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Introduction

A finite subset D of N × N is called a diagram. Write [n] for {1, 2, . . . , n}. One can associate a complex representation S D of the symmetric group S |D| to a diagram D, called the Specht module of D. These generalize the usual irreducible Specht modules, which occur when D is the Young diagram of a partition; the definition for general diagrams appears in [START_REF] James | Specht series for skew representations of symmetric groups[END_REF]. Write s D for the Frobenius characteristic of S D .

Let Λ be the ring of symmetric functions over Z, and Gr(k, n) the Grassmannian variety of k-planes in C n . It is well known that the cohomology ring H * (Gr(k, n), Z) is a quotient of Λ. Specifically, the Schubert varieties X λ in Gr(k, n), indexed by partitions fitting inside the rectangle [k]×[n-k], give a cell decomposition of Gr(k, n) (in the classical topology) with only even-dimensional cells. The cohomology classes σ λ = [X λ ], called Schubert classes, then form a basis of H * (Gr(k, n)). Define a surjective linear map φ : Λ → H * (Gr(k, n)) by

φ(s λ ) = σ λ λ ⊆ [k] × [n -k] 0 else .
This map turns out to be a ring homomorphism, meaning that intersection product computations in Grassmannians can be done in terms of symmetric functions.

A natural problem is to start with a homogeneous Schur-positive symmetric function f and ask for an irreducible subvariety of Gr(k, n) with cohomology class φ(f ). Liu's conjecture concerns this problem for Schur functions of diagrams.

Definition 1.1 Given a diagram D contained in [k] × [n -k], the associated open diagram variety is X • D = {rowspan[A | I] : A ∈ M k,n-k with A ij = 0 whenever (i, j) ∈ D},
where M k,n-k is the set of k × (n -k) complex matrices and I is the k × k identity matrix. The diagram variety X D of D is then the closure of X • D in the Zariski topology. Example 1.2 We will draw diagrams in matrix coordinates (with (1, 1) in the upper left), using • for those lattice points in the diagram (which we call cells) and • for the others, e.g.

D = • • • • • • • • • Then X D in Gr(3, 6) is the closure of    rowspan   0 * * 1 0 0 * 0 0 0 1 0 0 0 * 0 0 1      . Since X • D is isomorphic to affine space of dimension k(n -k) -|D|, X D is irreducible of codimension |D|. Conjecture 1 (Liu (2010)) For any diagram D, the cohomology class [X D ] is φ(s D ).
Liu proved Conjecture 2, or the weaker variant claiming equality of degrees, for various classes of diagrams. However, it turns out that this conjecture fails in general, as we show in Section 2.

Theorem 1.3 If D = {(1, 1), (2, 2), (3, 3), (4, 4)}, k = 4, n = 8, then Conjecture 2 is false.
In some cases, we can at least show that φ(s D ) gives an upper bound for [X D ]. The diagram D(w) of a permutation w (sometimes Rothe diagram) has one cell (i, w(j)) for each inversion i < j, w(i) > w(j) of w.

Theorem 1.4 For any permutation w, φ(s D(w) ) -[X D(w) ] is a nonnegative linear combination of Schubert classes.

In Reiner and Shimozono (1995b) (and essentially in [START_REF] Kraśkiewicz | Schubert functors and Schubert polynomials[END_REF]) it is shown that for a permutation w ∈ S n , s D(w) is actually the Stanley symmetric function F w (or F w -1 , depending on conventions). Building on [START_REF] Postnikov | Total positivity, Grassmannians, and networks[END_REF], [START_REF] Knutson | Positroid varieties: Juggling and geometry[END_REF] have defined a collection of irreducible subvarieties Π f of Grassmannians called positroid varieties, indexed by certain affine permutations f . They show that the cohomology class of Π f is φ( Ff ), where Ff is an affine Stanley symmetric function.

In particular, given an ordinary permutation w one can find an appropriate affine permutation f w with the property that Ffw = F w , giving some irreducible varieties Π fw . We prove Theorem 5.4 by degenerating Π fw to a variety containing X D(w) as a top-dimensional component.

