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ABSTRACT. Nowadays, coupled models are increasingly used in a wide variety of fields including
weather forecasting. We consider the problem of adapting existing variational data assimilation meth-
ods to this type of application while imposing physical constraints at the interface between the models
to be coupled. We propose three data assimilation algorithms to address this problem. The proposed
algorithms are distinguished by their choice of cost function and control vector as well as their need
to reach convergence of the iterative coupling method (the Schwarz domain decomposition method
is used here). The performance of the methods in terms of computational cost and accuracy are
compared using a linear 1D diffusion problem.

RÉSUMÉ. De nos jours, les modèles couplés sont de plus en plus utilisés dans de nombreux do-
maines, dont les prévisions météorologiques. Nous essayons ici d’adapter les méthodes courantes
d’assimilation de données variationelles à ce type d’applications tout en imposant des contraintes phy-
siques entre les deux modèles couplés. Nous proposons trois méthodes d’assimilation de données
pour ce problème. Les différents algorithmes se distinguent par le choix de leur fonction coût, de leur
vecteur de contrôle et du nombre d’itérations de couplage nécessaires (nous utilisons les méthodes
de Schwarz pour coupler nos modèles). Ces méthodes sont comparées dans le cadre d’un problème
linéaire de diffusion 1D en analysant leur coût de calcul et la qualité de leur analyse.
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1. Introduction

In the context of operational meteorology and oceanography, forecast skills heavily
rely on proper combination of model prediction and available observations via data as-
similation techniques. Historically, numerical weather prediction is made separately for
the ocean and the atmosphere in an uncoupled way. However, in recent years, fully cou-
pled ocean-atmosphere models are increasingly used in operational centers to improve
the reliability of seasonal forecasts and tropical cyclones predictions. For coupled prob-
lems, the use of separated data assimilation schemes in each medium is not satisfactory
since the result of such assimilation process is generally inconsistent across the interface,
thus leading to unacceptable artefacts [4]. Hence, there is a strong need for adapting ex-
isting data assimilation techniques to the coupled framework, as initiated in [5]. In this
paper, three general data assimilation algorithms, based on variational data assimilation
techniques [3], are presented and applied to a simple coupled problem. The dynamical
equations of this problem are coupled using an iterative Schwarz domain decomposition
method [1]. The aim is to properly take into account the coupling in the assimilation
process in order to obtain a coupled solution close to the observations while satisfying
the physical conditions across the air-sea interface. The paper is organized as follows.
The model problem and coupling strategy are given in Sec. 2. In Sec. 3 we briefly re-
call some theoretical aspects of variational data assimilation techniques, and we introduce
and discuss three algorithms to solve coupled constrained minimization problems. The
performance of the proposed schemes are illustrated by numerical experiments in Sec. 4.

2. Model problem and coupling strategy

We consider a problem defined on Ω = R. We decompose Ω in two nonoverlapping
subdomains Ω1 and Ω2 with an interface Γ = {z = 0}. A model is defined on each space-
time domain Ωd × [0, T ] (d = 1, 2) thanks to a differential operator Ld which acts on the
variable ud. The problem is to couple the two models at their interface Γ. To do so, we
introduce the operators Fd and Gd which define the interface conditions. Those operators
must be chosen to satisfy the required consistency on Γ. We propose to use a global-in-
time Schwarz algorithm (a.k.a. Schwarz waveform relaxation, see [1] for a review) to
solve the corresponding coupling problem. This method consists in solving iteratively
each model on their respective space-time subdomain using the interface conditions on Γ
computed during the previous iteration. For a given initial condition u0 ∈ H1(Ω1 ∪ Ω2)
and first-guess u0

1(0, t), the corresponding coupling algorithm reads
L2u

k
2 = f2 on Ω2 × TW

uk2(z, 0) = u0(z) z ∈ Ω2

G2u
k
2 = G1u

k−1
1 on Γ× TW


L1u

k
1 = f1 on Ω1 × TW

uk1(z, 0) = u0(z) z ∈ Ω1

F1u
k
1 = F2u

k
2 on Γ× TW

(1)

CARI 2016



Data assimilation for coupled models 3

where k is the iteration number, TW = [0, T ], and fd ∈ L2(0, T ;L2(Ωd)) is a given right-
hand side. At convergence, this algorithm provides a mathematically strongly coupled
solution which satisfies F1u1 = F2u2 and G2u2 = G1u1 on Γ × TW . The convergence
speed of the method greatly depends on the choice for Fd and Gd operators, and the
choice of the first-guess. Note that in this paper we restrict ourselves to linear differential
operators for Ld, Gd, andFd, and to the multiplicative form of the Schwarz method where
each model is run sequentially.

