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Combinatorial Hopf Algebras of Simplicial
Complexes

Carolina Benedetti, Joshua Hallam, and John Machacek
Department of Mathematics, Michigan State University, USA

Abstract. We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its an-
tipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf alge-
bra. The characters of these Hopf algebras give rise to symmetric functions that encode information about colorings
of simplicial complexes and their f-vectors. We also use characters to give a generalization of Stanley’s (−1)-color
theorem.

Résumé. Nous considérons une algèbre de Hopf de complexes simpliciaux et fournissons une formule sans mul-
tiplicité pour son antipode. On obtient ensuite une famille de algèbres de Hopf combinatoires en définissant une
famille de caractères sur cette algèbre de Hopf. Les caractères de ces algèbres de Hopf donner lieu à des fonctions
symétriques qui encode de l’information sur les coloriages du complexe simplicial ainsi que son vecteur-f. Nous
allons également utiliser des caractères pour donner une généralisation du théorème (−1) de Stanley.

Keywords: Combinatorial Hopf algebra, quasi-symmetric functions, simplicial complex, colorings.

1 Introduction
As defined in [ABS06], a combinatorial Hopf algebra is a pair (H, ζ) whereH is a graded connected Hopf
algebra over some field, K, and ζ : H → K is an algebra map called a character of H. Combinatorial
Hopf algebras (CHAs) typically have bases indexed by combinatorial objects. Moreover, characters of a
CHA often give rise to enumerative information about these combinatorial objects.

The emerging field of combinatorial Hopf algebras provides an appropriate environment to study sub-
jects with a rich combinatorial structure that originate in other areas of mathematics such as topology,
algebra, and geometry. In this paper we study simplicial complexes by endowing them with a Hopf al-
gebra structure. This Hopf algebra, which we denote by A, has been defined in [GSJ], but the character
defined there differs from the characters we will define here.

The Hopf algebra of graphs G, studied in [Sch94, HM12, BS], has a similar Hopf structure as the one
we will use. Here we will provide a cancellation-free formula for the antipode ofA and we show how this
antipode generalizes the one for G. Also, we will explore colorings associated with simplicial complexes.
Then, making use of characters, we will derive some combinatorial identities. In particular, in Theorem 6
we will obtain a generalized version of Stanley’s (−1)-color theorem [Sta73].

A beautiful result in [ABS06] associates a quasi-symmetric function to every object in a CHA. This
quasi-symmetric function often encodes important information about the CHA. In the case of graphs, one
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obtains Stanley’s chromatic symmetric function. In our case, the quasi-symmetric functions that we obtain
encode colorings of the simplicial complex as well its f -vector.

The paper is organized as follows. In Section 2 we review the definitions of combinatorial Hopf algebras
and simplicial complexes. We then introduce the Hopf algebra, A, of simplicial complexes. Section 3
provides a cancellation-free formula for the antipode of A. Section 4 introduces a family of characters
on A giving rise to families of combinatorial Hopf algebras. Using these characters, we explore the
quasi-symmetric functions associated to them. Finally, we discuss some future work in Section 5.

2 A Hopf algebra of simplicial complexes
2.1 Hopf algebra basics
We now review some background material on Hopf algebras. For a more complete overview, the reader
is encouraged to see [GR]. Let H be a vector space over a field K. Let Id be the identity map on H. We
call H an associative K-algebra with unit 1 provided H has a K-linear map m : H ⊗ H → H with the
property that m ◦ (m ⊗ Id) = m ◦ (Id ⊗m). Additionally, the unit 1 can be associated with a K-linear
map u : K→ H defined by t 7→ t · 1. The maps m and u must be compatible so that

m ◦ (Id⊗ u) = m ◦ (u⊗ Id) = Id.

A coalgebra is a vector space D over K equipped with a coproduct ∆ : D → D ⊗ D and a counit
ε : D → K. Both ∆ and ε must be K-linear maps. The coproduct is coassociative so that (∆⊗ Id) ◦∆ =
(Id⊗∆) ◦∆ and must be compatible with ε. That is,

(ε⊗ Id) ◦∆ = (Id⊗ ε) ◦∆ = Id.

If an algebra (H,m, u) is also equipped with a coalgebra structure given by ∆ and ε, then we say that H
is a bialgebra provided ∆ and ε are algebra homomorphisms.

