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Mixed volumes of hypersimplices

Gaku Liu1†

1Massachusetts Institute of Technology, USA

Abstract. In this extended abstract we consider mixed volumes of combinations of hypersimplices. These numbers,
called mixed Eulerian numbers, were first considered by A. Postnikov and were shown to satisfy many properties
related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpre-
tation for mixed Eulerian numbers and prove the above properties combinatorially. In particular, we show that each
mixed Eulerian number enumerates a certain set of permutations in Sn. We also prove several new properties of
mixed Eulerian numbers using our methods. Finally, we consider a type B analogue of mixed Eulerian numbers and
give an analogous combinatorial interpretation for these numbers.

Résumé. Dans ce résumé étendu nous considérons les volumes mixtes de combinaisons d’hyper-simplexes. Ces
nombres, appelés les nombres Eulériens mixtes, ont été pour la première fois étudiés par A. Postnikov, et il a été
montré qu’ils satisfont à de nombreuses propriétés reliées aux nombres Eulériens, au nombres de Catalan, aux co-
efficients binomiaux, etc. Nous donnons une interprétation combinatoire générale des nombres Eulériens mixtes, et
nous prouvons combinatoirement les propriétés mentionnées ci-dessus. En particulier, nous montrons que chaque
nombre Eulérien mixte compte les éléments d’un certain sous-ensemble de l’ensemble des permutations Sn. Nous
établissons également plusieurs nouvelles propriétés des nombres Eulériens mixtes grâce à notre méthode. Pour finir,
nous introduisons une généralisation en type B des nombres Eulériens mixtes, et nous en donnons une interprétation
combinatoire analogue.

Keywords: Hypersimplex, mixed volume, Eulerian numbers

1 Introduction
The classical Eulerian number A(n, k) counts the number of permutations in Sn with k − 1 descents.
They arise as the coefficients of Eulerian polynomials and as volumes of hypersimplices. These num-
bers have been shown to satisfy many properties which appear combinatorial in nature; see [6]. In this
extended abstract we give a combinatorial definition of mixed Eulerian numbers, which we use to prove
both previous and new results.

For integers 1 ≤ k ≤ n, the hypersimplex ∆k,n ⊂ Rn+1 is the convex hull of all points of the form

ei1 + ei2 + · · ·+ eik
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where 1 ≤ i1 < i2 · · · < ik ≤ n + 1 and ei is the i-th standard basis vector. Thus, ∆k,n is an n-
dimensional polytope which lies in the hyperplane x1 + · · · + xn+1 = k. Given a polytope P ⊂ Rn+1

which lies in a hyperplane x1+ · · ·+xn+1 = α for some α ∈ R, we define its (normalized) volume VolP
to be the usual n-dimensional volume of the projection of P onto the first n coordinates. It is a classical
result [4] that n! Vol ∆k,n equals the Eulerian number A(n, k).

We now define the mixed volume of a set of polytopes. Given a polytope P and a real number λ ≥ 0,
let λP = {λx | x ∈ P}. Given polytopes P1, . . . , Pm ⊂ Rn, let their Minkowski sum be

P1 + · · ·+ Pm = {x1 + · · ·+ xm | xi ∈ P for all i}.

For nonnegative real numbers λ1, . . . , λm, the function

f(λ1, . . . , λm) = Vol(λ1P1 + · · ·+ λmPm)

is known to be a homogeneous polynomial of degree n in the variables λ1, . . . , λm. Hence there is a
unique symmetric function Vol defines on n-tuples of polytopes in Rn such that

f(λ1, . . . , λm) =

m∑
i1,...,in=1

Vol(Pi1 , . . . , Pin)λi1 · · ·λin .

The number Vol(P1, . . . , Pn) is called the mixed volume of P1, . . . , Pn. Mixed volumes of lattice poly-
topes have important connections to algebraic geometry, where they count the number of solutions to
generic systems of polynomial equations; see [1]. If P1 = · · · = Pn = P , then Vol(P1, . . . , Pn) equals
the ordinary volume Vol(P ). If P1, . . . , Pm ⊂ Rn+1 and each Pi lies in a hyperplane x1+· · ·+xn+1 = αi
for some αi ∈ R, then we define

f(λ1, . . . , λm) = Vol(λ1P1 + · · ·+ λmPm)

in terms of the normalized volume defined previously, and we define the mixed volume Vol(P1, . . . , Pn)
analogously.