In fact, Stanley symmetric functions appear as the cohomology classes of a larger and more natural collection of positroid varieties. One nice way to describe positroid varieties is that they are exactly the projections of Richardson varieties (intersections of Schubert and opposite Schubert varieties) in the complete flag variety Fl(n) to Gr(k, n). [START_REF] Billey | Singularities of generalized Richardson varieties[END_REF] considered the projections of Richardson varieties in the partial flag variety Fl(1, . . . , k; C n ) to Gr(k, n), calling these rank varieties. Every rank variety is a positroid variety, but not vice versa. [START_REF] Coskun | A Littlewood-Richardson rule for two-step flag varieties[END_REF] gave a recursive rule for computing the cohomology class of a rank variety. We give a different formula for this class, in terms of ordinary Stanley symmetric functions.

Theorem 1.5 If X ⊆ Gr(k, n) is a rank variety, then [X] = φ(F w ) for some ordinary permutation w.

We will give a precise algorithm for finding w from some combinatorial data defining X. We note that Theorem 1.5 (Theorem 4.1 below) is perhaps subtler than it looks in light of Knutson-Lam-Speyer's result that [X] = φ( Ff ) for some affine permutation f . The issue is that Ff need not be equal to any F w ; in fact, it may not even be Schur-positive (cf. Example 4.4). The subtle part of Theorem 1.5 is then that this issue lives in the kernel of φ.

A counterexample to Liu's conjecture

We begin with a definition of the Specht modules S D . Let D be a diagram, with |D| = m. A bijective filling of D is a bijection T : D → [m]. The symmetric group S m acts on bijective fillings of D by permuting entries. Fix a bijective filling T of D. Let R(T ) denote the group of permutations σ ∈ S m for which i, σ(i) are always in the same row of T . Let C(T ) be the analogous subgroup with "row" replaced by "column".

Definition 2.1 The Specht module of D is the left ideal

S D = C[S m ] p∈R(T ) q∈C(T ) sgn(q)qp of C[S m ],
viewed as an S m -module.

As D runs over (Young diagrams of) partitions of m, the Specht modules provide a complete, irredundant set of complex irreducibles for S m ; more about these classical Specht modules can be found in [START_REF] Sagan | The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions[END_REF] or [START_REF] Fulton | Young Tableaux: With Applications to Representation Theory and Geometry[END_REF]. It is easy to show that the isomorphism type of S D does not depend on the choice of T , and that it is unaltered by permuting the rows or the columns of D. If the rows and columns of D cannot be permuted to obtain a partition (equivalently, the rows of D are not totally ordered under inclusion), then S D will not be irreducible.

In general it is an open problem to give a combinatorial rule for decomposing S D into irreducibles. The widest class of diagrams for which such a rule is known are the percent-avoiding diagrams, studied in [START_REF] Reiner | Percentage-avoiding, northwest shapes, and peelable tableaux[END_REF]; see also [START_REF] Liu | Matching polytopes and Specht modules[END_REF] and Reiner and Shimozono (1995a). This class includes, for example, all skew diagrams, where the Littlewood-Richardson rule gives the decomposition. Liu's conjecture relates the Frobenius characteristic s D of S D to the diagram variety X D defined in Section1.

Conjecture 2 (Liu ( 2010)) For any diagram D, the cohomology classes [X D ] and φ(s D ) are equal.

Liu proved Conjecture 2 in the case above where D ∨ is a skew shape, or when it corresponds to a forest in the sense that one can represent a

diagram D ⊂ [k] × [n -k] as the bipartite graph with white vertices [k], black vertices [n -k],
and an edge between a white i and black j whenever (i, j) ∈ D. In [START_REF] Billey | Permutation patterns, Stanley symmetric functions, and generalized Specht modules[END_REF], we proved Conjecture 2 when D ∨ is a permutation diagram and S D is multiplicity-free.

One gets a weaker version of Conjecture 2 by comparing degrees. The degree of a codimension d subvariety

X of Gr(k, n) is the integer deg(X) defined by [X]σ k(n-k)-d 1 = deg(X)σ (k n-k ) .
Under the Plücker embedding, this gives the usual notion of the degree of a subvariety of projective space, namely the number of points in the intersection of X with a generic d-dimensional linear subspace. One can check using Pieri's rule that deg(σ

λ ) = f λ ∨
, the number of standard Young tableaux of shape λ ∨ . This is also dim S λ ∨ . Since degree is additive on cohomology classes, Conjecture 2 predicts the following.