Definition 1 A Hopf algebra H is a K-bialgebra together with a K-linear map S : H → H called the
antipode. This map must satisfy the following∑

(a)

S(a1)a2 = u(ε(a)) =
∑
(a)

a1S(a2) where ∆(a) =
∑
(a)

a1 ⊗ a2 in Sweedler notation.

Remark: The definition of the antipode given above is rather superficial. The antipode is in fact the
inverse of the identity map onH under the convolution product. See [GR, Definition 1.30] for details.

We say that a bialgebraH is graded if it can be decomposed into a direct sum

H =
⊕
n≥0

Hn

where m(Hi ⊗Hj) ⊆ Hi+j , u(K) ⊆ H0, ∆(Hn) ⊆
⊕n

i=0Hi ⊗Hn−i and for n ≥ 1, ε(Hn) = 0. We
callH connected if H0

∼= K.
Any graded and connected K-bialgebra is a Hopf algebra since the antipode can be defined recursively.

In many instances computing the antipode of a given Hopf algebra is a very difficult problem. How-
ever, we will provide an explicit cancellation-free formula for the antipode in the Hopf algebra of finite
simplicial complexes that we will study here. Now we will introduce some basic concepts about the
combinatorial objects we are interested in.
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Fig. 1: A simplicial complex and its 1-dimensional skeleton.

2.2 Simplicial complexes
A finite (abstract) simplicial complex, Γ, is a collection of subsets of some finite set such that if X ∈ Γ
and Y ⊆ X , then Y ∈ Γ. The elements of Γ are called faces and the maximal (with respect to inclusion)
faces are called facets. Notice that the facets completely determine the simplicial complex. If X is a face
of Γ then the dimension of X is dimX = |X| − 1. The faces of dimension 0 are called vertices of Γ
and the set of vertices will be denoted V (Γ) where we identify {v} with v. For instance, if Γ has facets
{1, 2, 3} and {3, 4} then V (Γ) = {1, 2, 3, 4}. The dimension of Γ, written as dim Γ, is the maximum of
the dimensions of its facets.

If Γ and Θ are simplicial complexes with vertex sets V1 and V2, the disjoint union of Γ and Θ is the
simplicial complex Γ ] Θ with vertex set V1 ] V2 and faces X such that X ∈ Γ or X ∈ Θ. If k is a
nonnegative integer, the k-skeleton of Γ is the collection of faces of Γ with dimension no greater than
k. We will denote the k-skeleton of Γ by Γ(k). For example, if Γ has facets {1, 2, 3} and {3, 4}, then
Γ(1) is the simplicial complex with facets {1, 2}, {1, 3}, {2, 3} and {3, 4}. Figure 1 provides a pictorial
representation of this example. Notice that a simple graph gives rise to a simplicial complex of dimension
1 or less. Conversely, a simplicial complex of dimension 1 or less can be thought of as a simple graph.

Let Γ and V (Γ) be defined as above. Given T ⊆ V (Γ), define the induced simplicial complex of Γ on
T , denoted by ΓT , to be the simplicial complex with faces {X ∩ T | X ∈ Γ}. So if we return to our
example with Γ having facets {1, 2, 3}, {3, 4} and if T = {1, 3, 4}, then ΓT has facets {1, 3} and {1, 4}.

Now we define a Hopf algebra structure on simplicial complexes as in [GSJ]. Let K be a field and
let A =

⊕
n≥0An where An is the K-linear span of isomorphism classes of simplicial complexes on n

vertices. We denote by ∅ the simplicial complex with no vertices. Given a simplicial complex Γ, we will
denote its isomorphism class by [Γ].

Define the product m : A⊗A → A by

m ([Γ]⊗ [Θ]) = [Γ] ] [Θ].

Notice that with this multiplication, the unit u : K→ A is given by

u(1) = [∅].

The coproduct ∆ : A → A⊗A, is given by

∆([Γ]) =
∑

T⊆V (Γ)

[ΓT ]⊗ [ΓV (Γ)−T ].