Let c1, c2, . . . , cn be nonnegative integers such that c1 + · · ·+ cn = n. We define

Ac1,...,cn = n! Vol(∆c1
1,n,∆

c2
2,n, . . . ,∆

cn
n,n)

where (∆c1
1,n,∆

c2
2,n, . . . ,∆

cn
n,n) denotes the n-tuple with c1 entries ∆1,n, c2 entries ∆2,n, and so on. The

numbers Ac1,...,cn are called mixed Eulerian numbers, and were introduced by Postnikov in [6]. It is
immediate that if ck = n and ci = 0 for all i 6= k, then Ac1,...,cn = A(n, k). Furthermore, the result of
Ehrenborg, Readdy, and Steingrı́msson [3] states that if ck−1 = r, ck = n− r, and ci = 0 for i 6= k − 1,
k, then Ac1,...,cn equals the number of permutations w ∈ Sn+1 with k − 1 descents and w1 = r + 1. The
mixed Eulerian numbers satisfy many other remarkable properties; for example, we have A1,...,1 = n!,
Ak,0,...,0,n−k =

(
n
k

)
, andAc1,...,cn = 1c12c2 · · ·ncn if c1+· · ·+ci ≥ i for all i. These results were proven

in [6] using algebraic and geometric methods. Additional formulas involving mixed Eulerian numbers and
their generalizations to other root systems were derived by Croitoru in [2].

In this extended abstract, the main result is that each mixed Eulerian number enumerates a certain well-
define set of permutations in Sn. (When ck = n and ci = 0 for all i 6= k, this set of permutations is
precisely the set of permutations with k − 1 descents.) We sketch how the above results arise from this
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combinatorial interpretation. We also give some new identities which follow from this interpretation. For
example, we have thatAc1,...,cn ≤ 1c12c2 · · ·ncn for every mixed Eulerian number. We also give a simple
formula forAc1,...,cn when the only nonzero ci are c1 and ck for some k 6= 1. This number appeared in the
work of Michałek et. al. [5] during their study of exponential families arising from elementary symmetric
polynomials.

In addition, we define the polytope Γk,n ⊂ Rn to be the convex hull of all points of the form ±ei1 ±
ei2 ± · · · ± eik where 1 ≤ i1 < · · · < ik ≤ n. In terms of Coxeter groups, the ∆k,n correspond to
the group An and the Γk,n correspond to the group Bn. For nonnegative integers c1, . . . , cn such that
c1 + · · ·+ cn = n, define

Bc1,...,cn = n! Vol(Γc11,n,Γ
c2
2,n, . . . ,Γ

cn
n,n).

We refer to the Bc1,...,cn as the type B mixed Eulerian numbers, whereas the Ac1,...,cn are type A mixed
Eulerian numbers. We give a combinatorial interpretation for the Bc1,...,cn analogous to that of the
Ac1,...,cn and list several identities that follow from this interpretation.

2 The main theorem
Let n be a positive integer, and let S be a totally ordered set with |S| = n. Let C = (C1, . . . , Cn) be a
sequence of n pairwise disjoint sets such that

• C1 ∪ · · · ∪ Cn = S, and

• s < t whenever s ∈ Ci, t ∈ Cj , and i < j.

We will call such a C a division of S. Let |C| denote the sequence (|C1| , . . . , |Cn|).
We say that an element s ∈ S is admissible with respect to C if either s is the smallest element of

C1, s is the largest element of Cn, or s ∈ Ci for i 6= 1, n. Given an admissible element s, we define
the deletion of s from C as follows. Let i be such that s ∈ Ci, and let C−i = {t ∈ Ci | t < s} and
C+
i = {t ∈ Ci | t > s}. The deletion of admissible s from C results in a sequence of n− 1 sets, denoted

by Cs = (Cs1 , . . . , C
s
n−1), given as follows:

• If i = 1, then Cs = (C+
1 ∪ C2, C3, . . . , Cn).

