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Abstract

This article is concerned with the exponential stability and the uniform propagation
of chaos properties of a class of Extended Ensemble Kalman-Bucy filters with respect to
the time horizon. This class of nonlinear filters can be interpreted as the conditional ex-
pectations of nonlinear McKean Vlasov type diffusions with respect to the observation
process. In contrast with more conventional Langevin nonlinear drift type processes,
the mean field interaction is encapsulated in the covariance matrix of the diffusion. The
main results discussed in the article are quantitative estimates of the exponential sta-
bility properties of these nonlinear diffusions. These stability properties are used to
derive uniform and non asymptotic estimates of the propagation of chaos properties
of Extended Ensemble Kalman filters, including exponential concentration inequalities.
To our knowledge these results seem to be the first results of this type for this class of
nonlinear ensemble type Kalman-Bucy filters.

Keywords : Extended Kalman-Bucy filter, Ensemble Kalman filters, Monte Carlo
methods, mean field particle systems, stochastic Riccati matrix equation, propagation
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1 Introduction

From the probabilistic viewpoint, the Ensemble Kalman filter (abbreviated EnKF) proposed
by G. Evensen in the beginning of the 1990s [8] is a mean field particle interpretation of
extended Kalman type filters. More precisely, Kalman type filters (including the conven-
tional Kalman filter and extended Kalman filters) can be interpreted as the conditional
expectations of a McKean-Vlasov type nonlinear diffusion. The key idea is to approximate
the Riccati equation by a sequence of sample covariance matrices associated with a series of
interacting Kalman type filters.

In the linear Gaussian case these particle type filters converge to the optimal Kalman
filter as the number of samples (a.k.a. particles) tends to 8. Little is known for nonlinear
and/or non Gaussian filtering problems, apart that they don’t converge to the desired op-
timal filter. This important problem is rather well known in signal processing community.
For instance, we refer the reader to [13, 15] for a more detailed discussion on these ques-
tions in discrete time settings. In this connection, we mention that these ensemble Kalman
type filters differ from interacting jump type particle filters and related sequential Monte
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Carlo methodologies. These mean field particle methods are designed to approximate the
conditional distributions of the signal given the observations. It is clearly not the scope
of this article to give a comparison between these two different particle methods. For a
more thorough discussion we refer the reader to the book [5] and the references therein.
We also mention that the EnKF models discussed in this article slightly differ from more
conventional EnKF used to approximate nonlinear filtering problems. To be more precise
we design a new class of EnKF that converge to the celebrated extended Kalman filter as
the number of particles goes to 8.

These powerful Monte Carlo methodologies are used with success in a variety of scientific
disciplines, and more particularly in data assimilation method for filtering high dimensional
problems arising in fluid mechanics and geophysical sciences [16, 17, 18, 20, 21, 22, 23, 24, 26].
A more thorough discussion on the origins and the application domains of EnKF is provided
in the series of articles [4, 6, 9, 11] and in the seminal research monograph by G. Evensen [10].

The mathematical foundations and the convergence of the EnKF has started in 2011 with
the independent pioneering works of F. Le Gland, V. Monbet and V.D. Tran [15], and the one
by J. Mandel, L. Cobb, J. D. Beezley [20]. These articles provide Lδ-mean error estimates for
discrete time EnKF and show that they converge towards the Kalman filter as the number of
samples tends to infinity. We also quote the recent article by D.T. B. Kelly, K.J. Law, A. M.
Stuart [13] showing the consistency of Ensemble Kalman filters in continuous and discrete
time settings. In the latter the authors show that the Ensemble Kalman filter is well posed
and the mean error variance doesn’t blow up faster than exponentially. The authors also
apply a judicious variance inflation technique to strengthen the contraction properties of
the Ensemble Kalman filter. We refer to the pioneering article by J.L. Anderson [1, 2, 3] on
adaptive covariance inflation techniques, and to the discussion given in the end of section 1.2
in the present article.

In a more recent study by X. T. Tong, A. J. Majda and D. Kelly [25] the authors
analyze the long-time behaviour and the ergodicity of discrete generation EnKF using Foster-
Lyapunov techniques ensuring that the filter is asymptotically stable w.r.t. any erroneous
initial condition. These important properties ensure that the EnKF has a single invariant
measure and initialization errors of the EnKF will not dissipate w.r.t. the time parameter.
Beside the importance of these properties, the only ergodicity of the particle process does
not give any information on the convergence and the accuracy of the particle filters towards
the optimal filter nor towards any type of extended Kalman filter, as the number of samples
tends to infinity.