Additionally, define the counit of A by
ε([Γ]) = δ[Γ],[∅]
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where δ[Γ],[∅] is the Kronecker delta.
It follows that A is a graded, connected K-bialgebra and hence a Hopf algebra. Also, it is not hard to

see that A is commutative and cocommutative. In fact, the reader might notice the resemblance of this
Hopf algebra with the Hopf algebra of graphs defined in [Sch94]. In the next section, we turn our attention
to the antipode of the Hopf algebra A and we will provide a cancellation-free formula for it. From now
on, we will drop the brackets from the notation [Γ], keeping in mind that we are considering isomorphism
classes of simplicial complexes.

3 A cancellation-free formula for the antipode
The formula for the antipode ofA we give in this section is an extension of the formula for the antipode of
graphs that was first shown in [HM12]. In [BS, Theorem 3.1] the authors use involutions and Takeuchi’s
formula [Tak71] to provide a proof for the formula of the antipode of graphs. One can use a slight
modification of this proof and obtain a cancellation-free formula for the antipode in A, whose proof we
omit due to its similarity to [BS, Theorem 3.1].

Before stating the main result in this section, we review some basic ideas from graph theory. Suppose
G = (V,E) is a graph. A flat, F , of G is a collection of edges such that in the graph with vertex set V
and edge set F , each connected component is an induced subgraph of G. If F is a flat then we will denote
the subgraph of G with vertex set V and edges F by GV,F and its number of connected components by
c(F ). The set of flats of a graph, G, will be denoted by F(G). We denote by G/F the graph obtained
from G by contracting the edges in F . Recall that an orientation of a graph is called acyclic if it does not
contain any directed cycles. The number of acyclic orientations of a graph G will be denoted by a(G).
Let Γ be a simplicial complex. Given a flat F in Γ(1) define ΓV,F to be the subcomplex of Γ, with vertex
set V = V (Γ), whose faces are given by

{X ∈ Γ : X(1) ⊆ Γ
(1)
V,F }.

For example, if we again take Γ to have facets {1, 2, 3}, {3, 4} and let F = {{1, 2}, {1, 3}, {2, 3}} then
ΓV,F is the simplicial complex with facets {1, 2, 3}, {4}.

Theorem 2 Let Γ ∈ An be a basis element where n ≥ 1. Then

S(Γ) =
∑

F∈F(Γ(1))

(−1)c(F )a(Γ(1)/F )ΓV,F

where the sum runs over all flats of the 1-skeleton, Γ(1).

Notice that if dim Γ ≤ 1 then S(Γ) coincides with the antipode formula of the Hopf algebra of graphs
in [HM12].

Let us return to our previous example with Γ generated by the facets {1, 2, 3} and {3, 4}. For each flat
F in Γ(1), we find the number of connected components of F and the number of acyclic orientations of
Γ(1)/F . This information is included in Table 1. Using the information from the table, we see that

S(Γ) = 12K4 − 18(K2 ]K2) + 2(K2 ]K2) + 4(P3 ]K1) + 2(T ]K1)− Γ (1)

whereKn is the complete graph on n vertices, Kn is the complement of the complete graph on n vertices,
Pn is the path on n vertices and T is the 2-simplex. Figure 2 gives a pictorial representation of this
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F ∈ F(Γ(1)) (−1)c(F ) a(Γ(1)/F )
∅ (−1)4 12
{1, 2} (−1)3 4
{1, 3} (−1)3 4
{2, 3} (−1)3 4
{3, 4} (−1)3 6
{1, 2}, {3, 4} (−1)2 2
{1, 3}, {3, 4} (−1)2 2
{2, 3}, {3, 4} (−1)2 2
{1, 2}, {1, 3}, {2, 3} (−1)2 2
{1, 2}, {1, 3}, {2, 3}, {3, 4} (−1)1 1

Tab. 1: Information to compute the antipode of Γ.

S = 12 - 18 +2 +4 + 2 -

Fig. 2: Antipode of an element in A4.

calculation. We note here that once we have this information, we can easily find the antipode of the
simplicial complex Γ(1) by just taking the 1-skeleton of each of the terms in the sum for the antipode. So
we immediately get that

S(Γ(1)) = 12K4 − 18(K2 ]K2) + 2(K2 ]K2) + 4(P3 ]K1) + 2(K3 ]K1)− Γ(1).