Conjecture 3 (Liu ( 2010)) The degree of X D is dim S D ∨ .

Liu proved Conjecture 3 when D ∨ is a permutation diagram, and when D ∨ has the property that if (i, j 1 ), (i, j 2 ) ∈ D and j 1 < j < j 2 , then (i, j) ∈ D.

However, let us see that D = {(1, 1), (2, 2), (3, 3), (4, 4)}, with k = 4 and n = 8, is a counterexample to Conjectures 2 and 3. This is the skew diagram 4321/321. The Specht module S D is simply the regular representation of S 4 , with

S D S 1111 ⊕ 3S 211 ⊕ 2S 22 ⊕ 3S 31 ⊕ S 4 .
It is a theorem of [START_REF] Magyar | Borel-Weil theorem for Configuration Varieties and Schur Modules[END_REF] that the multiplicity of S λ in S D (for any D) is the multiplicity of

S λ ∨ in S D ∨ . Hence, S D ∨ S 3333 ⊕ 3S 4332 ⊕ 2S 4422 ⊕ 3S 4431 ⊕ S 444 , so dim S D ∨ = f 3333 + 3f 4332 + 2f 4422 + 3f 4431 + f 444 = 24024.
On the other hand, an explicit calculation in Macaulay2 shows deg X D = 21384. Therefore Conjectures 3 and 2 both fail for D. (One may wonder how such a seemingly small counterexample remained undetected. It is really more natural to consider D ∨ here-notice that the cases mentioned above for which Conjecture 2 has been established all have the property that D ∨ , rather than D, falls into some nice class of diagrams-and from this point of view the counterexample is no longer so small.)

The discrepancy in degrees is 24024 -21384 = 2640 = f 4422 , which hints at how to see this discrepancy more explicitly. Given a k-subset I of [n], write p I for the corresponding Plücker coordinate on Gr(k, n), so p I (A) is the minor of A in columns I. Let Y be the scheme determined by the vanishing of the Plücker coordinates p 1678 , p 2578 , p 3568 , p 4567 . These are exactly the Plücker coordinates which vanish on X D . One can check by computer that codim Y = 4, and so Y is a complete intersection. This implies that

[Y ] = σ 4 1 = σ 1111 + 3σ 211 + 2σ 22 + 3σ 31 + σ 4 , the cohomology class predicted for [X D ] by Conjecture 2; see (Eisenbud and Harris, 2012, Section 5.2.1).

Since the four Plücker coordinates cutting out Y vanish on X • D , the diagram variety X D is contained in Y . However, Y has another top-dimensional component. The Plücker coordinates p 1678 , p 2578 , p 3568 , p 4567 vanish on any matrix whose last four columns together have rank 2 or less. The locus of 4-planes represented by such matrices is the Schubert variety which is the closure of

    * * 1 0 0 0 0 0 * * 0 1 0 0 0 0 * * 0 0 * * 1 0 * * 0 0 * * 0 1     .
This Schubert variety has codimension 4 and degree dim S (22

) ∨ = f 4422 = 2640, which is exactly deg Y -deg X D . Therefore [X D ] = [Y ] -σ 22 = σ 1111 + 3σ 211 + σ 22 + 3σ 31 + σ 4 .
More counterexamples to Conjecture 2 can be easily manufactured from this one. For two diagrams D 1 and D 2 where

D 1 ⊆ [a] × [b], define D 1 • D 2 = D 1 ∪ {(i + a, j + b) : (i, j) ∈ D 2 }. Graphically, D 1 • D 2 is the diagram D 1 D 2 . One can show that [X D1•D2 ] = [X D1 ][X D2 ] and similarly that s D1•D2 = s D1 s D2 . Therefore if Conjec- ture 2 holds for D 1 but not D 2 , then it will fail for D 1 • D 2 .
Remark 2.2 One might naturally wonder whether a similar argument will show that Conjecture 2 fails for D = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. However, trying to repeat the analysis above runs into an immediate problem: the analogue of Y , which is the scheme Z cut out by p 1789(10) , p 2689(10) , p 3679(10) , p 4678(10) , p 56789 , no longer even has the same codimension as X D (thanks to Ricky Liu for pointing this out). Indeed, X D has codimension 5 but Z contains the codimension 4 Schubert cell made up of rowspans of matrices whose last 5 columns have rank at most 3.