Besides these recent theoretical advances, the rigorous mathematical analysis of long time
behavior of these particle methods is still at its infancy. As underlined by the authors in [13],
many of the algorithmic innovations associated with the filter, which are required to make a
useable algorithm in practice, are derived in an ad hoc fashion. The divergence of ensemble
Kalman filters has been observed numerically in some situations [12, 14, 19], even for stable
signals. This critical phenomenon, often referred as the catastrophic filter divergence in
data assimilation literature, is poorly understood from the mathematical perspective. Our
objective is to better understand the long time behavior of ensemble Kalman type filters
from a mathematical perspective. Our stochastic methodology combines spectral analysis
of random matrices with recent developments in concentration inequalities, coupling theory
and contraction inequalities w.r.t. Wasserstein metrics.

These developments have been started in two recent articles [6, 7]. The first one pro-
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vides uniform propagation of chaos properties of ensemble Kalman filters in the context
of linear-Gaussian filtering problems. The second article is only concerned with extended
Kalman-Bucy filters. It discusses the stability properties of these filters in terms of exponen-
tial concentration inequalities. These concentration inequalities allow to design confidence
intervals around the true signal and extended Kalman-Bucy filters.

The first contribution of the article is to extend these results as the level of the McKean-
Vlasov type nonlinear diffusion associated with the ensemble Kalman-Bucy filter. Under
some natural regularity conditions we show that these nonlinear diffusions are exponentially
stable, in the sense that they forget exponentially fast any erroneous initial condition. These
stability properties are analyzed using coupling techniques and expressed in terms of δ-
Wasserstein metrics.

The main objective of the article is to analyze the long time behavior of the mean
field particle interpretation of these nonlinear diffusions. We present new uniform estimates
w.r.t. the time horizon for the bias and the propagation of chaos properties of the mean
field systems. We also quantify the fluctuations of the sample mean and covariance particle
approximations.

The rest of the article is organized as follows:
Section 1.1 presents the nonlinear filtering problem discussed in the article, the Extended

Kalman-Bucy filter, the associated nonlinear McKean Vlasov diffusion and its mean field
particle interpretation. The two main theorems of the article are described in section 1.2.
In a preliminary short section, section 2, we show that the conditional expectations and
the conditional covariance matrices of the nonlinear McKean Vlasov diffusion coincide with
the EKF. We also provide a pivotal fluctuation theorem on the time evolution of these
conditional statistics. Section 3 is mainly concerned with the stability properties of the
nonlinear diffusion associated with the EKF. Section 4 is dedicated to the propagation of
chaos properties of the extended ensemble Kalman-Bucy filter.

1.1 Description of the models

Consider a time homogeneous nonlinear filtering problem of the following form

#

dXt “ ApXtq dt ` R
1{2
1 dWt

dYt “ BXt dt ` R
1{2
2 dVt

and we set Gt “ σ pYs, s ď tq.

In the above display, pWt, Vtq is an pr1`r2q-dimensional Brownian motion, X0 is a r1-valued
random vector with mean and covariance matrix pEpX0q, P0q (independent of pWt, Vtq), the

symmetric matrices R
1{2
1 and R

1{2
2 are invertible, B is an pr2ˆ r1q-matrix, and Y0 “ 0. The

drift of the signal is differentiable vector valued function A : x P Rr1 ÞÑ Apxq P Rr1 with a
Jacobian denoted by BA : x P Rr1 ÞÑ Apxq P Rpr1ˆr1q.

The Extended Kalman-Bucy filter (abbreviated EKF) and the associated stochastic Ric-
cati equation are defined by the evolution equations

#

d pXt “ Ap pXtq dt` PtB
1R´1

2

”

dYt ´B pXt dt
ı

with pX0 “ EpX0q

BtPt “ BAp pXtqPt ` PtBAp pXtq
1 `R´ PtSPt with pR,Sq :“ pR1, B

1R´1
2 Bq

In the above display, B1 stands for the transpose of the matrix B.
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We associate with these filtering models the conditional nonlinear McKean-Vlasov type
diffusion process

dXt “ A
`

Xt,ErXt | Gts
˘

dt`R
1{2
1 dW t ` PηtB1R´1

2

”

dYt ´
´

BXt dt`R
1{2
2 dV t

¯ı

(1)

with the nonlinear drift function

Apx,mq :“ A rms ` BA rms px´mq

In the above display pW t, V t, X0q stands for independent copies of pWt, Vt, X0q (thus inde-
pendent of the signal and the observation path), and Pηt stands for the covariance matrix

Pηt “ ηt
“

pe´ ηtpeqqpe´ ηtpeqq
1
‰

with ηt :“ LawpXt | Gtq and epxq :“ x.

