
HAL Id: hal-01337748
https://hal.science/hal-01337748v1

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting a Parametrized Task Graph model for the
parallelization of a sparse direct multifrontal solver

Emmanuel Agullo, George Bosilca, Alfredo Buttari, Abdou Guermouche,
Florent Lopez

To cite this version:
Emmanuel Agullo, George Bosilca, Alfredo Buttari, Abdou Guermouche, Florent Lopez. Exploiting a
Parametrized Task Graph model for the parallelization of a sparse direct multifrontal solver. Euro-Par
2016: Parallel Processing Workshops, Aug 2016, Grenoble, France. �10.1007/978-3-319-58943-5_14�.
�hal-01337748�

https://hal.science/hal-01337748v1
https://hal.archives-ouvertes.fr


Exploiting a Parametrized Task Graph model for
the parallelization of a sparse direct multifrontal

solver

Emmanuel Agullo1, George Bosilca5, Alfredo Buttari2, Abdou Guermouche3,
and Florent Lopez4

1 INRIA - LaBRI, Bordeaux (France)
2 CNRS - IRIT, Toulouse (France)

3 Université de Bordeaux - LaBRI, Bordeaux (France)
4 RAL - STFC, Didcot (UK)

5 University of Tennessee Knoxville (USA)

Abstract. The advent of multicore processors requires to reconsider
the design of high performance computing libraries to embrace portable
and effective techniques of parallel software engineering. One of the most
promising approaches consists in abstracting an application as a directed
acyclic graph (DAG) of tasks. While this approach has been popularized
for shared memory environments by the OpenMP 4.0 standard where
dependencies between tasks are automatically inferred, we investigate
an alternative approach, capable of describing the DAG of task in a dis-
tributed setting, where task dependencies are explicitly encoded. So far
this approach has been mostly used in the case of algorithms with a
regular data access pattern and we show in this study that it can be effi-
ciently applied to a higly irregular numerical algorithm such as a sparse
multifrontal QR method. We present the resulting implementation and
discuss the potential and limits of this approach in terms of productivity
and effectiveness in comparison with more common parallelization tech-
niques. Although at an early stage of development, preliminary results
show the potential of the parallel programming model that we investigate
in this work.
Keywords: multicore architectures, programming models, runtime sys-
tem, parametrized task graph, numerical scientific library, sparse direct
solver, multifrontal QR factorization.

1 Introduction

Since their introduction, multicore processors have become increasingly popular
and are nowadays a commodity used beyond the high performance computing
(HPC) community. However, there is no clear consensus on the best practices for
programming such architectures and developers often have to make a trade-off
between productivity (the pace at which a code may be written and maintained)
and performance (the pace at which the code is eventually executed). For in-
stance, some software developers may choose to limit the parallelization of their



code to the introduction of a few OpenMP pragma directives within the main
computational-intensive loops of their algorithms. On the other end of the spec-
trum, highly optimized libraries such as linear algebra numerical kernels are
often written with low-level synchronizations schemes relying on POSIX threads
(pthread) primitives at a possible high cost in terms of development and main-
tenance. One of the most promising approach for enhancing the productivity
while maintaining high performance consists in abstracting an application as a
directed acyclic graph (DAG) of tasks and delegating the orchestration of the
task to a runtime system.

Whereas task-based runtime systems were mainly research tools in the past
years, their recent progress make them now a solid candidates for designing ad-
vanced scientific software. They provide programming paradigms that allow the
programmer to express concurrency in a simple yet effective way and relieve her
from the burden of dealing with low-level architectural details. Runtime systems
offer a uniform programming interface for a specific subset of hardware or low-
level software entities (e.g., pthread implementations). They are designed as thin
user-level software layers that complement the basic, general purpose functions
provided by the operating system. Applications then target these uniform pro-
gramming interfaces in a portable manner and low-level, hardware dependent
details are hidden inside runtime systems. The adaptation of runtime systems is
commonly handled through drivers. Portability is thus enabled by the abstrac-
tion provided by the runtime system.