Positroid varieties and rank varieties

Definition 3.1 An affine permutation is a bijection f : Z → Z such that f (i + n) = f (i) + n for all i and some fixed n. Write Sn for the set of affine permutations with a particular n.

The image of any set {a, a + 1, . . . , a + n -1} completely determines an affine permutation. Call such an image a window. We will write affine permutations in one-line notation as the image of [n]: 14825 fixes 1, sends 3 to 8, 7 to 9, etc. Members of any window are all distinct modulo n, so

n i=1 f (i) ≡ n(n + 1)/2 (mod n). Let av(f ) be the integer 1 n n i=1 f (i) -i.
Affine permutations are usually required to satisfy av(f ) = 0, which ours need not. However, for a fixed k, affine permutations in Sn satisfying av(f ) = k are in bijection with those satisfying av(f ) = 0 by subtracting k from each entry in a window. When we refer to constructions on affine permutations that require a Coxeter group structure (e.g. length, reduced words, Stanley symmetric functions), we are implicitly using this isomorphism to transport that structure from the "usual" affine permutation group {f ∈ Sn : av(f ) = 0}.

Definition 3.2 An affine permutation f ∈ Sn is bounded if i ≤ f (i) ≤ i + n for all i. Let Bound(k, n)
denote the set of bounded affine permutations in Sn with av(f ) = k.

Any affine permutation f has a permutation matrix, the Z × Z matrix A with A i,f (i) = 1 and all other entries 0. For any i, j ∈ Z, define

[i, j](f ) = {p < i : f (p) > j}.
(1)

Thus, #[i, j](f ) is the number of 1's strictly northeast of (i, j) in the permutation matrix of f , in matrix coordinates.

Fix a basis e 1 , . . . , e n of C n . We will abuse notation by writing X both for the span of the vectors in X, if X ⊆ C n , and for the span of vectors e

i with i ∈ X, if X ⊆ [n]. If X ⊆ [n], let Proj X : C n → X
be the projection which fixes those basis vectors e i with i ∈ X and sends the rest to 0. For integers i ≤ j, write [i, j] for {i, i + 1, . . . , j}. We interpret indices of basis vectors modulo n, so that [i, j] ⊆ C n even if i, j fail to lie in [1, n]. Definition 3.3 [START_REF] Knutson | Positroid varieties: Juggling and geometry[END_REF]) Given a bounded affine permutation f ∈ Bound(k, n), the positroid variety

Π f ⊆ Gr(k, n) is the closure of {V ∈ Gr(k, n) : dim(Proj [i,j] V ) = k -#[i, j](f ) for all i ≤ j}.
Theorem 3.4 [START_REF] Knutson | Positroid varieties: Juggling and geometry[END_REF], Theorem 5.9) The positroid variety

Π f ⊆ Gr(k, n) is irreducible of codimension (f ).
Here the length (f ) of an affine permutation f is the number of inversions i < j, f (i) > f (j), provided that we regard any two inversions i < j and i + pn < j + pn as equivalent.

Knutson-Lam-Speyer also computed the cohomology class of Π f in terms of the affine Stanley symmetric function Ff . These are a class of symmetric functions indexed by affine permutations introduced in Lam ( 2006), which can be thought of as generating functions for certain factorizations of reduced words for an affine permutation.

Theorem 3.5 [START_REF] Knutson | Positroid varieties: Juggling and geometry[END_REF]

, Theorem 7.1) For f ∈ Bound(k, n), the cohomology class [Π f ] is φ( Ff ).
The ordinary Stanley symetric functions indexed by members of S n , introduced in [START_REF] Stanley | On the number of reduced decompositions of elements of Coxeter groups[END_REF], are a special case of affine Stanley symmetric functions. To be precise, we can view w ∈ S n as the affine permutation in S0

n sending i + pn to w(i) + pn for 1 ≤ i ≤ n. Then the Stanley symmetric function F w of w is Fw . This is Proposition 5 in Lam ( 2006), but we will simply take it as a definition of F w . One should be aware, however, that the F w defined in [START_REF] Stanley | On the number of reduced decompositions of elements of Coxeter groups[END_REF] is our F w -1 . Now we discuss a subset of positroid varieties whose cohomology classes will turn out, in Section 4, to be represented by ordinary Stanley symmetric functions. 