We call the stochastic process defined in (1) the Extended Kalman-Bucy diffusion or simply
the EKF-diffusion.

In section 2 (see proposition 2.1) we will see that the Gt-conditional expectation of the
states Xt and their Gt-conditional covariance matrices coincide with the EKF filter and the
Riccati equation presented in (1).

The Extended Kalman-Bucy filter (abbreviated En-EKF) coincides with the mean field
particle interpretation of the nonlinear diffusion process (1).

To be more precise, let pW
i
t, V

i
t, ξ

i
0q1ďiďN be N independent copies of pW t, V t, X0q. In

this notation, the En-EKF is given by the Mckean-Vlasov type interacting diffusion process

dξit “ Apξit,mtq dt`R
1{2
1 dW

i
t ` ptB

1R´1
2

”

dYt ´
´

Bξit dt`R
1{2
2 dV

i
t

¯ı

(2)

for any 1 ď i ď N , with the sample mean and the rescaled particle covariance matrices
defined by

mt :“
1

N

ÿ

1ďiďN

ξit and pt :“

ˆ

1´
1

N

˙

PηNt “
1

N ´ 1

ÿ

1ďiďN

`

ξit ´mt

˘ `

ξit ´mt

˘1
(3)

with the empirical measures ηNt :“ 1
N

ř

1ďiďN δξit . We also consider the N -particle model

ζt “
`

ζit
˘

1ďiďN
defined as ξt “

`

ξit
˘

1ďiďN
by replacing the sample variance pt by the true

variance Pt (in particular we have ξ0 “ ζ0).
As mentioned in the introduction the En-EKF (2) differs from the more conventional

one defined as above by replacing Apξit,mtq by the signal drift Apξitq. In this context the
resulting sample mean will not converge to the EKF but to the filter defined as in (1) by
replacing Ap pXtq by the conditional expectations E pApXtq | Gtq. The convergence analysis of
this particle model is much more involved than the one discussed in this article. The main
difficulty comes from the dependency on the whole conditional distribution of the signal
given the observations. We plan to analyze this class of particle filters in a future study.

1.2 Statement of the main results

To describe with some precision our results we need to introduce some terminology. We
denote by λminpSq and λmaxpSq the minimal and the maximal eigenvalue of a given sym-
metric matrix S. We let ρpP q “ λmaxppP ` P 1qq{2 the logarithmic norm of a given square
matrix P . Given pr1 ˆ r2q matrices P,Q we define the Frobenius inner product

xP,Qy “ trpP 1Qq and the associated norm }P }2F “ trpP 1P q
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where trpCq stands for the trace of a given matrix. We also equip the product space Rr1 ˆ
Rr1ˆr1 with the inner product

xpx1, P1q, px2, P2qy :“ xx1, x2y ` xP1, P2y and the norm }px, P q}2 :“ xpx, P q, px, P qy

In the further development of the article we assume that the Jacobian matrix BA of the
signal drift function A satisfies the following regularity conditions:

$

&

%

λBA :“ ´2 infxPRr1 ρpBApxqq ą 0

}BApxq ´ BApyq} ď κBA }x´ y} for some κBA ă 8.
(4)

where ρpP q :“ λmaxpP q stands for the logarithmic norm of a symmetric matrix P . In the
above display }BApxq´BApyq} stands for the L2-norm of the matrix operator pBApxq´BApyqq,
and }x´ y} the Euclidian distance between x and y. A first order Taylor expansion shows
that

p4q ùñ xx´ y,Apxq ´Apyqy ď ´λA }x´ y}
2 with λA ě λBA{2 ą 0. (5)

Given some δ ě 1, the δ-Wasserstein distance Wδ between two probability measures ν1 and
ν2 on some normed space pE, }.}q is defined by

Wδ
δpν1, ν2q “ inf E

´

}Z1 ´ Z2}
δ
¯

.