All the above mentioned efforts have contributed to proving the ease of use,
the effectiveness and portability of general purpose runtime systems to the point
where the OpenMP board has decided to include similar features since the 4.0
standard: the task construct was extended with the depend clause which en-
ables the OpenMP runtime to automatically detect dependencies among tasks
and consequently schedule them accordingly. While task-based programming has
been popularized with OpenMP 4.0 where dependencies between tasks are au-
tomatically inferred, the concept itself is much older, and provided in varied
forms by several research projects. In the context of this work we investigate an
alternative approach consisting of explicitly encoding the dependencies between
tasks. Many studies [3, 11, 19, 1] have shown the potential of the approach in the
case of relatively regular algorithms such as dense linear algebra. On the other
hand, the effort for assessing it on irregular algorithms is much more narrow [20,
21]. In this paper, we consider a highly irregular numerical algorithm, namely
the sparse multifrontal QR method, and we show how we can turn it out into a
DAG of tasks with explicit dependencies. We present the resulting code and dis-
cuss the potential and limits it delivers in terms of productivity and effectiveness
in comparison with more common parallelization techniques.

The rest of the paper is organized as follows. Section 2 presents the related
work on task-based programming models and runtime systems as well as numer-
ical libraries that have been developed on top of them, including the model we
want to highlight in this paper (consisting in explicitly defining the dependen-
cies of the DAG) together with the runtime system we use (PaRSEC [10, 9]) to



support it. We then present the highly irregular numerical method we want to
implement (namely, the multifrontal QR method) to illustrate our discussion in
Section 3. We show how it can be written as a DAG of tasks with explicit de-
pendencies in Section 4 and present preliminary (but encouraging!) performance
results in Section 5. Section 6 concludes the paper and present perspectives.

2 Related work

2.1 Parallel programming models for task-based algorithms

The most common strategy for the parallelization of task-based algorithms con-
sists in traversing the DAG sequentially and submit the tasks, as discovered, to
the runtime system using a non blocking function call. The dependencies be-
tween tasks are automatically inferred by the runtime system through a data
dependency analysis [4] and the actual execution of the task is then postponed
to the moment when all its dependencies are satisfied. This programming model
is known as a Sequential Task Flow (STF) model as it fully relies on sequential

consistency for the dependency detection. This paradigm is also sometimes re-
ferred to as superscalar since it mimics the functioning of superscalar processors
where instructions are issued sequentially from a single stream but can actually
be executed in a different order and, possibly, in parallel depending on their mu-
tual dependencies. As mentioned above, the popularity of this model encouraged
the OpenMP board to include it in the 4.0 standard. The simplicity of the STF
model facilitates the design of numerical algorithms in a concise manner and can
be exploited to efficiently target multicore architectures [2].

One challenge in scaling to large scale distributed many-core systems is how
to represent extremely large DAGs of tasks in a compact fashion. The Parame-
terized Task Graph (PTG) model introduced in [14] addresses this issue. In this
model, tasks are not enumerated as in the STF model but parametrized and
the dependencies between tasks are explicitly expressed. This property can be
used to encode the DAG in a compact, size independent, way inducing a lower
memory footprint for its representation as well as ensuring limited complexity
for parsing it as the problem size grows. For this reason the memory consump-
tion overhead in the runtime system for representing the DAG is much lower
for the PTG model than for the STF model. In addition with a STF model the
DAG has to be completely unrolled on all participating processes whereas with a
PTG the DAG is only partially unfolded during the execution following the task
progression. From this point of view, the advantage of the PTG approach over
the STF can be crucial when exploiting processors with a very large number of
cores. We address this particular model in the present paper.