• If i 6= 1, n, then Cs = (C1, . . . , Ci−2, Ci−1 ∪ C−i , C
+
i ∪ Ci+1, Ci+2, . . . , Cn).

• If i = n, then Cs = (C1, . . . , Cn−2, Cn−1 ∪ C−n ).

In any case, Cs is a division of S \ {s}.
Now suppose s1 is admissible with respect to C, s2 is admissible with respect to Cs1 , s3 is admissible

with respect to (Cs1)s2 , s4 is admissible with respect to ((Cs1)s2)s3 , and so on, until sn. We obtain a
permutation s1s2 . . . sn of S. Call any permutation constructed in this way a C-permutation. Note that
the number of C-permutations depends only on |C|.
Example 2.1. Suppose n = 5 and C = ({1}, ∅, {2, 3}, {4}, {5}). The element 2 is admissible with
respect toC, andC2 = ({1}, ∅, {3, 4}, {5}). The element 3 is admissible with respect toC2, and (C2)3 =
({1}, ∅, {4, 5}). The element 1 is admissible with respect to (C2)3, and ((C2)3)1 = (∅, {4, 5}). The
element 5 is admissible with respect to ((C2)3)1, and (((C2)3)1)5 = ({4}). The element 4 is admissible
with respect to (((C2)3)1)5. Hence 23154 is a C-permutation. The construction of this permutation is
visualized below.
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1 ∅ 23 4 5
1 ∅ 34 5
1 ∅ 45
∅ 45
4

On the other hand, 23145 is not aC-permutation because 4 is not admissible with respect to ((C2)3)1 =
(∅, {4, 5}).

Example 2.2. Suppose C = ({1, . . . , n}, ∅, . . . , ∅). The only element admissible with respect to C is 1,
and C1 = ({2, . . . , n}, ∅, . . . , ∅). The only element admissible with respect to C1 is 2, and so on. Thus
the only C-permutation is 12 . . . n.

Similarly, if C = (∅, . . . , ∅, {1, . . . , n}), then the only C-permutation is n(n− 1) . . . 1.

Example 2.3. Suppose C is a division of S and |C| = (1, . . . , 1). Then every element of S is admissible
with respect to C. Moreover, for any element s ∈ S, Cs satisfies |Cs| = (1, . . . , 1). So by induction,
every permutation of S is a C-permutation.

Example 2.4. LetC be a division of the formC = (C1, ∅, . . . , ∅, Cn). Then the only admissible elements
with respect to C are the first element of C1 and the last element of Cn. Furthermore, when we delete
either of these elements, the resulting sequence of sets is again of the form (C ′1, ∅, . . . , ∅, C ′n−1). So
when we construct a C-permutation by successively deleting admissible elements, at each step we delete
either the first element of the first set or the last element of the last set. Thus the C-permutations are
the permutations where the elements of C1 appear in ascending order and the elements of Cn appear in
descending order.

Example 2.5. We will see from Corollary 3.8 that if 1 ≤ k ≤ n and C is the division of {1, . . . , n} with
Ck = {1, . . . , n} and Ci = ∅ for all i 6= k, then a permutation w ∈ Sn is a C-permutation if and only if
it has k − 1 descents.

We are now ready to state the main result.

Theorem 2.6. Let C = (C1, . . . , Cn) be a division with |C| = (c1, . . . , cn). Then Ac1,...,cn equals the
number of C-permutations.

Sketch of proof. It suffices to show that the mixed Eulerian numbers satisfy the recursion

Ac1,...,cn =
∑

s admissible
w.r.t. C

A|Cs|.

Let

fn(λ1, . . . , λn) = Vol(λ1∆1,n + λ2∆2,n + · · ·+ λn∆n,n)

=
∑

c1+···+cn=n

1

c1! · · · cn!
Ac1,...,cnλ

c1
1 · · ·λcnn

so that
Ac1,...,cn = ∂c11 · · · ∂cnn fn.