The infimum in the above displayed formula is taken of all pair of random variable pZ1, Z2q

such that LawpZiq “ νi, with i “ 1, 2.
In the further development of the article, to avoid unnecessary repetitions we also use

the letter ”c” to denote some finite constant whose values may vary from line to line, but
they don’t depend on the time parameter.

Our first main result concerns the stability properties of the EKF-diffusion (1). It is no
surprise that these properties strongly depend on logarithmic norm of the drift function A
as well as on the size of covariance matrices of the signal-observation diffusion. For instance,
we have the uniform moment estimates

λBA ą 0 ñ @δ ě 1 sup
tě0

!

Er}Xt}
δs _ trpPtq _ Er}Xt ´ pXt}

δs

)

ď c (6)

A detailed proof of these stochastic stability properties including exponential concentration
inequalities can be found in [7]. Observe that trpPtq is random so that the above inequality
provides an almost sure estimate. To be more precise we use (1) to check that

Bttr pPtq ď ´λBA tr pPtq ` trpRq ùñ trpPtq ď e´λBAt tr pP0q ` trpRq{λBA (7)

To get one step further in our discussion, we consider the following ratio

λS :“
λBA
ρpSq

λR :“
λBA

trpRq
and λK :“

λBA
κBA

The quantity ρpSq is connected to the sensor matrix B and to the inverse of the covariance
matrix of the observation perturbations. We also have the rather crude estimate

ρpSq ď trpSq “ }BR
´1{2
2 B}2F ď trpR´1

2 q }B}2F
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Roughly speaking, these three quantities presented above measure the relative stability
index of the signal drift with respect to the perturbation degree of the sensor, the one of the
signal, and the modulus of continuity of the Jacobian entering into the Riccati equation.
For instance, λS is high for sensors with large perturbations, inversely λR is large for signals
with small perturbations.

Most of our analysis relies on the behavior of the following quantities:

λR,S :“ p8eq´1 λR
a

λS

„

1`
2

λRλS

´1

pλBA{λBA :“

ˆ

1

2
´

2

λKλR

˙

`

ˆ

1

2
´

1
?
λS

˙„

1´
3

4

1
?
λS



To better connect these quantities with the stochastic stability of the EKF diffusion we
discuss some exponential concentration inequalities that can be easily derived from our
analysis. These concentration inequalities are of course more accurate than any type of
mean square error estimate. Let pXtpm, pq be the solution of the EKF equation (1) starting
at p pX0, P0q “ pm, pq, and let Xtpxq be the state of the signal starting at X0pxq “ x. Let
$pδq be the function

δ P r0,8rÞÑ $pδq :“
e2

?
2

„

1

2
`

´

δ `
?
δ
¯



For any time horizon t P r0,8r, and any δ ě 0 the probabilities of the following events

}Xtpxq ´ pXtpm, pq}
2 ď

1

2e
$pδq

a

λS{λR,S

`2 e´λBAt }x´m}2 ` 8 $pδq
|e´λAt ´ e´λBAt|

|λA{λBA ´ 1|
trppq2{λS

and

}Xtpm, pq ´ pXtpm, pq}
2 ď

1

2e
$pδq

a

λS{λR,S ` 8 $pδq e´λBAt trppq2{λS

are greater than 1 ´ e´δ. The proof of the first assertion is a consequence of theorem 1.1
in [7], the proof of the second one is a consequence of the Lδ-mean error estimates (19).
These concentration inequalities show that the quantity

a

λS{λR,S “ 8e λS
1

λRλS

„

1`
2

λRλS



can be interpreted as the size of a confidence interval around the values of the true signal,
as soon as the time horizon is large. It is also notable that the same quantity controls the
fluctuations of the EKF diffusion around the values of the EKF. These confidence intervals
are small for stable signals with small perturbations. The product term

1

λRλS
“ λ´2

BA trpR1q trpBR´1
2 B1q

can be thought as a signal to noise ratio. Given a fixed signal to noise ratio, the confidence
intervals are small for high informative sensors with small perturbations.

6



We further assume that

pλKλR{4q ^ λR,S ^ pλS{4q ą 1 (8)

This condition ensures that 0 ă pλBA ď λBA. Condition (8) is clearly met as soon as λR and
λS are sufficiently large. As we shall see the quantity pλBA represents the Lyapunov stability
exponent of the EKF. This exponent is decomposed into two parts. The first one represents
the relative contribution of the signal perturbations, the second one is related to the sensor
perturbations.

