (b -) and d τ r = d τ1 r,1 • • • d τr r,r
for a partition τ .

Statement of the main results

Our main result shows that diagonal matrix elements of the U q (gl n )-intertwiners of Theorem 1.3 are given by application of Macdonald's operators to a simple kernel.

Theorem 1.6. In the Gelfand-Tsetlin basis, the diagonal matrix element of Φ n λ on the basis vector corresponding to the Gelfand-Tsetlin pattern

{σ 1 ≺ • • • ≺ σ n-1 ≺ λ + (k -1)ρ} with σ l i = µ i + (k -1) n-i 2 is given by c(µ, λ) = k-1 a=1 D n-1,q 2 μ (q 2a ; q -2 , q 2(k-1) ) i≤j [λ i -µ j + k(j -i)] k-1 i<j [µ i -λ j + k(j -i) + k -2] k-1 i≤j [µ i -µ j + k(j -i) + k -1] k-1 i<j [λ i -λ j + k(j -i) -1] k-1
,

where μi = µ i -k(i -1), [m] = q m -q -m q-q -1 , [m] k = [m] • • • [m -k + 1],
and

D n-1,q 2 μ (u; q 2 , t 2 ) = n-1 r=0 (-1) n-1-r u n-1-r D r n-1,q 2 μ (q 2 , t 2 ).
Using Theorem 4.4, we give a new representation-theoretic proof of Macdonald's branching rule.

Theorem 1.7. At t = q k for positive integer k, we have

P λ (x 1 , . . . , x n ; q 2 , q 2k ) = µ≺λ x |λ|-|µ| n P µ (x 1 , . . . , x n-1 ; q 2 , q 2k )ψ λ/µ (q 2 , q 2k ) with ψ λ/µ (q 2 , q 2k ) = i≤j [λ i -µ j + k(j -i) + k -1] k-1 i<j [µ i -λ j + k(j -i) -1] k-1 i≤j [µ i -µ j + k(j -i) + k -1] k-1 i<j [λ i -λ j + k(j -i) -1] k-1 .
Remark. This formulation is equivalent to that of Theorem 1.1. To see this, note that for each λ and µ the branching coefficients ψ λ/µ (q, t) are rational functions in q and t and are therefore uniquely determined by their values at (q 2 , q 2k ) for all positive integers k.

Remark. Theorem 1.3 gives P λ (x; q 2 , q 2k ) as a summation over Gelfand-Tsetlin patterns subordinate to λ + (k -1)ρ and Macdonald's branching rule gives it as a summation over Gelfand-Tsetlin patterns subordinate to λ. Our result explains how these summations over different index sets are related.

Degenerations of our results and connections to recent work

We discuss now the Heckman-Opdam, Hall-Littlewood, and Jack limits of our results.

• In the quasi-classical limit q = e ε , t = q k , λ = ε -1 Λ , x = e εX , and ε → 0, the Macdonald polynomials become the Heckman-Opdam hypergeometric functions introduced in [HO87, Opd88]. These functions were realized as integrals over Gelfand-Tsetlin polytopes in [BG13] by a scaling limit of Corollary 1.2. In [START_REF] Sun | A new integral formula for Heckman-Opdam hypergeometric functions[END_REF], the expression of [START_REF] Borodin | General β Jacobi corners process and the Gaussian free field[END_REF] was lifted to an integral over dressing orbits of a Poisson-Lie group by integration over Liouville tori and adjunction for Calogero-Sutherland Hamiltonians. The techniques of this paper degenerate to the techniques of [START_REF] Sun | A new integral formula for Heckman-Opdam hypergeometric functions[END_REF].

• In the specialization q = 0, the Macdonald polynomials become the Hall-Littlewood polynomials.

In [START_REF] Venkateswaran | On the expansion of certain vector-valued characters of U q (gl n ) with respect to the Gelfand-Tsetlin basis[END_REF], a summation expression was given for matrix elements of the U q (gl n )-intertwiners Φ n λ in the Gelfand-Tsetlin basis; this expression factors in the Hall-Littlewood limit. It would be interesting to understand if it may be realized as a degeneration of Proposition 4.3 or Theorem 4.4.

• The Jack polynomials are a scaling limit of Macdonald polynomials under the specialization t = q k and the limit q → 1 and have a similar branching rule. They were given in [START_REF] Etingof | Quantum integrable systems and representations of Lie algebras[END_REF] as traces of intertwiners of U (gl n )-modules using a degeneration of the Etingof-Kirillov Jr. construction, and we expect our methods to degenerate to a representation-theoretic proof of the Jack branching rule.