The main idea is to write a recursive formula for fn. To do this, we use the following:
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Proposition 2.7. Let λ1, . . . , λn be nonnegative real numbers. Fix a real number 0 ≤ x ≤ λ1 + · · ·+λn,
and let 1 ≤ i ≤ n be such that λi+1 + · · ·+ λn ≤ x ≤ λi + · · ·+ λn (where 0 ≤ x ≤ λn if i = n). Set
t = λi + · · ·+ λn − x. Consider the cross section of

λ1∆1,n + λ2∆2,n + · · ·+ λn∆n,n

with first coordinate equal to x. The projection of this cross section onto the last n coordinates is congru-
ent to the following polytopes in the following cases:

• If i = 1,
(t+ λ2)∆1,n−1 + λ3∆2,n−1 + · · ·+ λn∆n−1,n−1.

• If 2 ≤ i ≤ n− 1,

λ1∆1,n−1 + · · ·+ λi−2∆i−2,n−1 + (λi−1 + λi − t)∆i−1,n−1

+ (t+ λi+1)∆i,n−1 + λi+2∆i+1,n−1 + · · ·+ λn∆n−1,n−1.

• If i = n,
λ1∆1,n−1 + · · ·+ λn−2∆n−2,n−1 + (λn−1 + λn − t)∆n−1,n−1.

This gives the following formula for fn:

Proposition 2.8. We have

fn(λ1, . . . , λn) =

∫ λ1

0

fn−1(t+ λ2, λ3, . . . , λn) dt

+

n−1∑
i=2

∫ λi

0

fn−1(λ1, . . . , λi−2, λi−1 + λi − t, t+ λi+1, λi+2, . . . , λn) dt

+

∫ λn

0

fn−1(λ1, . . . , λn−2, λn−1 + λn − t) dt.

Applying the operator ∂c11 · · · ∂cnn gives us the desired recursion.

While C-permutations are defined recursively in general, there are certain cases where more explicit
descriptions can be given. This allows us to calculate various formulas for mixed Eulerian numbers, as
described in the next section.

3 Properties of mixed Eulerian numbers
Using algebraic and geometric techniques, Postnikov proved the following properties of mixed Eulerian
numbers.

Theorem 3.1 (Postnikov [6]). The mixed Eulerian numbers have the following properties:

(a) The numbers Ac1,...,cn are positive integers defined for c1, . . . , cn ≥ 0, c1 + · · ·+ cn = n.
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(b) We have Ac1,...,cn = Acn,...,c1 .

(c) For 1 ≤ k ≤ n, the number A0k−1,n,0n−k equals the usual Eulerian number A(n, k). Here, 0l

denotes a sequence of l zeroes.

(d) We have
∑

1
c1!···cn!Ac1,...,cn = (n + 1)n−1, where the sum is over nonnegative integer sequences

c1, . . . , cn with c1 + · · ·+ cn = n.

(e) We have
∑
Ac1,...,cn = n!Cn, where the sum is over nonnegative integer sequences c1, . . . , cn with

c1 + · · ·+ cn = n, and Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

(f) For 2 ≤ k ≤ n and 0 ≤ r ≤ n, the numberA0k−2,r,n−r,0n−k is equal to the number of permutations
w ∈ Sn+1 with k − 1 descents and w1 = r + 1.

(g) We have A1,...,1 = n!.

(h) We have Ak,0,...,0,n−k =
(
n
k

)
.

(i) We have Ac1,...,cn = 1c12c2 · · ·ncn is c1 + · · ·+ ci ≥ i for all i.

Theorem 3.2 (Postnikov [6]). Let ∼ denote the equivalence relation on the set of nonnegative integer se-
quences (c1, . . . , cn) with c1+· · ·+cn = n given by (c1, . . . , cn) ∼ (c′1, . . . , c

′
n) whenever (c1, . . . , cn, 0)

is a cyclic shift of (c′1, . . . , c
′
n, 0). Then for a fixed (c1, . . . , cn), we have∑

(c′1,...,c
′
n)∼(c1,...,cn)

Ac′1,...,c′n = n!.

Note: There are exactly Cn = 1
n+1

(
2n
n

)
equivalence classes.