In contrast with the linear-Gaussian case discussed in [6], the stochastic Riccati equation
(1) depends on the states of the EKF. As shown in [7] the stability of the EKF rely on a
stochastic Lyapunov exponent that depends on the random trajectories of the filter as well as
on the signal-observation processes. The technical condition (8) allows to control uniformly
the fluctuations of these stochastic exponents with respect to the time horizon. A more
detailed discussion on the regularity condition (8), including a series of sufficient conditions
are provided in the appendix, section 5.1.

Let pXt, X̆tq be a couple of EKF Diffusions (1) starting from two random states with
mean p pX0, qX0q and covariances matrices pP0, qP0q. One key feature of these nonlinear dif-
fusions is that the Gt-conditional expectations p pXt, qXtq and the Gt-conditional covariance
matrices pPt, qPtq satisfy the EKF and the stochastic Ricatti equations discussed in (1).

Whenever condition (8) is satisfied we recall from [7] that for any ε Ps0, 1s there exists
some time horizon s such that for any t ě s we have the almost sure contraction estimate

E
´

}p pXt, Ptq ´ p qXt, qPtq}
δS | Gs

¯2{δS
ď Zs exp

”

´p1´ εq pλBApt´ sq
ı

}p pXs, Psq ´ p qXs, qPsq}
2

with δS :“ 2´1
?
λS , and some random process Zt satisfying the uniform moment condition

sup
tě0

E pZαt q ă 8 with α “ 2λR,S δS . (9)

These conditional contraction estimates can be used to quantify the stability properties of
the EKF. More precisely, if we set

Pt “ Lawp pXt, Ptq and qPt “ Lawp qXt, qPtq

then the above contraction inequality combined with the uniform estimates (6) readily
implies that

@t ě t0 W2
δS
pPt, qPtq ď c exp

”

´t p1´ εq pλBA

ı

for any ε P r0, 1r, with some time horizon t0. This stability property ensures that the
EKF forgets exponentially fast any erroneous initial condition. Of course these forgetting
properties of the EKF don’t give any information at the level of the process. One of the main
objective of the article is to complement these conditional expectation stability properties
at the level of the Mc-Kean Vlasov type nonlinear EKF-diffusion (1).

Our first main result can basically be stated as follows.

Theorem 1.1. Let pηt, η̆tq be the probability distributions of a couple pXt, X̆tq of EKF
Diffusions (1) starting from two possibly different random states. Assume condition (8) is
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met with δ1S :“ δS{4 ě 2. In this situation, for any ε P r0, 1r there exists some time horizon
t0 such that for any t ě t0 we have

W2
δ1
S
pηt, η̆tq ď c exp r´t p1´ εq λs with λ ě pλBA ^ pλBA{4q (10)

Our next objective is to analyze the long time behavior of the mean field type En-EKF
model discussed in (2). From the practical estimation point of view, only the sample mean
and the sample covariance matrices (3) are of interest since these quantities converge to the
EKF and the Riccati equations, as N tends to 8. Another important problem is to quantify
the bias of the mean field particle approximation scheme. These properties are related to
the propagation of chaos properties of the mean field particle model. They are expressed in
terms of the collection of probability distributions

PNt “ Lawpmt, ptq QN
t “ Lawpξ1

t q and Qt “ Lawpζ1
t q

Theorem 1.2. Assume that λminpSq ą 0 and condition (8) is met with δR,S :“ peλR,Sq ^
δS ě 2 In this situation, there exists some N0 ě 1 and some β Ps0, 1{2s such that for any
N ě N0, we have the uniform non asymptotic estimates

trpP0q
2 ď

λS
λR

„

1

2
`

1

λRλS



ùñ sup
tě0

WδR,S

`

PNt ,Pt
˘

ď cN´β (11)

In addition, when δR,S ě 4 we have the uniform propagation of chaos estimate

sup
tě0

W2

`

QN
t ,Qt

˘

ď cN´β (12)

We end this section with some comments on our regularity conditions.
The condition λminpSq ą 0 is needed to control the fluctuations of the trace of the sample

covariance matrices of the En-EKF, even if the trace expectation is uniformly stable.
Despite our efforts, our regularity conditions are stronger than the ones discussed in [6] in

the context of linear-Gaussian filtering problems. The main difference here is that the signal
stability is required to compensate the possible instabilities created by highly informative
sensors when we initialize the filter with wrong conditions.