3. Data assimilation

Let us now suppose that some discrete estimates y of the solution to problem (1) are
available over an irregular set of points in the interval Ω×TW . In this context we are inter-
ested in using a data assimilation (DA) procedure to account for this additional source of
information. For the present study we use the variational methods of DA, based on opti-
mal control theory. Our aim is to evaluate a set of parameter x0, including for instance the
initial condition u0 of problem (1), through the minimization of a cost function J(x0) (x0

is the control vector) which quantifies in some sense the misfit between the observations
y and the model prediction. This minimization requires the gradient of J(x0), which can
be computed using adjoint methods [3].

3.1. Uncoupled variational data assimilation

We first briefly describe the variational DA approach in the uncoupled case to intro-
duce the necessary notations. The control vector is restricted to subdomain Ωd and is
noted x0,d = u0|z∈Ωd

. The optimal control problem amounts to find xa0,d, the analysed
state, which best fit observations y and a previous estimate of the initial state xbd called
the background. Noting H the observation operator that goes from model space to the
observations space and xd = ud the state vector, the cost function to minimize reads

J(x0,d) =

Jb(x0,d)︷ ︸︸ ︷〈
x0,d − xb

d,B
−1(x0,d − xb

d)
〉

Ωd

+

Jo(x0,d)︷ ︸︸ ︷∫ T

0

〈
y −H (xd) ,R−1(y −H (xd))

〉
Ωd

dt

(2)
where R is the covariance matrix associated to observation errors, B is the background

error covariance matrix, and 〈·〉Σ is the usual Euclidian inner product on a spatial domain
Σ. Obviously, if the DA process is done separately on each subdomain (with prescribed
boundary conditions on the interface Γ), the initial condition u0 = (xa0,1,x

a
0,2)T obtained

on Ω does not satisfy the interface conditions, hence u0 /∈ H1(Ω) and well-posedness
of the coupled problem is no longer guaranteed. In practice this type of imbalance in the
initial condition can severely damage the forecast skills of coupled models [4].
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3.2. Toward a coupled variational data assimilation

Our objective is now to properly take into account the coupling in the assimilation
process. To do this, we introduce in this section three types of variational DA algorithms
whose aim is to provide a solution close to the observations while satisfying the interface
conditions on Γ; or at least a weak form of it. The key properties of those algorithms are
summarized in Tab. 1.

Full Iterative Method (FIM)

A first possibility is to consider a monolithic view of the problem by ignoring the presence
of an interface in the assimilation process. In this case the state vector is x0 = u0(z), z ∈
Ω and for each model integration we iterate the models on Ω1 and Ω2 till convergence of
the Schwarz algorithm. If we note kcvg the number of iterations to satisfy the stopping
criterion, the cost function for the FIM is

J(x0) = Jb(x0) +

∫ T

0

〈
y −H (xcvg) ,R−1(y −H (xcvg))

〉
Ω

dt (3)

where xcvg = (u
kcvg
1 , u

kcvg
2 )T . Since the first-guess u0

1 in (1) is updated after each mini-
mization iteration with the converged solution obtained during the previous model integra-
tion, the Schwarz algorithm will converge more rapidly over the minimization iteration. It
can readily be seen that cost function (3) is identical to the cost function we would use for
an uncoupled problem defined on Ω. The solution provided by this approach is strongly
coupled. Note that the FIM requires the adjoint of the strongly coupled model (1) which
can be tedious to derive. The main drawback of this method is that it possibly requires a
very large number of Schwarz iterations since we systematically iterate till convergence.

Truncated Iterative Method (TIM)

In order to improve the computational cost of the FIM algorithm, we propose to truncate
the Schwarz iterations in the direct and adjoint model after kmax iterations, with kmax <
kcvg. Because we do not iterate till convergence, the coupled solution strictly satisfies
only one of the two interface conditions, for example we would have F1u1 = F2u2

and G2u2 6= G1u1 if iteration kmax is done first on Ω2 and then on Ω1. As proposed
by [2] in the context of river hydraulics, a convenient way to propagate the information
from one subdomain to the other during the minimization iterations is to use an extended
cost function which includes the misfit in the interface conditions. The idea behind this
approach is to enforce a weak coupling within the minimization iterations. The control
vector x0 = (u0(z), u0

1(0, t))T now includes the first-guess on the interface and the cost
function reads