2 Quantum groups and Macdonald polynomials

Notations

Set ρ n,i = n+1 2 -i and 1 = (1, . . . , 1). For any set of indices I, let 1 I denote the vector with 1's in those indices and 0's elsewhere. Define ρ n = ρ n -n-1 2 1 so that ρ n,i = -(i -1) and ρ n-1,i = ρ n,i . For any signature λ, define the shifts λ = λ + (k -1) ρ and λ = λ + k ρ. Denote by [a] = q a -q -a q-q -1 the q-number,

[a]! = [a] • [a -1] • • • [1] the q-factorial, and [a] m = [a] • [a -1] • • • [a -m + 1] the falling q-factorial.

Macdonald symmetry identity

We now produce Macdonald operators acting on indices. We abuse notation to write D r n-1,q 2 μ for difference operators acting on additive indices μ as well as multiplicative variables q 2μ . Proposition 2.1 (Macdonald symmetry identity). We have

P λ (q 2µ+2kρ ; q 2 , q 2k ) = i<j [λ i -λ j + k(j -i) + k -1] k [µ i -µ j + k(j -i) + k -1] k P µ (q 2λ+2kρ ; q 2 , q 2k ).
Proposition 2.2. The operator

D r n-1,q 2 μ (q 2 , q 2k ) = i<j [μ i -μj + k -1] k • D r n-1,q 2 μ (q 2 , q 2k ) • i<j [μ i -μj + k -1] -1 k satisfies D r n-1,q 2 μ (q 2 , q 2k ) = |I|=r i∈I,j / ∈I,i>j [μ i -μj + k][μ i -μj -k + 1] [μ i -μj ][μ i -μj + 1] T q 2 ,I
and D r n-1,q 2 μ (q 2 , q 2k )P µ (x; q 2 , q 2k ) = e r (x)P µ (x; q 2 , q 2k ).

Proof. The expression for D r n-1,q 2 μ (q 2 , q 2k ) follows by direct computation, and the eigenvalue identity from the Macdonald symmetry identity.
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Adjoints of Macdonald difference operators

We now consider adjoints of Macdonald operators with respect to a Jackson-type inner product. Fix lower and upper limits

ζ = (ζ -, ζ + ) with ζ -= (ζ - 1 , . . . , ζ - n-1 ), ζ + = (ζ + 1 , . . . , ζ + n-1 ), and ζ + i -ζ - i ∈ Z ≥0 . Define the inner product f, g ζ := ζ + µ=ζ -f (q 2µ )g(q 2µ
), with iterated summation defined by

ζ + µ=ζ - := ζ + 1 µ1=ζ - 1 • • • ζ + n-1 µn-1=ζ - n-1
.

(1)

We consider situations where g vanishes along a border of the region of summation. Say that the function

g(q 2µ ) is (ζ, l)-adapted if g(q 2µ ) = 0 on the set {µ | ζ + i < µ i ≤ ζ + i + l or ζ - i -l ≤ µ i < ζ - i for any i}. Proposition 2.3. If f (q 2µ ) is (ζ, l)-adapted, we have for any g that l i=1 D r l+1-i n-1,q 2 μ (q 2 , q 2k ) † f, g ζ -,ζ + +l1 = f, l i=1 D ri n-1,q 2 μ (q 2 , q 2k )g ζ , where D r n-1,q 2 μ (q 2 , q 2k ) † = i<j [μ i -μj + k -1] -1 k-1 • D r n-1,q 2 μ (q -2 , q 2(k-1) ) • i<j [μ i -μj + k -1] k-1 .
Proof. By a direct computation for l = 1 and induction on l.

Reformulating the Etingof-Kirillov Jr. construction

We shift the weights used in the Etingof-Kirillov Jr. construction to make restriction from U q (gl n ) to U q (gl n-1 ) more notationally convenient. For a partition λ, define the intertwiner Φ n λ :

L λ+(k-1) ρ → L λ+(k-1) ρ ⊗ W k-1 to be Φ n λ = Φ n λ ⊗ id (det) -(k-1)(n-1)

2

. We rephrase Theorem 1.3 in terms of Φ n λ .