We now sketch how these properties arise from the combinatorial interpretation of mixed Eulerian
numbers given by Theorem 2.6. We also give the following four additional properties.

Theorem 3.3. We have Ac1,...,cn ≤ 1c12c2 · · ·ncn , with equality if and only if c1 + · · ·+ ci ≥ 1 for all i.

Theorem 3.4. Let c1, . . . , cn be nonnegative integers such that c1 + · · · + cn = n, and suppose there
exists some 0 ≤ r ≤ n such that c1 + · · · + ci ≥ i for all 1 ≤ i ≤ r and cn + cn−1 + · · · + cn−i+1 ≥ i
for all 1 ≤ i ≤ n− r. Then

Ac1,...,cn =

(
n

c1 + · · ·+ cr

)
1c12c2 · · · rcr1cn2cn−1 · · · (n− r)cr+1 .

To state the third property, we introduce some terminology. Say a sequence a1, a2, . . . , an is extreme
if for each 1 ≤ i ≤ n, either ai = min(a1, . . . , ai) or ai = max(a1, . . . , ai). Let des(a1, . . . , an) denote
the number of descents in the sequence a1, . . . , an.

Theorem 3.5. For 1 ≤ k ≤ n − 2, 0 ≤ r ≤ n, and 0 ≤ s ≤ n, the number A0k−1,r,s,n−r−s,0n−k−2 is
equal to the number of permutations w ∈ Sn+2 such that w1 = r + 1, w2 = r + s + 2, and if p is the
largest integer such that w1, . . . , wp is extreme, then des(w1, . . . , wp) + des(wp+1, . . . , wn) = k.
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Theorem 3.6. We have

An−m,0k−2,m,0n−k =

n−m∑
i=0

(
m+ i

m

)
A(m, k − i)

where A(n, k) is defined to be 0 if k ≤ 0 or k > n.

The numbers An−m,0k−2,m,0n−k appeared in [5], where the authors used the recursions of [2] to obtain
the formula

An−m,0k−2,m,0n−k =

n−k∑
i=0

(n− k + 1− i)
(
n− i
n−m

)
kiA(m− i− 1,m− n+ k − 1).

when m− n+ k ≥ 2. (For other cases, An−m,0k−2,m,0n−k = km by Theorem 3.1(i).)
We do not have a combinatorial proof of Theorem 3.1(d), which was proven using the volume of the

permutohedron.

3.1 Sketch of proof of Theorem 3.1
Property (a) is clear.

Property (b) follows from the fact that ifw is a (C1, . . . , Cn)-permutation, thenw is also a (Cn, . . . , C1)-
permutation with the reverse ordering on C1 ∪ · · · ∪ Cn.

Property (f), which is a generalization of property (c), follows from the following proposition, which is
proved using induction.

Proposition 3.7. Let 2 ≤ k ≤ n and 0 ≤ r ≤ n. Let x0 < x1 < · · · < xn < xn+1 be real numbers
and let S = {x1, . . . , xn}. Let C be the division of S with |C| = (0k−2, r, n − r, 0n−k). Let λ be a real
number such that xr < λ < xr+1. Then a permutation w = w1 . . . wn of S is a C-permutation if and
only if the sequence λ, w1, . . . , wn has k − 1 descents.

Corollary 3.8. Let 1 ≤ k ≤ n and let C = (∅k−1, {1, . . . , n}, ∅n−k). Then a permutation w ∈ Sn is a
C-permutation if and only if it has k − 1 descents.

Proof. Take r = 0 or n in the previous Proposition.

Property (e) follows from Theorem 3.2 and the note afterwards.
Property (g) follows from Example (2.3).
Property (h) follows from Example (2.4).
Finally, we prove Theorem 3.3, which implies (i). We first introduce some terminology. Fix a division

C = (C1, . . . , Cn) of a set S. Let w = w1 . . . wn be a C-permutation. For each 1 ≤ i ≤ n, the index of
wi in w with respect to C is the j such that wi ∈ ((Cw1)w2 · · · )wi−1

j . Let ICw : S → N be the function
which takes each s ∈ S to its index in w with respect to C. Note that if s ∈ Ci, then ICw (s) ∈ {1, . . . , i}.
We will call any function I : S → N which maps Ci into {1, . . . , i} and index function of C.