2.2 Task-based runtime systems for modern architectures

Many initiatives have emerged in the past years to develop efficient task-based
runtime systems for modern platforms. Their review is out of the scope of this pa-
per. We mention two important projects supporting the STF model. The StarSs



project is actually an umbrella term that describes both the StarSs language
extensions and a collection of runtime systems targeting different types of plat-
forms [7, 6]. StarSs provides an annotation-based language which extends C or
Fortran applications to offload pieces of computation on the architecture tar-
geted by the underlying runtime system. The StarPU runtime system provides
a generic interface for developing parallel, task-based applications. It supports
multicore architectures equipped with accelerator as well as distributed memory
systems. This runtime is capable of transparently handling data and provides a
rich panel of features.

The PaRSEC runtime system provides a distributed generic task scheduler
supplemented by programming interface complying to the two main program-
ming models presented in Section 2.1. In particular, it is one of the few (and
certainly the most popular) runtime systems supporting the PTG model. The
embedded scheduler is dynamic, designed to exploit the memory hierarchy of
modern architectures and capable of maximizing computation to communica-
tion overlap, exploiting data locality and achieving load-balancing between the
resources. PaRSEC provides a language called Job Data Flow (JDF) providing
an extended PTG expressivity to parallel codes. During the compilation process,
the files containing the JDF code are translated into C-code files by a specific
compiler distributed with PaRSEC called daguepp. The DAG is defined by a set
of task types that can be associated with several parameters defined on a given
range of values. The tasks are associated with a list of predecessors and succes-
sors that define the dependencies in the DAG. These dependencies are generally
based on data but may also represent precedence constraints. Tasks are associ-
ated with a code that will be executed for each task instance. This task code can
have multiple instances, each tied to specific hardware resources (accelerators,
FPGA, ...), and the runtime will select the most appropriate one dynamically
depending on the availability of resources and the needs of the algorithm. For
more information we redirect the interested reader to [10, 8, 9, 11].

3 Multifrontal QR method

The multifrontal method, introduced by Duff et al. [17] is a method for the
factorization (either Cholesky, LDLT , LU or QR) of sparse, linear systems.
This algorithm is based on the concept of elimination tree [22] expressing the
dependencies between the operations which eliminate the unknowns of the input
matrix A, each vertex f of the tree being associated with kf of these unknowns.
The coefficients of the corresponding kf columns and all the other coefficients
concerned by their elimination are assembled together into a dense matrix, called
frontal matrix or, simply, front, associated with the tree node. An edge of the
tree represents a dependency between such fronts. The elimination tree is thus
a topological order for the elimination of the unknowns: a front can only be
eliminated after its children. The multifrontal QR factorization then consists
in a tree traversal following a topological order for eliminating the fronts.
When a front is visited, first, the activation operation allocates and initializes



the front data structure. Next, the front can then be assembled, i.e., filled
up with the coefficients in the associated kf rows of the matrix A and with
coefficients resulting from the factorization of child nodes. Once assembled, the
kf unknowns are eliminated through a complete, dense QR factorization of
the front. This produces kf rows of the global R factor, a number of Householder
reflectors that implicitly represent the global Q factor and a contribution block
formed by the coefficients that will be assembled into the parent front together
with the contribution blocks from all the sibling fronts.

One distinctive feature of the multifrontal QR factorization is that frontal
matrices are not entirely full but, prior to their factorization, can be permuted
into a staircase structure that allows for moving many zero coefficients in the
bottom-left corner of the front and for ignoring them in the subsequent compu-
tation; this allows for a considerable saving in the number of operations. It must
be noted that when handling matrices from real-life applications, elimination
trees can be quite large (i.e., contain up to O(104) nodes), irregular and unbal-
anced, frontal matrices can be of varying sizes (from a few units up to O(104)
rows or columns) and shapes (either over or under-determined). We refer to [5,
15, 12] for further details on the multifrontal QR method.

Because of what said above, the multifrontal factorization results in an ex-
tremely irregular, heterogeneous and unpredictable workload even in the case
where a regular partitioning is applied to fronts. Therefore its implementation
on modern supercomputers is a challenging task. In this work we investigate the
use of PTG based runtime systems for this method and assess their ease of use
and effectiveness.