{V ∈ Gr(k, n) : dim(V ∩ S ∩ T ) = #(S ∩ T )(M ) for S, T ∈ M }.
Σ M is called a rank variety.

Theorem 3.7 [START_REF] Coskun | A Littlewood-Richardson rule for two-step flag varieties[END_REF], Lemma 3.29) The rank variety Σ M is irreducible of dimension S∈M (#S-#S(M )).

The variety Σ M has a useful interpretation in coordinates. Being defined by rank conditions on intersections with interval subspaces, rank varieties should be special instances of positroid varieties.

Say M = {[a 1 , b 1 ], . . . , [a k , b k ]} is a rank set with b 1 < • • • < b k ≤ n. Define {c 1 < • • • < c n-k } = [n] \ {a 1 , . . . , a k } and {d 1 < • • • < d n-k } = [n] \ {b 1 , . . . , b k }.
Let f M be the affine permutation mapping b i to a i + n and d i to c i . Then f M is bounded because a i ≤ b i , which implies d i ≤ c i . This provides a bijection between rank sets for Gr(k, n) and members f of Let Λ be the ring of symmetric functions over Z, and φ : Λ → H * (Gr(k, n), Z) the ring homomorphism sending the Schur function s λ to the Schubert class σ λ , or to 0 if λ is not contained in a k × (n -k) rectangle. [START_REF] Coskun | A Littlewood-Richardson rule for two-step flag varieties[END_REF] gives a recursive rule to calculate the cohomology class of a rank variety. Since rank varieties are positroid varieties, Theorem 3.5 gives a more direct answer, namely that [Σ M ] is φ( Ff M ). The goal of this section is to show that [Σ M ] is actually represented by an ordinary Stanley symmetric function.

Bound(k, n) such that the subsequence of f (1) • • • f (n) with entries in [n] is increasing.
Theorem 4.1 For any rank variety

Σ M ⊆ Gr(k, n), there is a permutation w M such that [Σ M ] = φ(F w ).
Our strategy will be to replace a rank set M with a new rank set M in such a way that the truth of Theorem 4.1 for Σ M implies it for Σ M , and so that after enough replacements we end up with a rank variety Σ N = Π f where Ff is obviously an ordinary Stanley symmetric function.

Specifically, if M is a rank set, define a new rank set

κ(M ) = {[a, b + 1] : [a, b] ∈ M }.
We call the operation κ stretching. Say that M is stretched if every right endpoint is right of every left endpoint; that is, whenever S, T ∈ M , we have min(S) < max(T ). For any M , there is an m so that κ m (M ) is stretched. Given a rank variety Σ M in Gr(k, n), we always interpret Σ κM as a subvariety of Gr(k, n + 1). Let τ be the affine permutation τ (i

) = i + 1. Lemma 4.2 Suppose M is stretched and Σ M ⊆ Gr(k, n). Let b be minimal such that [a, b] ∈ M for some a, and let y = f M (b -1). Then τ -y+1 f M τ b-2 restricted to [n] is an ordinary permutation w ∈ S n , and Ff M = φ(F w ).
We now give a precise relationship between the classes of Σ M and Σ κM . Given a map ι : Gr(k, n) → Gr(k, n + 1), we get a pullback ι * : H p (Gr(k, n + 1), Z) → H p (Gr(k, n), Z).

Theorem 4.3 Let ι : Gr(k, n) → Gr(k, n + 1) be the inclusion induced by a linear inclusion

C n → C n+1 . Then ι * [Σ κM ] = [Σ M ].
The pullback ι * of such an inclusion sends σ λ to σ λ if λ ⊆ [k] × [n -k] and to 0 otherwise. Thus if [Σ κM ] = φ(g) for some symmetric function g, then [Σ M ] = φ(g) as well (here we are abusing notation since these two instances of φ are really different maps). In particular, if we iterate Theorem 4.3 until κ m M is stretched, then we have [Σ κ m M ] = φ(F w ) for some ordinary permutation w by Lemma 4.2, and hence [Σ M ] = φ(F w ), proving Theorem 4.1.