More generally, let A(k) be the K-linear span of isomorphism classes of simplicial complexes of di-
mension at most k. That is, complexes Γ ∈ A such that Γ(k) = Γ. For each k ≥ 0, we define the
map

φk : A → A(k)

Γ 7→ Γ(k)

which takes the k-skeleton of a simplicial complex. We extend this map linearly to all of A.

Proposition 3 For any nonnegative integer k, A(k) is a Hopf subalgebra of A and the map φk : A →
A(k) is a Hopf algebra homomorphism.

Proof: Let Γ and Θ be simplicial complexes. Since dim Γ ] Θ = max{dim Γ,dim Θ} and given that
dim ΓT ≤ dim Γ for any T ⊆ V (Γ), it follows that A(k) is in fact a Hopf subalgebra. Observe that

(Γ ]Θ)(k) = {X : X ∈ Γ ]Θ, |X| < k} = {X ∈ Γ : |X| < k} ] {X ∈ Θ : |X| < k}.

Therefore (Γ ]Θ)(k) = Γ(k) ]Θ(k) and φk is an algebra homomorphism. Next, since

(ΓT )(k) = {X ∈ Γ : X ⊆ T, |X| < k} = (Γ(k))T
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we have ∑
T⊆V (Γ)

(ΓT )(k) ⊗ (ΓV (Γ)−T )(k) =
∑

T⊆V (Γ)

Γ
(k)
T ⊗ Γ

(k)
V (Γ)−T

and so φk is also a coalgebra homomorphism. We conclude that φk is a Hopf algebra homomorphism. 2

Corollary 4 For any simplicial complex Γ and nonnegative integer k if

S(Γ) =

m∑
i=1

ciΓi,

then

S(Γ(k)) =

m∑
i=1

ciΓ
(k)
i .

This corollary follows from the previous proposition along with the fact that for any Hopf algebra ho-
momorphism β : H1 → H2 one has β(SH1(h)) = SH2(β(h)) for any h ∈ H1 (see [GR, Proposition
1.46]).

Looking at the expression for the antipode in equation (1), we see that if we add all the coefficients
together we obtain 1. It turns out that the sum of the coefficients of the antipode of a basis element is
always (−1)n where n is the number of vertices of the simplicial complex. We will derive this fact using
characters and quasi-symmetric functions in the next section (see Corollary 7).

4 Characters and quasi-symmetric functions
Now that we have endowed A with a Hopf algebra structure, we will proceed to define a family of
characters on A. This will give rise to a family of combinatorial Hopf algebras. We will then show how
these characters give combinatorial information about simplicial complexes.

4.1 The Hopf algebra QSym

We review some key facts about characters and quasi-symmetric functions. More details can be found
in [ABS06]. The Hopf algebra of quasi-symmetric functionsQSym is graded asQSym =

⊕
n≥0QSymn

where QSymn is spanned linearly over K by {Mα}α�n. Here Mα is defined by

Mα :=
∑

i1<i2<···<il

xα1
i1
xα2
i2
· · ·xαl

il

where α = (α1, . . . , αl) is a composition of n. The basis given by {Mα} is known as the monomial basis
of QSym. We let M() = 1, which spans QSym0, where () is the composition of 0 with no parts.

Let the map ζQ : QSym → K be defined as ζQ(f) = f(1, 0, 0, . . . ) for a quasi-symmetric function
f(x1, x2, x3, . . . ). Given that ζQ is an evaluation map, it is also an algebra map and hence a character
of QSym. This endows QSym with a combinatorial Hopf algebra structure. Moreover, Theorem 4.1
of [ABS06] states that given a combinatorial Hopf algebra (H, ζ) there is a unique Hopf algebra homo-
morphism

Ψζ : H → QSym.
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Fig. 3: A 2-coloring of Γ in (a) and a 3-coloring of Γ in (b).

Given h ∈ Hn, the map Ψζ is defined as

Ψζ(h) =
∑
α�n

ζα(h)Mα (2)

with ζα given by the composition of functions

H ∆k−1

−−−→ H⊗k −→ Hα1
⊗Hα2

⊗ · · · ⊗Hαk

ζ⊗k

−−→ K

where the unlabeled map in the canonical projection and α = (α1, α2, . . . , αk).
Observe that if the Hopf algebraH is cocommutative, as is the case forA, then equation (2) immediately

gives that Ψζ(h) is actually a symmetric function. In particular,

Ψζ(h) =
∑
λ`n

ζλ(h)mλ (3)

where
mλ =

∑
α

Mα

summing over all the compositions α that can be rearranged to the partition λ. For instance, the composi-
tions (1, 2) and (2, 1) rearrange to the partition (2, 1). In Section 4.4, we will see how equation (3) allows
us to obtain the f -vector of a simplicial complex. Hence, one can obtain the topologically invariant Euler
characteristic.