4 Design of a task-based multifrontal QR factorization
with explicit dependencies

The multifrontal method provides two distinct sources of concurrency: tree-
level and node-level parallelism. The first one stems from the fact that fronts
in separate branches are independent and can thus be processed concurrently;
the second one from the fact that, if a front is large enough, multiple processes
can be used to assemble and factorize it.

In order to exploit both sources of parallelism; in the proposed implemen-
tation of our PTG-based parallel multifrontal factorization, which we refer to
as qrm parsec, we use an approach based on hierarchical DAGs. We consider
a two-level hierarchy with an outer DAG and multiple inner DAGs spawned by
the tasks in higher level DAG. The outer DAG contains tasks related to the acti-
vation, assembly and deactivation of fronts in the elimination tree whereas each
inner DAG contains the tasks related to the factorization of the frontal matrix.
This approach is illustrated in Figure 4 where three different DAGs denoted by
1, 2 and 3 are spawned by tasks in the outer DAG.

The PaRSEC implementation of our solver is split into three JDF files de-
scribed in the next sections.



1 2

3

Fig. 1. Two levels hierarchical DAGs implemented in PaRSEC. The inner DAGs are
spawned by tasks contained in the top level DAG.

4.1 The Factorization

This JDF file represents the DAG operating at the elimination tree level and
contains the description of four tasks:

– activate: allocates the memory needed for assembling and factorizing a
frontal matrix. The activation of a node depends on the activation of its
children.

– assemble: spawns a lower level DAG of tasks performing the assembly of
the frontal matrix in parallel; this DAG is defined in the assembly.jdf file
described below. It depends on the activation of the related node and is
completed when all the spawned tasks have been executed.

– init: initializes the frontal matrix data structure and spawns the lower level
DAG performing the front factorization which is described below. This task
depends on the assemble tasks as the front factorization can only start once
it has been assembled. As for the assemble task, its completion is achieved
when the DAG it spawn is completely executed.

– deactivate: stores apart the result of a front factorization and frees the
memory allocated by the activate task. It can be executed only after its
contribution block has been assembled into the parent node.

An excerpt of the factorization.jdf file is shown in Figure 2 where, for
the sake of simplicity, we only describe the init task. This task needs a set of
symbolic data denoted S in the data-flow which is provided by the assemble

task. Note that in the case were the front has no children, the assemble task
perform no operations apart from passing the symbolic data to the init task.
When the init tasks is completed, the front is factorized and can be assembled
into the parent node. Therefore we transfer the symbolic data to the assembly
operation of the parent node.



init(n)

n = 1 .. NN

/* get info on frontal matrix */
front = inline_c %{ return get_front(n); %}
p = inline_c %{ return get_front_parent(n); %}
prio = inline_c %{ return get_front_prio(front); %}

RW S <- S assemble(n) /* initialize the front assembly */
-> (p != 0) ? S assembly(p)

BODY
{

/* initialize frontal matrix */
_qrm_init_front(front);
/* create qr factorization DAG for frontal matrix */
qr_handle = qr_initialize(front);
/* submit front factorization to PaRSEC */
dague_enqueue(qr_handle);

}
END

Fig. 2. Excerpt of code for performing operation at elimination tree level with PaRSEC.

Each of these tasks are executed once for every node in the elimination tree.

4.2 qr 1d.jdf, qr 2d.jdf

Once assembled, a frontal matrix can be factorized using any QR factorization
algorithm for dense matrices. For this operation, we have chosen two different
variants, namely, a LAPACK-style factorization based on a 1D partitioning of
the front in block-columns and a Communication Avoiding method based on a
2D partitioning into tiles [18, 13]. For a matter of conciseness we only present
the 1D version (qr 1d.jdf) of the code. These implementations are based on
the ones found in the DPLASMA library [8] which provide dense linear algebra
kernels routine for distributed systems built on top of the PaRSEC runtime
systems. We adapted these kernels to the specific staircase structure of frontal
matrices described in Section 3.