J(x0) = Jb(x0) +

∫ T

0

〈
y −H

(
xtrunc

)
,R−1(y −H

(
xtrunc

)
)
〉

Ω
dt + Js (4)
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where Js = αF‖F1u1(0, t)−F2u2(0, t)‖2[0,T ]+αG‖G1u1(0, t)−G2u2(0, t)‖2[0,T ] with ‖a‖2Σ =

〈a, a〉Σ and xtrunc = (ukmax
1 , ukmax

2 )T . As mentioned above, if the model is integrated
first on Ω2 and then on Ω1 we have F1u1 = F2u2 and only αG is a relevant parameter in
the penalization of the interface conditions in (4). Note that, unlike FIM, the first-guess
is part of the control vector here, but this method still requires the adjoint of the coupling.
Since the first-guess u0

1 is updated at the end of each minimization iteration, we can expect
that we will converge toward a good approximation of the strongly coupled solution.

Coupled Assimilation Method with Uncoupled models (CAMU)

The last possibility we propose to investigate is to suppress the coupling iterations and
rely only on the minimization iterations to weakly couple the two models. This approach
only requires the adjoint of each individual model but not the adjoint of the coupling
as for the previous algorithms. The control vector is x0 = (x0,1,x0,2)T with x0,d =
(u0|z∈Ωd

, u0
d(0, t)). The corresponding cost function is

J(x0) =

{
2∑
d=1

(Jb(x0,d) + Jo(x0,d))

}
+ Js.

It is straightforward to see that this algorithm provides only a weakly coupled solution.
We proceed only to one iteration of the models (which can be run in parallel) with bound-
ary conditions on Γ provided by the term u0

d(0, t) taken from the control vector. Note that
both parameters αF and αG have an impact on the solution of the minimisation. In the
next section the three DA algorithms presented so far are compared in terms of computa-
tional cost and accuracy.

Algo Control
vector

# of coupling
iterations

extended
cost function

Adjoint of
the coupling

Coupling

FIM (u0(z)) kcvg no yes strong
TIM (u0(z), u0

1)T kmax yes yes ∼strong
CAMU (u0(z), u0

1, u
0
2)T 0 yes no weak

Table 1. Overview of the properties of the coupled variational DA methods described in
Sec. 3.2. Notations are consistent with those introduced in the text.

4. Application to a 1D diffusion problem

In this section, previous algorithms are applied on a 1D diffusion problem. We, thus,
consider Ld = ∂t+νd∂

2
z in (1) with ν1 6= ν2 the diffusion coefficients in each subdomain.

The computational domain is Ω =]−L1, L2[ with L1, L2 ∈ R+∗. We choose the interface
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operators on Γ to obtain a Dirichlet-Neumann algorithm, i.e. Fd = νd∂z and Gd = Id.
The right hand side fd is chosen so that the analytical solution u?j of the coupled problem
on each subdomain is

u?j (z, t) =
U0

4
e
− |z|
αd

{
3 + cos2

(
3πt

τ

)}
on Ωj × TW . (5)

where U0 = 20 ◦C and τ = 22 h. Note α1ν2 = α2ν1 is required to ensure the proper
regularity of the coupled solution across the interface Γ. To satisfy this constraint we
choose α1 = 4 km, α2 = 0.4 km, ν1 = 1 m2/s, ν2 = 0.1 m2/s. The model problem
(1) is discretized using a backward Euler scheme in time and a second-order scheme in
space. The resolution in each subdomain is ∆z = 20 m with L1 = L2 = 1 km and the
time-step is ∆t = 180 s. The total simulation time is T = 12 h and we start the Schwarz
iterations with a random first-guess.

For the assimilation experiments, we consider that the true-state xt is the solution
of the Schwarz algorithm (1) while the background xb corresponds to the solution ob-
tained with a biased initial condition. In both cases, the Schwarz algorithm converges in
kcvg = 50 iterations with a tolerance ε = 10−6. Some observations y of the true-state
are generated such that y = H(xt), with H the observation operator. The observation
and background errors covariance matrices are considered diagonal such that R = 10 Id
and B = 100 Id. For the extended cost function we consider αF = α1

ν1
αG with different

values of αG . All the minimisation are done until convergence of a conjugate gradient
algorithm with a stopping criterion ‖ ∇J(x0) ‖∞< 10−5.

Single column observation experiment

For our experiments, we consider that observations are available in Ω\{Γ} only at the end
of the time-window (i.e. at t = T ). In this case, the results obtained for different assimi-
lation schemes are reported in table 2 where the performance of each scheme is presented
in terms of the number of minimisation and models runs. Note that the computational cost
of a given method is almost entirely dominated by the model integration. To evaluate the
strength of the coupling we define an interface imbalance indicator which corresponds to
the value of Js at the end of the DA process, with αG = 0.01 and αF = 40. Values of Js

close to zero indicate that the analysed state is strongly coupled. In table 2, a root mean
square error (RMSE) defined as

√
E ((xa − xt)2) on Ω × TW is also used to evaluate

how much the analysed state is close to the true-state.