4.2 Colorings
Let P denote the set of positive integers and let G be a graph with vertex set V . A coloring of G is a map
f : V → P. We refer to f(u) as the color of u. A proper coloring of V is a coloring such that f(u) 6= f(v)
whenever uv is an edge of G. Given a simplicial complex Γ and s ∈ N, define an s-simplicial coloring(i)

to be a coloring of V (Γ) such that any face contains at most s vertices using a given color. Notice that
any 1-simplicial coloring of Γ is simply a proper coloring of its 1-skeleton Γ(1). In Figure 3 we use our
earlier example and depict two colorings of Γ using the colors {x, y, z} ⊆ P.

Given a graph G, the number of proper colorings using the colors {1, 2, . . . , t} is the well-known
chromatic polynomial, χ(G; t). For a simplicial complex Γ the number of s-simplicial colorings of V (Γ)

(i) In [DMN] the authors use the term (P, s)-coloring for an s-simplicial coloring which uses some palette of colors P ⊆ P. To
avoid confusion with terminology in graphs, we have adopted the term s-simplicial coloring.
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using colors {1, 2, . . . , t} is called the s-chromatic polynomial, χs(Γ; t), as defined in [Nor12]. Although
it is not obvious that χs(Γ; t) is a polynomial, we will see that this is the case once we realize it as an
evaluation of a certain symmetric function.

Stanley provided a generalization (see [Sta95]) of the chromatic polynomial of a graph G by defining

ψ(G;x1, x2, . . . ) =
∑
f

∏
i≥1

x
|f−1(i)|
i

where the sum is over proper colorings f : V → P. This formal power series is known as Stanley’s
chromatic symmetric function. For a simplicial complex Γ we define the s-chromatic symmetric function
as

ψs(Γ;x1, x2, . . . ) =
∑
f

∏
i≥1

x
|f−1(i)|
i

where now the sum is over s-simplicial colorings f : V → P. Notice that when s = 1 we obtain
Stanley’s chromatic symmetric function. The s-chromatic polynomial, χs(Γ; t), is a specialization of
ψs(Γ;x1, x2, . . . ) at xi = 1 for 1 ≤ i ≤ t and xi = 0 for i > t. In [GR] the authors refer to this as the
principal specialization at t. It will be denoted by ps1(ψs(Γ))(t). Summarizing we have

ps1(ψs(Γ))(t) = χs(Γ; t)

for s, t ≥ 1.
Define the map ζs : A → K by

ζs(Γ) =

{
1 dim Γ < s

0 dim Γ ≥ s

for each s ≥ 1, and extend linearly. Notice that ζs is an algebra map, for all s, and hence a character. We
then get a family of combinatorial Hopf algebras {(A, ζs) : s ≥ 1}.

Theorem 5 Fix s and consider the combinatorial Hopf algebra (A, ζs). For any basis element Γ ∈ A,
we have that Ψζs(Γ) = ψs(Γ;x1, x2, . . . ).

Proof: Consider the formula in equation (2). Given a simplicial complex Γ ∈ An and a composition
α = (α1, α2, . . . , αl) � n, we have that the coefficient of Mα is the number of ordered set partitions
V1 ] V2 ] · · · ] Vl of V (Γ) such that |Vi| = αi and dim ΓVi < s for each i. In an s-simplicial coloring,
every element of a subset T of V (Γ) can be assigned the same color if and only if dim ΓT < s. Thus
the coefficient of Mα counts s-simplicial colorings using only colors {j1 < j2 < · · · < jl} ⊆ P where
|f−1(ji)| = αi for each i. The result follows. 2

4.3 Acyclic orientations and chromatic polynomial evaluations
In this section, we use our antipode formula along with the characters defined above to interpret certain
evaluations of the s-chromatic polynomial. Given any character ζ : A → K, the following identity holds
(see [GR, Proposition 1.45])

ζ−1 = ζ ◦ S
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where S is the antipode inA and ζ−1 is the inverse of ζ under convolution. In other words, ζ−1 ?ζ = u◦ε
where ζ−1 ? ζ = m ◦ (ζ−1 ⊗ ζ) ◦∆.