Next we comment the trace condition in (11). As we mentioned earlier, the stability
properties of the limiting EKF-diffusion (1) are expressed in terms of a stochastic Lyapunov
exponent that depends on the trajectories of the signal process. The propagation of chaos
properties of the mean field particle approximation (2) depend on the long time behavior of
these stochastic Lyapunov exponents. Our analysis is based on a refined analysis of Laplace
transformations associated with quadratic type stochastic exponents. The existence of these
χ-square type Laplace transforms require some regularity on the signal process. For instance
at the origin we have

ptrpP0q ďq r1ρpP0q ď 1{p4δq ùñ E
´

exp
”

δ}X0 ´ pX0}
2
ı¯

ď e (13)

The proof of (13) and more refined estimates can be found in [7].
From the numerical viewpoint the trace condition in (11) is related to the initial location

of the particles and the signal-observation perturbations. Signals with a large diffusion part
are more likely to correct an erroneous initialization. In the same vein, the estimation
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problems associated with sensors corrupted by large perturbations are less sensitive to the
initialization of the filter. In the reverse angle, when the signal is almost deterministic and
the sensor is highly informative the particles need to be initialized close to the true value of
the signal.

To better connect our work with existing literature we end our discussion with some
connection with the the variance inflation technique introduced by J.L. Anderson in [1, 2, 3]
and further developed by D.T. B. Kelly, K.J. Law, A. M. Stuart [13] and by X. T. Tong,
A. J. Majda and D. Kelly [25]. In discrete time settings this technique amounts of adding
an extra positive matrix in the Riccati updating step. This strategy allows to control the
fluctuations of the sample covariance matrices. In continuous time settings, this technique
amounts of changing the covariance matrix Pηt in the EKF diffusion (1) by Pηt ` θ Id for
some tuning parameter θ ą 0. The resulting EKF-diffusion (1) is given by the equation

dXt “
`

A
`

Xt,ErXt | Gts
˘

´ θ S Xt

˘

dt` PηtB1R´1
2

”

dYt ´
´

BXt dt`R
1{2
2 dV t

¯ı

`

”

R
1{2
1 dW t ´ θ B

1R
´1{2
2 dV t

ı

` θ B1R´1
2 dYt

The stabilizing effects of the variance inflation technique are clear. The last term in the r.h.s.
of the above displayed formula has no effect (by simple coupling) on the stability properties
of the diffusion. The form of the drift also indicates that we increase the Lyapunov exponent
by an additional factor θ (as soon as ρpSq ą 0). In addition we increase the noise of the
diffusion by a factor θ2, in the sense that the covariance matrix of the perturbation term

R
1{2
1 dW t ´ θ B1R

´1{2
2 dV t is given by R1 ` θ2S. We believe that the stability analysis of

these regularized models is simplified by these additional regularity properties. This class
of regularized nonlinear diffusions can probably be studied quite easily using the stochastic
analysis developed in this article. We plan to develop this analysis in a forthcoming study.

2 Some preliminary results

This short section presents a couple of pivotal results. The first one ensures that the Ex-
tended Kalman-Bucy filter coincides with the Gt-conditional expectations of the nonlinear
diffusion Xt. The second result shows that the stochastic processes pmt, ptq satisfy the

same equation as
´

pXt, Pt

¯

, up to some local fluctuation orthogonal martingales with angle

brackets that only depends on the sample covariance matrix pt.

Proposition 2.1. We have the equivalence

EpX0q “ pX0 and Pη0 “ P0 ðñ @t ě 0 EpXt | Gtq “ pXt and Pηt “ Pt

Proof. Taking the Gt-conditional expectations in (1) we find the diffusion equation

dEpXt | Gtq “ ApEpXt | Gtq dt` PηtB1R´1
2

“

dYt ´B EpXt | Gtqdt
‰

Let us compute the evolution of Pηt . We set rXt “ Xt´EpXt | Gtq. In this notation we have

d rXt “ BApEpXt | Gtqq rXt dt ` R
1{2
1 dW t ´ PηtB1R´1

2

”

B rXtdt`R
1{2
2 dV t

ı

“
“

BApEpXt | Gtqq ´ PηtS
‰

rXt dt ` R
1{2
1 dW t ´ PηtB1R

´1{2
2 dV t

9



This implies that

dp rXt
rX 1tq “

"