From table 2, we can first note that the FIM algorithm requires few minimisation iter-
ations to obtain a low RMSE value and a strongly coupled analysed state (Js ∼ 10−12).
A drawback of this approach is a high computational cost (1169 models runs). Since
in the TIM approach the coupling iterations are truncated and the first-guess u0

1 is part
of the control vector, we expect a reduced computational cost compared to FIM. It is
however the case only if the Js term is included in the cost function (i.e. αG 6= 0 or
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Algo αG αF kmax # of
minimisation

iterations

# of
models

runs

Interface
imbalance
indicator

RMSE
in ◦C

FIM - - kcvg 58 1169 3.69 10−12 0.220
TIM 0 - kcvg 48 2016 5.63 10−12 0.220
TIM 0 - 5 320 1600 2.95 10−2 0.216
TIM 0 - 2 1521 3042 3.77 0.272
TIM 0.01 - 2 391 782 9.25 10−7 0.217
TIM 0.01 - 1 350 350 8.60 10−7 0.215

CAMU 0.01 40 0 1308 1308 1.40 10−4 0.229
CAMU 0.001 4 0 268 268 9.38 10−3 0.240
CAMU 0.0001 0.4 0 758 758 3.30 10−1 0.327

Uncoupled 0 0 0 101 101 29.0 1.717

Table 2. Results obtained for the three coupled variational DA methods described in Sec.
3.2 with observations available in Ω \ {Γ} at the end of the time-window.

αF 6= 0), otherwise the TIM requires a very large number of models runs to reach an
analysed state which is of a lesser quality than with FIM. On the one hand decreasing the
value of kmax increases the number of minimization iterations. Indeed, going to Schwarz
convergence (kmax = kcvg) procures the best model solution, it then needs few minimi-
sation iterations. However, for the next iteration, the background interface is given by
the control vector rather than the previous converged estimate; therefore it requires again
numerous Schwarz iterations. On the other hand, by reducing the kmax value, the number
of Schwarz iterations is reduced and the update of the first-guess more significant, but the
quality of the coupling is affected and this leads to a slower minimisation convergence.
Here, a good compromise is to choose kmax = 5. When taking Js into account in TIM
(i.e. for αG 6= 0), it leads to a better analysed state with significantly less models runs.
Smaller values of kmax provide a faster convergence of the algorithm. With kmax = 1,
which corresponds to a one-way coupling, it requires only 350 models runs to provide a
good approximate of the strongly coupled solution (Js = 8.6 10−7, RMSE = 0.215 ◦C).
In this case, the interface condition F1u1 = F2u2 is imposed in a strong way in the
coupling iterations while the other condition G1u1 = G2u2 is established in a weak way
through Js during the minimisation. For kmax > 1 the interface condition G1u1 = G2u2

is also imposed in a strong way in the coupling iterations, and seems to conflict with the
weak constraint from Js. By considering uncoupled models in the CAMU algorithm, a
proper choice for αG and αF to balance Js and Jo in the cost function can lead to an
efficient method (268 models runs). Too big values imply a more constrained cost func-
tion, which leads to more minimisation iterations. At the opposite, too small values do
not constrain enough the interface and therefore produce poor model solutions. The anal-
ysed state shows a larger interface imbalance indicator compared to FIM and TIM, which

CARI 2016



8 CARI 2016 – Volume 1 – 2016

confirms that CAMU provides a weakly coupled solution, but is significantly better than
the uncoupled DA in that respect.

5. Conclusion and perspectives

We addressed in this paper the problem of variational data assimilation for coupled
models. The aim of was to introduce coupled DA algorithms. In this context, a difficulty
is to determine how to combine the two iterative processes at play, namely the Schwarz
iterations in the coupling and the minimisation iterations in the DA problem. The pro-
posed algorithms are distinguished by their choice of cost function and control vector as
well as their need to reach convergence of the Schwarz coupling method. We showed that
adding a physical constraint on the interface conditions in the cost function can have a
beneficial effect on the performance of the method and allow to save coupling iterations.
Moreover, an approach which only requires the adjoint of each individual model but not
the adjoint of the coupling showed promising results. Since the objective is to apply such
methods to ocean-atmosphere coupled models, increasingly complex models including
physical parameterisations for subgrid scales will be considered in future work.
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