This argument gives a simple algorithm for taking a rank variety Σ M ⊆ Gr(k, n) and producing a permutation w M such that [Σ M ] = φ(F w M ).

Step 1. Choose m such that κ m M is stretched.

Step 2. Find b minimal such that [a, b] ∈ κ m M , and set y = f κ m M (b -1).

Step 3. Define w M ∈ S n by w 532 1 130 24586(10)7 9(11)(12)(15)(13)(17)(14) • • • Shift the window so that its leftmost entry is in position b -1 = 3:

M (i) = f κ m M (b -2 + i) -y + 1.
f κ 2 M = • • •
f κ 2 M = • • • 532 1 13024 586(10)79(11) (12)(15)(13)(17)(14) • • •
The entries of the window now fill out exactly the interval [5,11]. That is, τ -4 f κ 3 M τ 2 restricted to [7] is an ordinary permutation, namely w M = 1426357. Indeed, [Σ M ] = σ 22 is the class of a point, while Ff M = s 22 + s 31 -s 4 and F w M = s 22 + s 31 .

Degenerations of rank varieties

Let φ t,i→j be the linear transformation sending e i to te i + (1 -t)e j . For t = 0, the varieties φ t,i→j Σ M are all isomorphic, so they form a flat family (Eisenbud and Harris, 2000, Proposition III-56). The flat limit lim t→0 φ t,i→j Σ M then exists as a scheme (Hartshorne, 1977, Proposition 9.8). The key fact for us is that Σ M and lim t→0 φ t,i→j Σ M have the same Chow ring class, hence the same cohomology class. In this section we will show that for an appropriate choice of M , lim t→0 φ t,i→j Σ M contains the diagram variety X D(w) as an irreducible component. Other authors have used these degenerations or similar ones to calculate cohomology classes or K-theory classes of subvarieties of Grassmannian, including [START_REF] Coskun | A Littlewood-Richardson rule for two-step flag varieties[END_REF][START_REF] Vakil | A geometric Littlewood-Richardson rule[END_REF].

Define an operator C i→j on matrices of a fixed size as follows:

(C i→j A) pq =     
A pi if q = j and A pj = 0 0 if q = i and A pj = 0 A pq otherwise.

For example,

C 1→2     1 0 0 2 3 -7 0 0     =     0 1 0 2 3 -7 0 0     .
Sometimes we also apply C i→j to k-planes, or sets of k-planes. Strictly speaking this is ill-defined, since it can happen that rowspan A = rowspan A but rowspan C i→j A = rowspan C i→j A , so we only use this notation when the k-planes are represented by specific matrices.

Lemma 5.1 Say F is any subset of [k] × [n -k] and U is the set of k-planes rowspan(A) where A ij = 0 whenever (i, j) ∈ F . If rowspan A ∈ U and C i→j A has rank k, then rowspan C i→j A ∈ lim t→0 φ t,i→j U .
Rank varieties and diagram varieties both have dense open subsets to which Lemma 5.1 applies. We will apply this lemma to rank varieties, but it has an interesting interpretation for diagram varieties as well. Define C i→j on diagrams as on matrices (e.g. by viewing diagrams as 0,1-matrices). Lemma 5.1 shows that X Ci→j D ⊆ lim t→0 φ t,i→j X D , which implies that [X D ] -[X Ci→j D ] is a nonnegative linear combination of Schubert classes. On the other hand, [START_REF] James | Specht series for skew representations of symmetric groups[END_REF] showed that for the diagram Specht modules S D , there is always an S |D| -equivariant injection S Ci→j D → S D . Equivalently, s D -s Ci→j D is a nonnegative linear combination of Schur functions. A more powerful version of this connection is important in Liu's proofs of several cases of Conjectures 2 and 3 in [START_REF] Liu | Specht Modules and Schubert Varieties for General Diagrams[END_REF].