”

BAp pXtq ´ PtS
ı

rXt
rX 1t dt `

rXt
rX 1t

”

BAp pXtq ´ PtS
ı1

` pR` PηtSPηtq
*

dt

`

”

R
1{2
1 dW t ´ PηtB1R

´1{2
2 dV t

ı

rX 1t `
rXt

”

R
1{2
1 dW t ´ PηtB1R

´1{2
2 dV t

ı1

Taking the Gt-conditional expectations we conclude that

BtPηt “

”

BAp pXtq ´ PηtS
ı

Pηt dt ` Pηt
”

Hp pXtq ´ PηtS
ı1

` pR` PηtSPηtq

“ BAp pXtqPηt ` PηtBAp pXtq
1 `R´ PηtSPηt

This ends the proof of the proposition.

Theorem 2.2 (Fluctuation theorem [6]). The stochastic processes pmt, ptq defined in (3)
satisfy the diffusion equations

dmt “ A rmts dt` pt B
1R´1

2 pdYt ´Bmt dtq `
1
?
N

dM t (14)

with the vector-valued martingale M t “
`

M tpkq
˘

1ďkďr1
with the angle-brackets

BtxM tpkq,M tpk
1qyt “ Rpk, k1q ` pptSptq pk, k

1q (15)

We also have the matrix-valued diffusion

dpt “
`

BA rmts pt ` ptBA rmts
1
´ ptSpt `R

˘

dt`
1

?
N ´ 1

dMt (16)

with a symmetric matrix-valued martingale Mt “ pMtpk, lqq1ďk,lďr1 and the angle brackets

Bt
@

Mpk, lq,Mpk1, l1q
D

t
“ pR` ptSptq pk, k

1q ptpl, l
1q ` pR` ptSptq pl, l

1q ptpk, k
1q

` pR` ptSptq pl
1, kq ptpk

1, lq ` pR` ptSptq pl, k
1q ptpk, l

1q

(17)
In addition we have the orthogonality properties

@

Mpk, lq,Mpl1q
D

t
“

@

Mpk, lq, V pk1q
D

t
“

@

Mpl1q, V pk1q
D

t
“ 0

for any 1 ď k, l, l1 ď r1 and any 1 ď k1 ď r2.

Proof. We have

dpξit ´mtq “ rBA pmtq ´ ptB
1Ss pξit ´mtqdt` dM

i
t

with the martingale

dM i
t :“ R

1{2
1

˜

dW
i
t ´

1

N

ÿ

1ďjďN

dW
j
t

¸

´ ptB
1R
´1{2
2

˜

dV
i
t ´

1

N

ÿ

1ďjďN

dV
j
t

¸

10



Notice that

BtxM
ipkq,M ipk1qyt “

ˆ

1´
1

N

˙

pR` ptSptq pk, k
1q

and for i ­“ j

BtxM
ipkq,M jpk1qyt “ ´

1

N
pR` ptSptq pk, k

1q

The end of the proof follows the proof of theorem 1 in [6], thus it is skipped. This ends the
proof of the theorem.

3 Stability properties

This section is dedicated to the long time behavior of the EKF-diffusion (1), mainly with
the proof of theorem 1.1. We use the stochastic differential inequality calculus developed
in [6, 7]. Let Yt be some non negative process defined on some probability space pΩ,F ,Pq
equipped with a filtration F “ pFtqtě0 of σ-fields. Also let pZt,Z`t q be some processes and
Mt be some continuous Ft-martingale. We use the notation

dYt ď Z`t dt` dMt ðñ
`

dYt “ Zt dt` dMt with Zt ď Z`t
˘

(18)

We recall some useful algebraic properties of the above stochastic inequalities.
Let pYt,Z

`

t ,Zt,Mtq be another collection of processes satisfying the above inequalities,
and pα, αq a couple of non negative parameters. In this case it is readily checked that

dpα Yt ` α Ytq ď pα Z`t ` α Z
`

t q dt` dpαMt ` αMtq

and
dpYtYtq ď

”

Z`t Yt ` Z`t Yt ` BtxM,Myt
ı

dt` Yt dMt ` Yt dMt

We consider a couple of diffusions pXt, X̆tq coupled with the same Brownian motions
pV t,W tq and the same observation process Yt, and we set

Ft :“ Gt _ σ
´

pXs, X̆sq, s ď t
¯

Next proposition provides uniform estimates of the Lδ-centered moments of the EKF-
diffusion with respect to the time horizon.