Corollary 2.4. The Macdonald polynomial P λ (x; q 2 , q 2k ) is given by P λ (x; q 2 , q 2k ) =

Tr( Φ n λ x h ) Tr( Φ n 0 x h ) .
Corollary 2.5. The denominator in Corollary 2.4 is given by

Tr( Φ n 0 x h ) = (x 1 • • • x n ) -(k-1)(n-1) k-1 s=1 i<j (x i -q 2s x j ).
3 Spherical subalgebras of DAHAs of different ranks

Double affine Hecke algebras

Let H n (q, t) denote the double affine Hecke algebra (DAHA) of GL n defined by [START_REF] Cherednik | Double affine Hecke algebras[END_REF]. It is defined as the algebra generated by X ± 1 , . . . , X ± n , Y ± 1 , . . . , Y ± n , and T ± 1 , . . . , T ± n-1 subject to the relations

• (T i -t)(T i + t -1 ) = 0, T i T i+1 T i = T i+1 T i T i+1 , [T i , T j ] = 0 for |i -j| = 1; • T i X i T i = X i+1 , T -1 i Y i T -1 i = Y i+1 , and [T i , X j ] = [T i , Y j ] = 0 for |i -j| > 1; • [X i , X j ] = 0, [Y i , Y j ] = 0, Y 1 X 1 • • • X n = qX 1 • • • X n Y 1 , and X -1 1 Y 2 = Y 2 X -1 1 T -2 1 .
For a reduced decomposition

σ = s i1 • • • s i l , let T σ = T i1 • • • T i l . For e = (1-t 2 ) n
(t 2 ;t 2 )n σ∈Sn t (σ) T σ , the spherical DAHA is the subalgebra eH n (q, t)e.

Polynomial representation of DAHA and Macdonald operators

The DAHA H n (q, t) admits a faithful polynomial representation ρ on C[X ± 1 , . . . , X ± n ] given by

ρ(X i ) = X i ρ(T i ) = ts i + t -t -1 X i /X i+1 -1 (s i -1) ρ(Y i ) = ρ(T i ) • • • ρ(T n-1 )s n-1 • • • s 1 T q,X1 ρ(T -1 1 ) • • • ρ(T -1 i-1 ),
where s i exchanges X i and X i+1 and T q,X1 is the q-shift operator in X 1 . The action of elements of eH n (q, t)e on the symmetric part of the polynomial representation yields the Macdonald operators.

Proposition 3.1. When restricted to C[X ± 1 , . . . , X ± n ] Sn , the action of e • e r (Y 1 , . . . , Y n ) • e is via ρ(e • e r (Y 1 , . . . , Y n ) • e) = D r n,X (q 2 , t 2 ).
Remark. By faithfulness, we will refer interchangeably to elements of the DAHA and spherical DAHA and their images under the polynomial representation in what follows.

SL 2 (Z)-action on DAHA

Define the isomorphisms ε(q, t) : H n (q, t) → H n (q -1 , t -1 ) given by ε(q, t) :

X i → Y i , Y i → X i , T i → T -1 i , q → q -1 , t → t -1
and τ + (q, t) : H n (q, t) → H n (q, t) given by

τ + : X i → X i , T i → T i , Y 1 • • • Y r → q -r/2 X 1 • • • X r Y 1 • • • Y r .
Define also the composition τ -= ετ + ε.

Proposition 3.2 ([Che05]

). The map 1 1 0 1 → τ -and 1 0 1 1 → τ + defines an action of SL 2 (Z) on H n (q, t) which preserves eH n (q, t)e.

Multiwheel condition and the restriction map

Following [START_REF] Kasatani | Subrepresentations in the polynomial representation of the double affine Hecke algebra of type GL n at t k+1 q r-1 = 1[END_REF], we say that (X 0 1 , . . . , X l-1 n ) ∈ C nl satisfies the multiwheel condition if the indices may be permuted so that

X a i = X 0 i t a-1 for 1 ≤ i ≤ n and 0 ≤ a ≤ l -1. Define the ideal I nl (t) ⊂ C[(X a i ) ± ] by I nl (t) = {f | f (X) = 0 if X satisfy the multiwheel condition}.
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Proposition 3.3 ([Kas05, Theorem 6.3] and [ES09, Theorem 5.10]). The subspace

I nl (t) ⊂ C[(X a i ) ± ] is a H nl (q, t)-submodule and C[(X a i ) ± ]/I nl (t) is irreducible. Define the map Res l (t 2 ) : C[(X a i ) ± ] S nl → C[X ± i ] Sn by Res l (t 2 )(X a i ) = t 1-l+2a X i . The kernel of Res l (t 2 ) is I S nl nl (t 2
), so Res l (q 2 ) induces by Proposition 3.3 an action of eH nl (q -2l , q 2 )e on C[X ± i ] Sn , giving a map Res l (q 2 ) : eH nl (q -2l , q 2 )e → End(C[X ± i ] Sn ). We claim that this map factors through the polynomial representation via a map of algebras Res l (q 2 ) : eH nl (q -2l , q 2 )e → eH n (q -2 , q 2l )e.