The JDF code for the QR factorization with a 1D block-column partition-
ing is presented in Figure 3. In this JDF we have two type of task: the geqrt

task corresponding to the panel operations and the gemqrt corresponding to
update operations with respect to panel reductions. Note that this JDF is sim-
ilar to the DPLASMA implementation except that we used the geqrt stair

and gemqrt stair kernels, respectively for the panel and update operations,
capable of exploiting the staircase structure of block-columns. The geqrt tasks
are associated with the panel index represented by the parameter p which has
values in the range 0..NP-1 where NP represents the number of panel operations
in the front. Similarly, the gemqrt task is defined by two parameters. The first
represents the panel operations and the second represents the subsequent update
operations depending on each panel operation. For each panel operation p we



perform update operations on block-columns p+1..NC-1 where NC is the total
number of block-columns in the frontal matrix. Along with a R factor resulting
from the geqrt stair operation, the geqrt task produce a V and T data that
are sent to the subsequent update tasks which are represented by gemqrt(p,

p+1..NC-1) in the JDF code. Concerning the gemqrt tasks, for a given a block-
column u, it retrieves the V and T matrices of the corresponding panel p along
with the block-column issued by the update with respect to the previous panel
task denoted gemqrt(p-1,u). Once the update operation has been executed, the
block-column is sent either to the next update operation denoted gemqrt(p+1,u)

or to the panel operation denoted geqrt(u) if the block-column is up-to-date.

As for the 2D code, because of the fronts staircase structure, some tiles are
equal to zero and must be skipped in the computation which alters the data-flow
with respect to the methods described in the literature. In PaRSEC this can be
conveniently handled by using conditional expressions in the JDF.

geqrt(p)

p = 0 .. (NP -1)

RW A_p <- (p==0) ? A(0,p) : C_u gemqrt(p-1, p)
-> (p < NC -1) ? V_p gemqrt(p, (p+1)..(NC -1))
-> A(p)

RW T_p <- T(p) [type = LITTLE_T]
-> (p < NC -1) ? T_p gemqrt(p, (p+1)..(NC -1)) [type = LITTLE_T]
-> T(p)

BODY
{

_geqrt_stair (&m, &n, &ib, &stair[off], &off , A_p + off ,
&lda , T_p , &ldt , work , &info);

}
END

gemqrt(p, u)

p = 0..(NP -1)
u = (p+1)..(NC -1)

READ V_p <- A_p geqrt(p)
READ T_p <- T_p geqrt(p) [type = LITTLE_T]
RW C_u <- (p==0) ? A(0,u) : C_u gemqrt(p-1, u)

-> ((u == p+1) && (u <= (NP -1))) ? A_p geqrt(u)
-> ((u > p+1) && (p < (NP -1))) ? C_u gemqrt(p+1, u)

BODY
{

_gemqrt_stair("l", "t", &m, &j, &k, &ib, &stair[off], &off , V_p + off ,
&ldv , T_p , &ldt , C_u + off , &ldc , work , &info);

}
END

Fig. 3. Code for the 1D block-column dense QR factorization with PaRSEC.



4.3 assembly.jdf

In the DAG instantiated by this assembly operations, each task corresponds to
the assembly of a block from all the blocks in children’s frontal matrices con-
tributing to it. Note that in order to express the data-flow for these assemblies,
we need to compute, for every block in a frontal matrix, a list of contributing
blocks in children node. This mapping is computed upon front activation and is
not required when using a STF model.

4.4 Discussion

It must be noted that it is possible to execute some of the factorization tasks re-
lated to a node before the handling of its child nodes is completed; this additional
concurrency, which we refer to as inter-level parallelism, may lead to consider-
able benefits especially in the case of narrow and unbalanced elimination trees
where tree parallelism is scarce. qrm parsec cannot use inter-level parallelism
because the factorization DAG is spawned only once the front is fully assembled
due to the dependency between the init and the assemble tasks described above.
Although technically possible, using inter-level parallelism is more complex to
achieve with the PTG model than with the STF one where the expression of
dependencies is simpler when the DAG is defined dynamically, as it’s partially
the case in the multifrontal method. This is the subject of ongoing research.