Now, since ps1(ψs(Γ))(t) = χs(Γ; t), using [GR, Proposition 7.7] we get

ζ−1
s (Γ) = ps1(ψs(Γ))(−1) = χs(Γ;−1). (4)

This allows us to prove the following theorem.

Theorem 6 Let Γ ∈ An be a basis element and let s be a positive integer. Then

χs(Γ;−1) =
∑

F∈F(Γ(1))
dim ΓV,F<s

(−1)c(F )a(Γ(1)/F ).

Proof: Using equation (4), the fact that ζ−1
s = ζs ◦ S, and our antipode formula in Theorem 2 we have

χs(Γ;−1) = ζs(S(Γ))

=
∑

F∈F(Γ(1))

(−1)c(F )a(Γ(1)/F )ζs(ΓV,F )

=
∑

F∈F(Γ(1))
dim ΓV,F<s

(−1)c(F )a(Γ(1)/F )

and the result is proven. 2

This result shows that like the chromatic polynomial for graphs, the evaluation at t = −1 of the s-
chromatic polynomial for simplicial complexes has a combinatorial interpretation in terms of counting
acyclic orientations.

Now we discuss some special cases of Theorem 6 that are of interest. If we take the character ζ1 we
get that χ1(Γ;−1) = (−1)na(Γ(1)) and we count the number of acyclic orientations of the 1-skeleton.
The authors in [HM12] also derive this expression for the number of acyclic orientations of graphs using
characters, although it was originally noticed by Stanley [Sta73]. We also get the following corollary
when we take s to be larger than the dimension of a given simplicial complex.

Corollary 7 Let Γ be a simplicial complex on a vertex set of size n. Then we have the following

(−1)n =
∑

F∈F(Γ(1))

(−1)c(F )a(Γ(1)/F ). (5)

Proof: If we take s > dim Γ we have χs(Γ; t) = tn since there is no restriction on coloring. So in that
case, we have χs(Γ;−1) = (−1)n and the result is obtained from Theorem 6 by noting dim ΓV,F < s for
any F since dim Γ < s. 2

Recall that if F is a flat of G, then c(F ) = n− rk(F ) where n = |V (G)| and rk(F ) is the number of
edges in a maximal spanning forest of GV,F . We use the notation rk(F ) since this is also the rank of the
flat in the cycle matroid of the graph. With this in mind, equation (5) can be rewritten as

(−1)n =
∑

F∈F(G)

(−1)n−rk(F )a(G/F ).
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Dividing both sides by (−1)n, one obtains

1 =
∑

F∈F(G)

(−1)rk(F )a(G/F ). (6)

For the flat F = E(G), we have a(G/F ) = 1. It follows that,

1− (−1)rk(E(G)) =
∑

F∈F(G),F 6=E(G)

(−1)rk(F )a(G/F ).

In particular, when rk(E(G)) is even, we have∑
F∈F(G)
rk(F ) odd

a(G/F ) =
∑

F∈F(G),F 6=E(G)
rk(F ) even

a(G/F ).

Currently we do not have a bijective proof of this result, although it would be interesting if we could find
one.

4.4 The f -vector
Given a simplicial complex Γ with dim Γ = d, the f -vector of Γ is defined to be (f0, f1, . . . , fd) where
fi is the number of faces of dimension i in Γ. For example, if Γ is the simplicial complex generated
by the facets {1, 2, 3} and {3, 4}, then Γ has f -vector (4, 4, 1). The next proposition tells us how to
obtain the f -vector of a simplicial complex Γ ∈ A, making use of the functions Ψζs defined previously.
Let [mλ]Ψζs(Γ) denote the coefficient of mλ in Ψζs(Γ) expanded in the monomial basis {mλ}, and set
Ψζ0(Γ) = 1. Then we have the following proposition.

Proposition 8 Let Γ ∈ An be a simplicial complex of dimension d. Let fi be the number of faces of
dimension i in Γ, then

(n− i)!fi−1 = [m(i,1n−i)]
(
Ψζi(Γ)−Ψζi−1

(Γ)
)
.