Theorem 3.4. The map Res l (q 2 ) : eH nl (q -2l , q 2 )e → eH n (q -2 , q 2l )e defined by Res l (q 2 )(ep(X a i )e) = ep(q 1-l X 1 , . . . , q l-1 X 1 , . . . , q 1-l X n , . . . , q l-1 X n )e for p ∈ C[(X a i ) ± ] S nl , and

Res l (q 2 )(ep(Y a i )e) = ep(q 1-l Y 1 , . . . , q l-1 Y 1 , . . . , q 1-l Y n , . . . , q l-1 Y n )e
is well defined and satisfies (a) for any h ∈ eH nl (q -2l , q 2 )e, as operators on C[(X a i ) ± ] S nl we have

Res l (q 2 ) • h = Res l (h) • Res l (q 2 );
(b) as operators on eH nl (q -2l , q 2 )e, we have

Res l (q -2 ) • ε nl (q -2l , q 2 ) = ε n (q -2 , q 2l ) • Res l (q 2 );

(c) as operators on eH nl (q -2l , q 2 )e, we have

Res l (q 2 ) • τ + = τ + • Res l (q 2 ).
Corollary 3.5. The map Res l (q 2 ) commutes with the action of SL 2 (Z) on the spherical DAHA.

The assignment Res l (q 2 )((X a i ) 1/2 ) = q a-(l-1)/2 X 1/2 i extends Res l (q 2 ) to an operator C[(X a i ) ±1/2 ] S nl → C[X 1/2 i ] Sn . Identify elements of the spherical DAHA with difference operators on i,a (X a i )

1/2 •C[(X a i ) ± ] S nl ⊂ C[(X a i ) ±1/2
] S nl . They may not satisfy the spherical DAHA relations, but we still have the following. Corollary 3.6. For any h ∈ eH nl (q -2l , q 2 )e, we have Res l (q 2 ) • h = Res l (h) • Res l (q 2 ) as operators on

i,a (X a i ) 1/2 • C[(X a i ) ± ] S nl .
3.5 Computing Res l (q 2 ) on a specific operator Define the operator D n,X (u; q, t) = r (-1) n-r u n-r D r n,X (q, t).

(2)

Identify eH nl (q -2l , q 2 )e with its image under the polynomial representation; in this identification, we now compute the image of a specific operator under Res l .

Lemma 3.7. We have the relation Res l (q 2 )(D nl,X (q l+1 ; q -2l , q 2 )) = l a=1 D n,X (q 2a ; q -2 , q 2l ). Proof. Compute using the definition of Res l (q 2 ) and the fact that D nl,X (q l+1 ; q -2l , q 2 ) is the image of n i=1 l-1 a=0 (Y a i -q l+1 ) in the polynomial representation.
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Proposition 4.3. Let µ = µ + (k -1)1, and ν = ν + (k -1)1. Then c(µ, λ) is given by c(µ, λ) = (-1) (n-1)(k-1) q (n-1)k(k-1)

∆ k-1 2 (λ)∆ k-1 1 (µ) μ ν =μ -(k-1)1 (-1) |ν |-|μ | q k(|ν |-|μ |) i 1 [ν i -μ i + (k -1)]![μ i -ν i ]! i<j [μ i -μ j + k -1] 2k-1 i<j [ν i -ν j ] i<j [ν i -μ j + (k -1)] k [μ i -ν j ] k i≤j [ λi -ν j + (k -1)] k-1 i<j [ν i -λj -1] k-1 . Theorem 4.4. Let µ = µ + (k -1)1. The matrix element c(µ, λ) is given by c(µ, λ) = k-1 a=1 D n-1,q 2 μ (q 2a ; q -2 , q 2(k-1) )∆ k-1 (µ , λ) ∆ k-1 1 (µ)∆ k-1 2 (λ) ,
where D n-1,q 2 μ (q 2a ; q -2 , q 2(k-1) ) was defined in (2).