Example 3.9. Let C = ({1}, ∅, {2, 3}, {4}, {5}) and w = 23154 as in Example 2.1. Then ICw (2) = 3,
ICw (3) = 3, ICw (1) = 1, ICw (5) = 2, and ICw (4) = 1.

Theorem 3.3 follows immediately from the next proposition.
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Proposition 3.10. Fix a division C = (C1, . . . , Cn) of S. Then the map w 7→ ICw is an injection
from hte set of C-permutations to the set of index functions of C. This map is a bijection if and only
if |C1|+ · · ·+ |Ci| ≥ i for all i.

Note that by Theorem 3.3 and Theorem 3.1(b), we also have

Ac1,...,cn ≤ 1cn2cn−1 · · ·nc1

with equality if and only if cn + cn−1 + · · ·+ cn−i+1 ≥ i for all i.

3.2 Proof of Theorem 3.2
Let n be a positive integer and let c1, . . . , cn be nonnegative integers with c1 + · · · + cn = n. Let
C = (C1, . . . , Cn) be the division of {1, . . . , n} with |C| = (c1, . . . , cn). Set Cn+1 = ∅.

We will describe a process which is a cyclic version of the construction of C-permutations. Arrange
the numbers 1, . . . , n around a circle C clockwise in that order. We will define n+ 1 “blocks” as follows:
for each 1 ≤ i ≤ n + 1, block Bi initially contains the elements of Ci. We view B1, . . . , Bn+1 as being
arranged around C in that order, including the empty blocks; i.e. Bi is viewed as being between Bi−1 and
Bi+1 even if Bi is empty. For any element s ∈ {1, . . . , n}, we define the deletion of s from C as follows.
Suppose s ∈ Bi. Let B−i be the set of elements in Bi which are to the left of (counterclockwise from)
s, and let B+

i be the set of elements in Bi which are to the right of (clockwise from) s. To delete s, we
remove s and the block Bi from C, put all the elements of B−i into the block to the left of Bi, and put
all the elements of B+

i into the block to the right of Bi. The order of the undeleted elements remains
unchanged. We can then delete another element, and so on. After we delete all n elements, we are left
with only one block, which is empty. Since a nonempty block remains nonempty until it is deleted, this
final empty block was originally empty and remained so throughout the process.

Letw = w1 . . . wn ∈ Sn be a permutation. Let r(w) be the r such thatBr is the final block that remains
when we successively delete w1, . . . , wn from C. It is not hard to see that for each r with Cr = ∅, the set
of w such that r(w) = r is precisely the set of (Cr+1, Cr+2, . . . , Cr−1)-permutations, where the indices
of theCi are taken modulo n+1 and the elements {1, . . . , n} are ordered starting from the first element of
Cr+1 and going cyclically to the last element of Cr−1. There are Acr+1,...,cr−1

such permutations. Hence
we have

n! =
∑
cr=0

Acr+1,cr+2,...,cr−1

which is exactly what we wanted to prove.

3.3 Sketch of proof of Theorem 3.6
Given a set S, define a ?-permutation of S to be a finite sequence of elements of S and ? symbols such
that every element of S appears exactly once. A descent of a ?-permutation s1s2 . . . is a pair of elements
(si, sj) such that i < j, si > sj , and sk = ? for every i < k < j. Theorem 3.6 follows from the
following.

Proposition 3.11. Let C be a division with |C| = (n−m, 0k−2,m, 0n−k). Then the C-permutations are
in bijection with ?-permutations of Ck for which the number of ?’s is at most n −m and the number of
?’s plus the number of descents is equal to k − 1.
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Sketch of proof. Assume C is a division of S. Suppose s = s1s2 . . . is a ?-permutation of Ck satisfying
the above conditions. Let i be the largest index such that si is either a ? or (si, sj) is a descent for
some j. We obtain a C-permutation from s as follows: Begin with the subsequence s1 . . . si, and replace
the first ? with the first element of C1, the second ? with the second element of C1, and so on, until
all ?’s are replaced. Call the new sequence w′ = w1 . . . wi. Append to the end of w′ the elements of
S \ {w1, . . . , wi} in ascending order. The result is a C-permutation.