In practical cases the elimination tree may have thousands of nodes and thus
the DAG may contain millions of tasks; this much concurrency is clearly useless
for the systems targeted by this work which only include few cores. In order to
reduce the size of the DAG, entire subtrees at the bottom of the elimination
tree are handled at once within a single task. This technique is very well known
in the domain of sparse, direct methods and provides considerable benefits in
terms of reduced runtime overhead as well as improved data locality.

Most of the execution time is spent in BLAS-3 operations (like dense matrix
multiplications). Because these have a favorable ratio between computations and
data access, the whole multifrontal factorization can be considered as compute
bound and thus the effects of memory contention can be considered light.

5 Early experimental results

We evaluate the PTG implementation of our solver on a set of test matrices
presented in Table 1 from real world applications publicly available in the Uni-
versity of Florida Sparse Matrix Collection[16]. We also use the hirlam matrix,
from the HIRLAM6 research program. The PaRSEC runtime system is used to
support the PTG model. The COLAMD fill-reducing column permutation was
applied to all the matrices. The runs were performed on the Dude system which
is a shared-memory machine equipped with four AMD Opteron(tm) Processor

6 http://hirlam.org



id Mat. name m n nz op. count Time Mem
(Gflop) (sec) (GB)

1 karted 46502 133115 1770349 257 46.3 0.7
2 degme 185501 659415 8127528 591 103.2 1.4
3 cat ears 4 4 19020 44448 132888 716 134.9 1.2
4 hirlam 1385270 452200 2713200 2339 392.0 3.5
5 e18 24617 38602 156466 3399 474.5 3.5
6 flower 7 4 27693 67593 202218 4261 774.7 3.6
7 Rucci1 1977885 109900 7791168 12764 1786.0 5.1
8 TF17 38132 48630 586218 38209 5185.0 15.3

Table 1. The set of matrices used for the experiments along with the associated
sequential factorization time and memory consumption.

8431 (six cores) and 72 GB of memory. As a reference, we also report on the per-
formance of the STF implementation of the solver from [2], which is supported
with StarPU and named qrm starpu below.

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Matrix #

Speedups -- dude

PaRSEC 1D

PaRSEC 2D

StarPU 1D

StarPU 2D

Fig. 4. Speedup of qrm starpu and qrm parsec on the Dude system (24 cores).

The experimental results are presented in Figure 4. They show the scalabil-
ity of qrm parsec using both the 1D and 2D front factorization algorithms; the
speedups are computed with respect to the sequential running time reported in
Table 1. These are compared to the results obtained with an equivalent imple-
mentation based on the Sequential Task Flow model and the StarPU runtime
system [2]. The results show that qrm parsec achieves a satisfactory performance
on all the tested matrices, including the smallest ones (on the left side of the
plot) with speedups close to 20 (out of 24) for the largest size ones. Figure 4 also



shows that the 2D Communication Avoiding front factorization variant achieves
much better speedups than the 1D block-column one; this is expected since most
of the frontal matrices in the multifrontal QR method are (strongly) overdeter-
mined and thus the 1D method simply does not provide enough concurrency
(especially for smaller size matrices).

Finally, the STF implementation consistently achieves better performance
than the PTG-based one. This difference comes mostly from the fact that the
STF code exploits the inter-level parallelism mentioned in Section 4.4. Note,
also, that qrm parsec is a proof of concept code whereas the StarPU-based
implementation is fully optimized; therefore the performance gap could be partly
reduced through code optimization.