Proof. By Lemma 3.7, we have Res l (q 2 )D (n-1)l,q 2 μ (q l+1 ; q -2l , q 2 ) = l a=1 D n-1,q 2 μ (q 2a ; q -2 , q 2l ).

Compute its action on Res

l (q 2 ) l-1 a=0 i≤j [ λi -μa j + k/2] i<j [μ a i -λj -k/2] = i≤j [ λi -μj + k -1] k-1 i<j [μ i -λj -1] k-1
in two ways and compare with Proposition 4.3.

Proving Macdonald's branching rule

In this section, we prove the branching rule. We use Proposition 4.2 to express the trace in the Gelfand-Tsetlin basis as a sum of products. Inducting on n and using the expression of Theorem 4.4 for c(µ, λ), we obtain an expression related to the desired by the summation by parts procedure of Proposition 2.3.

of Theorem 1.7. We induct on n. The base case is trivial because P λ (x 1 ; q 2 , q 2k ) = x |λ| 1 . For the inductive step, by Lemma 4.1, it is enough to consider matrix elements for basis vectors v µ . By Proposition 4.2 and the inductive hypothesis, we thus have

Tr( Φ n λ x h ) = µ 1 <•••< µ n-1 < λ c(µ 0 , µ 1 ) • • • c(µ n-1 , λ) i x (| µ i |-| µ i-1 |) i = µ< λ c(µ, λ)x |λ|-|µ|-(k-1)(n-1) n µ 1 <•••< µ n-2 < µ c(µ 0 , µ 1 ) • • • c(µ n-2 , µ n-1 ) n-1 i=1 x | µ i |-| µ i-1 | i = µ< λ c(µ, λ)x |λ|-|µ|-(k-1)(n-1) n P µ (x; q 2 , q 2k )Tr( Φ n-1 0 x h ),
where x = (x 1 , . . . , x n-1 ). By Corollary 2.5, we have that

Tr( Φ n-1 0 x h ) Tr( Φ n 0 x h ) = (x 1 • • • x n-1 ) k-1 x (k-1)(n-1) n k-1 s=1 n-1 i=1 (x i -q 2s x n ) -1 .
We conclude that

Tr( Φ n λ x h ) Tr( Φ n 0 x h ) = (x 1 • • • x n-1 ) k-1 k-1 s=1 n-1 i=1 (x i -q 2s x n ) -1 µ< λ c(µ, λ)x |λ| n P µ (x/x n ; q 2 , q 2k ) = (x 1 • • • x n-1 ) k-1 k-1 s=1 n-1 i=1 (x i -q 2s x n ) -1 λ ↑ µ=λ ↓ -(k-1)1
c(µ, λ)x |λ| n P µ (x/x n ; q 2 , q 2k ) = x (k-1)(n-1)

n k-1 s=1 n-1 i=1 (x i -q 2s x n ) -1 λ ↑ +(k-1)1 µ =λ ↓ c(µ -(k -1)1, λ)
x |λ| n P µ (x/x n ; q 2 , q 2k ),

where λ ↓ = (λ 2 , . . . , λ n ) and λ ↑ = (λ 1 , . . . , λ n-1 ) are vectors of lower and upper indices for µ so that

µ≺λ = λ ↑
µ=λ ↓ in the notation of (1). Note that µ < λ if and only if λ i ≥ µ i ≥ λ i+1 -(k -1). By the expression for c(µ -(k -1)1, λ) given in Theorem 4.4, we obtain P λ (x; q 2 , q 2k ) = Tr( Φ n λ x h ) Tr( Φ n 0 x h ) = x (k-1)(n-1)

n k-1 s=1 n-1 i=1 (x i -q 2s x n ) -1 λ ↑ +(k-1)1 µ =λ ↓
x |λ| n P µ (x/x n ; q 2 , q 2k ) k-1 a=1 D n-1,q 2 μ (q 2a ; q -2 , q 2(k-1) ) i≤j [ λi -

μ j + k -1] k-1 i<j [μ i -λj -1] k-1 i≤j [μ i -μ j + k -1] k-1 i<j [ λi -λj -1] k-1
.