Now suppose w = w1 . . . wn is a C-permutation. Replace all wi for which wi /∈ Ck with ?’s. Call
the resulting ?-permutation s′ = s1s2 . . . . Now, call an index i good if either si = ? or (si, sj) is a
descent of s′ for some j. Delete any ?’s in s′ which occur after the (k − 1)-th good index. The result is a
?-permutation of Ck satisfying the desired conditions.

In fact, the above argument extends easily to the following:

Proposition 3.12. Let C be a division with |C| = (n−m, 0k−3, r,m− r, 0n−k), and let λ be a number
such that λ > s for all s ∈ Ck−1 and λ < s for all s ∈ Ck. Then the C-permutations are in bijection
with ?-permutations s1s2 . . . of Ck−1 ∪ {λ} ∪Ck for which s1 = λ, the number of ∗’s is at most n−m,
and the number of ?’s plus the number of descents is equal to k − 1.

4 Type B mixed Eulerian numbers
We now give an analogous combinatorial interpretation for the numbers Bc1,...,cn . Let C = (C1, . . . , Cn)
be a division of a set S. We say that an element s ∈ S is type B admissible with respect t0 C if either s is
the smallest element of C1 or s ∈ Ci for i 6= 1. Given a type B admissible element s, we now define the
type B deletion of s from C, which by abuse of notation we denote by Cs. Let i be such that s ∈ Ci. If
i 6= n, then we define Cs to be the same as in the type A case. If i = n, then we define

Cs = (C1, . . . , Cn−2, Cn−1 ∪ (Cn \ {s})).

Given these definitions of admissibility and deletion, we define a type B C-permutation analogously as
in the type A case.

Theorem 4.1. Let C = (C1, . . . , Cn) be a division with |C| = (c1, . . . , cn). Then Bc1,...,cn equals 2n

times the number of type B C-permutations.

Using Theorem 4.1, we obtain the following properties of type B mixed Eulerian numbers.

Theorem 4.2. The type B mixed Eulerian numbers have the following properties.

(a) We have 2nAc1,...,cn ≤ Bc1,...,cn ≤ 2n1c12c2 · · ·ncn . Each inequality is equality if and only if
c1 + · · ·+ ci ≥ i for all i.

(b) For 1 ≤ k ≤ n, the number B0k−1,n,0n−k is equal to 2n times the number of permutations in Sn
with at most k − 1 descents.

(c) For 1 ≤ k ≤ n− 1 and 0 ≤ r ≤ n, the number B0k−1,r,n−r,0n−k−1 is equal to 2n times the number
of permutations w ∈ Sn+1 with at most k descents and w1 = r + 1.

(d) We have B1,...,1 = 2nn!.

(e) We have Bk,0,...,0,n−k =
(
n
k

)
(n− k)!.
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(f) We have Bc1,...,cn = 2n1c12c2 · · ·ncn if c1 + · · ·+ ci ≥ i for all i.

(g) We have Bc1,...,cn = 2nn! if cn + cn−1 + · · ·+ cn−i+1 ≥ i for all i.

(h) We have

Bc1,...,cn = 2n
(

n

c1 + · · ·+ cr

)
1c12c2 · · · rcr (cr+1 + · · ·+ cn)!

if there exists some 0 ≤ r ≤ n such that c1 + · · ·+ ci ≥ i for all 1 ≤ i ≤ r and cn + cn−1 + · · ·+
cn−i+1 ≥ i for all 1 ≤ i ≤ n− r.

(i) For 1 ≤ k ≤ n− 2, 0 ≤ r ≤ n, and 0 ≤ s ≤ n, the number A0k−1,r,s,n−r−s,0n−k−2 is equal to the
number of permutations w ∈ Sn+2 such that w1 = r + 1, w2 = r + s + 2, and if p is the largest
integer such that w1, . . . , wp is extreme, then des(w1, . . . , wp) + des(wp+1, . . . , wn) ≤ k.
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