6 Concluding remarks

In this paper, we have investigated the impact on programmability and discussed
the potential in terms of performance of programming a highly irregular numeri-
cal algorithm as a task-based DAG of tasks with explicit dependencies. We have
shown that providing the dependencies is not trivial and requires a deep under-
standing of the parallelism available in the algorithm. However, thanks to the
task-based abstraction, this model provides an interesting alternative to STF
as it allows to write the high-level algorithm independently of the underlying
processor, delegating the burden of handling synchronizations to the runtime
system. Furthermore, we have shown that the considered model provides a lot of
flexibility at runtime to instantiate the most appropriate variant of an algorithm
(such as 1D and 2D kernels in this study). Although the performance results are
preliminary, they are very encouraging. We would be delighted to present them
and discuss them in a workshop that aims at making parallelism available to a
wide range of applications using systematic software engineering methodology,
beyond the scope of numerical, scientific libraries.

References

1. E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. To-
mov. A hybridization methodology for high-performance linear algebra software
for GPUs. in GPU Computing Gems, Jade Edition, 2:473–484, 2011.

2. E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Implementing multifrontal
sparse solvers for multicore architectures with Sequential Task Flow runtime sys-
tems. ACM Transactions On Mathematical Software, 2016. To appear.

3. E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series,
180(1):012037, 2009.

4. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, 2002.

5. P. R. Amestoy, I. S. Duff, and C. Puglisi. Multifrontal QR factorization in a
multiprocessor environment. Int. Journal of Num. Linear Alg. and Appl., 3(4):275–
300, 1996.



6. E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-
Ort́ı. An extension of the StarSs programming model for platforms with multiple
GPUs. In Euro-Par, pages 851–862, 2009.

7. R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Ort́ı, and
G. Quintana-Ort́ı. Parallelizing dense and banded linear algebra libraries using
SMPSs. Concurrency and Computation: Practice and Experience, 21(18):2438–
2456, 2009.

8. G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Hérault, J. Kurzak,
J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. Yarkhan, and J. J. Dongarra.
Distibuted Dense Numerical Linear Algebra Algorithms on massively parallel ar-
chitectures: DPLASMA. In Proceedings of the 25th IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW’11),
PDSEC 2011, pages 1432–1441, Anchorage, United States, May 2011.

9. G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Dongarra.
Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science and
Engineering, 15(6):36–45, 2013.

10. G. Bosilca, A. Bouteiller, A. Danalis, T. Hérault, P. Lemarinier, and J. Dongarra.
DAGuE: A generic distributed DAG engine for high performance computing. Par-
allel Computing, 38(1-2):37–51, 2012.

11. G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek, and J. Dongarra.
Dense linear algebra on distributed heterogeneous hardware with a symbolic DAG
approach. Scalable Computing and Communications: Theory and Practice, pages
699–733, 2013.

12. A. Buttari. Fine-grained multithreading for the multifrontal QR factorization of
sparse matrices. SIAM Journal on Scientific Computing, 35(4):C323–C345, 2013.

13. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput., 35:38–53,
January 2009.

14. M. Cosnard and M. Loi. Automatic task graph generation techniques. In System
Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International Conference
on, volume 2, pages 113–122 vol.2, Jan 1995.

15. T. A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-
revealing sparse QR factorization. ACM Trans. Math. Softw., 38(1):8:1–8:22, Dec.
2011.

16. T. A. Davis and Y. Hu. The university of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, Dec. 2011.

17. I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Transactions On Mathematical Software, 9:302–325, 1983.

18. B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Tile QR factorization with parallel
panel processing for multicore architectures. In IPDPS, pages 1–10. IEEE, 2010.

19. F. D. Igual, E. Chan, E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, R. A. van de Geijn,
and F. G. V. Zee. The flame approach: From dense linear algebra algorithms to
high-performance multi-accelerator implementations. J. Parallel Distrib. Comput.,
72(9):1134–1143, 2012.

20. K. Kim and V. Eijkhout. A parallel sparse direct solver via hierarchical DAG
scheduling. ACM Trans. Math. Softw., 41(1):3:1–3:27, Oct. 2014.

21. X. Lacoste. Scheduling and memory optimizations for sparse direct solver on multi-
core/multi-GPU cluster systems. PhD thesis, LaBRI, Université Bordeaux, Tal-
ence, France, Feb. 2015.

22. R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans-
actions On Mathematical Software, 8:256–276, 1982.