Given a permutation w ∈ S n , define a rank set

M (w) = {[w(i), i + n] : 1 ≤ i ≤ n}, so Σ M (w) ⊆ Gr(n, 2n). Then f M (w) = (n + 1) • • • (2n)(w(1) + 2n) • • • (w(n) + 2n) = (w × 12 • • • n)τ -n .
Here, for w ∈ S n and v ∈ S m , w × v is the permutation in S n+m sending i to w

(i) if i ≤ n and to v(i-n)+n otherwise. Thus Ff M (w) = Fw×12•••n = F w×12•••n = F w . This shows that [Σ M (w) ] = φ(F w ). Define C w = C n+1→w(1) • C n+2→w(2) • • • • • C 2n→w(n) φ t,w = φ t,n+1→w(1) • φ t,n+2→w(2) • • • • • φ t,2n→w(n) .
We will show that lim t→0 φ t,w Σ M (w) contains the diagram variety X D(w) as an irreducible component. First we give an explicit example of this degeneration. D(24153) .

                 = X •
By Lemma 5.1, this shows that X D(24153) ⊆ lim t→0 φ t,M Σ M (w) .

The argument of Example 5.2 works in general.

Theorem 5.3 The flat limit lim t→0 φ t,M Σ M (w) contains X D(w) as an irreducible component.

Since flat limits preserve cohomology classes, and [Σ M (w) ] = φ(F w ), the next theorem is an immediate corollary.

Theorem 5.4 φ(F w ) -X D(w) is a nonnegative combination of Schubert classes.

However, this difference of classes can be nonzero. Indeed, the counterexample D = {(1, 1), (2, 2), (3, 3), (4, 4)} to Conjecture 2 discussed in Section 2 provides an example. Take w = 21436587. Then D(w) = {(1, 1), (3, 3), (5, 5), (7, 7)} can be obtained from D by permuting rows and columns, and viewing D in a larger rectangle. Neither of these operations on diagrams affects s D or [X D ], identifying the latter with its pullback along a linear embedding of Gr(k, n) into Gr(k, n + 1) or Gr(k + 1, n + 1). Thus Conjecture 2 can fail for permutation diagrams.

  Definition 3.6[START_REF] Billey | Singularities of generalized Richardson varieties[END_REF]) A rank set is a finite set of intervals M = {[a 1 , b 1 ], . . . , [a k , b k ]} with a i ≤ b i positive integers,where all a i are distinct and all b i are distinct. Suppose M is a rank set with b ≤ n for all [a, b] ∈ M , and #M = k. If S is a set of positive integers, let S(M ) denote the set of intervals S ∈ M such that S ⊆ S. Coskun (2009) defines a closed subvariety Σ M of Gr(k, n) as the closure of the locus

Lemma 3. 8

 8 Let U M be the locus of k-planes with a basis {v S : S ∈ M }, indexed by the intervals in M , such that the coefficient of e i in v S is nonzero if and only if i ∈ S. Then U M = Σ M . Example 3.9 If M = {[1, 2], [3, 4], [2, 5]} and n = 5, then

  Example 3.10 Take M = {[1, 1], [3, 4], [2, 5]} and n = 5 as above. Then b 1 = 1, b 2 = 4, b 3 = 5 and a 1 = 1, a 2 = 3, a 3 = 2, so d 1 = 2, d 2 = 3 while c 1 = 4, c 2 = 5. Hence f M = 64587. Theorem 3.11 The rank variety Σ M is the positroid variety Π f M .

Example 4. 4

 4 Let M = {[1, 1], [3, 3]} in Gr(2, 4), so Σ M has a dense open subset consisting of rowspans of matrices with the form * That is, Σ M is the single point e 1 , e 3 . The minimal m such that κ m M is stretched is m = 3, and κ 3 M = {[1, 4], [3, 7]}. We have f M = 5274 and f κ 3 M = 24586(10)7. The minimal b with [a, b] ∈ κ 2 M is b = 4, and then y = f κ 2 M (b -1) = 5. Write out more entries of f κ 2 M , demarcating the window from 1 to n + m = 7 with vertical bars and denoting negative numbers with horizontal bars:

Example 5. 2 ..

 2 Take n = 5 and w = 24153, so M (w) = {[2, 6], [4, 7], [1, 8], [5, 9], [3, 10]}. Then Σ M (w) Here C w = C 6→2 C 7→4 C 8→1 C 9→5 C 10→3 , andC w Σ M (w)Notice that the 0's forced in columns 1 through 5 of these matrices form the diagram D(24153). Moreover, on the open set where columns 6 through 10 are invertible, we can clear out the underlined entries below the diagonal without affecting the pattern of 0's and * 's in columns 1 through 5. Hence,C w Σ M (w)
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