Define the operator D n-1,q 2 μ (q 2a ; q 2 , q 2k ) = r (-1) n-1-r q 2a(n-1-r) D r n-1,q 2 μ (q 2 , q 2k ), and note that it is diagonalized on P µ (x; q 2 , q 2k ) by Proposition 2.2. Notice now that the function

i≤j [ λi -μ j + k -1] k-1 i<j [μ i -λj -1] k-1
is 0 for λ i+1 -(k -1) ≤ µ i < λ i+1 and λ i < µ i ≤ λ i + (k -1), so it is (λ ↓ , λ ↑ , k -1)-adapted. Applying Proposition 2.3 to this function yields the desired P λ (x; q 2 , q 2k ) = x (k-1)(n-1)

n k-1 s=1 n-1 i=1 (x i -q 2s x n ) -1 λ ↑ µ =λ ↓ x |λ| n k-1 a=1
D n-1,q 2 μ (q 2a ; q 2 , q 2k )P µ (x/x n ; q 2 , q 2k ) i≥j [ λj -

μ i + k -1] k-1 i<j [μ i -λj -1] k-1 i≤j [μ i -μ j + k -1] k-1 i<j [ λi -λj -1] k-1 = x (k-1)(n-1) n k-1 s=1 n-1 i=1 x i /x n -q 2s x i -q 2s x n λ ↑ µ =λ ↓ x |λ|-|µ | n P µ (x; q 2 , q 2k ) i≥j [ λj -μ i + k -1] k-1 i<j [μ i -λj -1] k-1 i≤j [μ i -μ j + k -1] k-1 i<j [ λi -λj -1] k-1 = µ ≺λ x |λ|-|µ | n P µ (x; q 2 , q 2k ) i≥j [ λj -μ i + k -1] k-1 i<j [μ i -λj -1] k-1 i≤j [μ i -μ j + k -1] k-1 i<j [ λi -λj -1] k-1
.
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4 Diagonal matrix elements in the Gelfand-Tsetlin basis

Factorization of matrix elements

For µ 1 , . . . , µ n = λ so that µ i ≺ • • • ≺ µ n = λ forms a Gelfand-Tsetlin pattern subordinate to λ, denote the pattern by µ. Let c( µ, λ) be the diagonal matrix coefficient of v µ in Φ λ . For µ ≺ λ, define gt(µ) by gt(µ) l i = µ i for l < n. Define c(µ, λ) to be the diagonal matrix coefficient c(gt( µ), λ) of v gt( µ) in Φ λ . We show that Φ λ has non-zero diagonal matrix elements only on basis vectors indexed by patterns of the form µ and that these elements admit a level-by-level factorization.

Lemma 4.1. If v µ is not of the form v µ , v µ has zero diagonal matrix element in Φ λ .

Proof. For some r < n, we cannot write µ r = τ for any τ . Let U ⊂ W k-1 be the U q (gl r )-submodule of vectors of weight 0 for q hr+1 , . . . , q hn so that U L (k-1)(r-1,-1,...-1) as a U q (gl r )-module. Let µ r denote the truncation of µ r so that µ r i = µ r i . Consider the pattern ξ given by ξ

be the U q (gl r )-submodule with highest weight µ r generated by v ξ . By Proposition 1.5, the diagonal matrix element of v µ lies in L µ r ⊗ U , hence is a multiple of the matrix element of v µ in the induced U q (gl r )-intertwiner

. By Proposition 1.5, the basis vector v µ lies in the U q (gl n-1 ) submodule L µ ⊂ L λ with highest weight vector v gt( µ) . Let U ⊂ W k-1 be the U q (gl n-1 )-submodule consisting of elements of weight 0 under q hn . Consider the U q (gl n-1 )-intertwiner φ : L µ → L µ ⊗ U given by composing Φ λ with the projection onto L µ ⊗ U . The matrix element c( µ, λ) lies in U , hence is the matrix element of v µ in φ. Notice that φ maps the U q (gl n-1 )-highest weight vector v gt( µ) to c(µ, λ)v gt( µ) ⊗ w k-1 + (l.o.t.) so that φ = c(µ, λ) Φ µ and the matrix element of v µ is the desired c(µ, λ)c

Matrix elements as applications of Macdonald difference operators

Our main technical result expresses matrix elements of U q (gl n )-intertwiners as the application of Macdonald difference operators on an explicit kernel. Define the elements ∆

and the element ∆ k-1 (µ, λ) by

We compute the diagonal matrix elements of Φ λ , resulting in the following expression after manipulation. We omit the proof, which relies on the summation expression of [START_REF] Ališauskas | Multiplicity-free u q (n) coupling coefficients[END_REF] for matrix elements.