Proof: The coefficient ofm(i,1n−i) in Ψζi(Γ) is (n−i)!
(
n
i

)
. This follows since any collection of i vertices

has dimension at most i− 1 and so when we apply ζi none of the terms indexed by ordered set partitions
with one nontrivial block of size i vanishes. There are

(
n
i

)
choices for this block. The remaining n − i

blocks, each consisting of a single vertex, can be ordered in any way and so the total number of possible
ordered set partitions is (n− i)!

(
n
i

)
.

To find the coefficient of m(i,1n−i) in Ψζi−1
(Γ), we must pick ordered set partitions of V (Γ) with one

nontrivial block of size i such that this i-element subset of V (Γ) has dimension strictly less than i− 1 in
Γ. The number of such ordered set partitions is (n− i)! multiplied by the number of i element subsets of
n which is not contained in an i− 1 dimensional face.

Therefore,
[mi,1n−i ]

(
Ψζi(Γ)−Ψζi−1

(Γ)
)

(n− i)!
is the total number of i-element subsets of V (Γ) minus the number of i-element subsets of V (Γ) which
have dimension strictly less than i− 1. The result now follows. 2
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5 Future work
1. Since the number of acyclic orientations of a graph is same as the number of non-broken circuit sets

of the graph, we could reinterpret equation (6) as a statement only about the cycle matroid of the
graph. In the future, we would like to investigate if a similar equation holds for any matroid.

2. We have shown how to obtain the f -vector of any simplicial complex using quasi-symmetric func-
tions. For some particular complexes, the f -vector can be obtained as coefficients of the polynomial
obtained by evaluating Ψζs(x1, x2, . . . ) at (q, 1, 0, . . . ). However, there are examples where this is
not the case. We are interested in obtaining the f -vector of arbitrary complexes by means of similar
evaluations.

3. In [ABS06], the authors define the odd and even subalgebra of a combinatorial Hopf algebra. We
want to explore these subalgebras together with the generalized Dehn-Sommerville relations de-
rived from them. In particular, we want to explore how the generalized Dehn-Sommerville relations
associated to the characters defined here compare to the Dehn-Sommerville equations of simplicial
complexes.

References
[ABS06] M. Aguiar, N. Bergeron, and F. Sottile. Combinatorial Hopf algebras and generalized Dehn-

Sommerville relations. Compositio Mathematica, 142:1–30, 2006.

[BS] C. Benedetti and B. Sagan. Antipodes and involutions. arXiv:1410.5023.

[DMN] N. Dobrinskaya, J. M. Møller, and D. Notbohm. Vertex colorings of simplicial complexes.
arXiv:1007.0710.

[GR] D. Grinberg and V. Reiner. Hopf algebras in combinatorics. arXiv:1409.8356.

[GSJ] V. Grujic, T. Stojadinovic, and D. Jojic. Generalized Dehn-Sommerville relations for hyper-
graphs. arXiv:1402.0421.

[HM12] B. Humpert and J. Martin. The incidence Hopf algebra of graphs. SIAM J. Discrete Math.,
26(2):555–570, 2012.

[Nor12] G. Nord. The s-chromatic polynomial. Master’s thesis, Universiteit van Amsterdam, 2012.

[Sch94] W. Schmitt. Incidence Hopf algebras. Journal of Pure and Applied Algebra, 96:299–230, 1994.

[Sta73] Richard P. Stanley. Acyclic orientations of graphs. Discrete Math., 5:171–178, 1973.

[Sta95] Richard P. Stanley. A symmetric function generalization of the chromatic polynomial of a
graph. Advances in Math., 111:166–194, 1995.

[Tak71] M. Takeuchi. Free Hopf algebras generated by coalgebras. J. Math. Soc. Japan, 23:561–582,
1971.



960 Carolina Benedetti, Joshua Hallam, and John Machacek


	Introduction
	A Hopf algebra of simplicial complexes
	Hopf algebra basics
	Simplicial complexes

	A cancellation-free formula for the antipode
	Characters and quasi-symmetric functions
	The Hopf algebra QSym
	Colorings
	Acyclic orientations and chromatic polynomial evaluations
	The f-vector

	Future work