Proposition 3.1. Assume that λBA ą 0. In this situation, for any δ ě 1 and any time
horizon s ě 0 we have the uniform almost sure estimates

E
´

}Xt ´ pXt}
δ | Fs

¯2{δ
ď e´λBApt´sq }Xs ´ pXs}

2

`p2δ ´ 1q
”

λ´1
R p1` 2 pλRλSq

´1q ` 2e´λBApt`sqtrpP0q
2λ´1

S

ı

(19)

11



Proof. We have

dpXt ´ pXtq “

”

BAp pXtq ´ PtS
ı

pXt ´ pXtq dt ` R
1{2
1 dW t ´ PtB

1R
´1{2
2 dV t

This implies that

d}Xt ´ pXt}
2

“

”

2xXt ´ pXt,
”

BAp pXtq ´ PtS
ı

pXt ´ pXtqy ` trpR1q ` trpP 2
t Sq

ı

dt` dMt

ď

”

´λBA }Xt ´ pXt}
2 ` Ut

ı

dt` dMt

with the process

Ut :“ trpRq ` trpP 2
t Sq ď trpRq ` ρpSqtrpPtq

2

ď trpRq ` ρpSq
´

e´λBAt trpP0q ` 1{λR

¯2

and the martingale

dMt :“ 2xXt ´ pXt, R
1{2
1 dW t ´ PtB

1R
´1{2
2 dV ty

Observe that the angle bracket of this martingale satisfy the property

BtxMyt “ 4xXt ´ pXt, pR` PtSPtq pXt ´ pXtqy ď 4}Xt ´ pXt}
2 }R` PtSPt}

By corollary 2.2 in [7] for any δ ě 1 we have

E
´

}Xt ´ pXt}
δ | Fs

¯2{δ
ď exp p´λBApt´ sqq }Xs ´ pXs}

2

`p2δ ´ 1q

ż t

s
exp p´λBApt´ uqq

`

trpRq ` ρpSqtrpPuq
2
˘

du

Observe that by (7)

ρpSq

ż t

s
exp p´λBApt´ uqq trpPuq

2 du

ď 2ρpSq

ż t

s
exp p´λBApt´ uqq

”

e´2λBAu trpP0q
2 ` 1{λ2

R

ı

du

ď 2pλ2
RλSq

´1 ` 2 exp p´λBApt` sqqtrpP0q
2λ´1

S

This ends the proof of the proposition.

12



Theorem 3.2. When the initial random states X0 and X̆0 have the same first and second
order statistics p pX0, P0q “ p qX0, qP0q we have the almost sure contraction estimates:

}Xt ´ X̆t}
2 ď exp r´λBAts }X0 ´ X̆0}

2

More generally, when condition (8) is met with λS ě 44, for any ε P r0, 1r there exists some
s such that for any t ě s and any 1 ď δ ď 4´4

?
λS we have

E
´

}Xt ´ X̆t}
2δ | Fs

¯1{δ
ď exp

“

´p1´ εqλBApt´ sq
‰

”

}Xs ´ X̆s}
2 ` Zs

ı

(20)

with some exponent λBA ě pλBA ^ pλBA{2q, and some process Zt satisfying the uniform
moment condition

sup
tě0

E
´

Zα{4t

¯

ă 8 for any α ď λR,S
a

λS . (21)

Before getting into the details of the proof of this theorem we mention that (10) is a
direct consequence of (20) combined with the uniform estimates (19). Indeed, applying (20),
for any δ ě 2 we have

E
´

}Xt ´ X̆t}
δ
¯1{δ

ď exp
“

´p1´ εqλBApt´ sq{2
‰

ˆ

E
”

}Xs ´ X̆s}
δ
ı1{δ

` E
”

Zδ{2s
ı1{δ

˙

Using (19) and the fact that

1 ď δ{2 ď 16´1
a

λS ď 4´1 λR,S
a

λS

we conclude that

Wδpηt, η̆tq ď c exp
“

´t p1´ εqp1´ s{tqλBA{2
‰

ď c exp
“

´t p1´ 2εqλBA{2
‰

as soon as s{t ď ε. The end of the proof of (10) is now clear.
Now we come to the proof of the theorem.
Proof of theorem 3.2:
We have

dXt “ ApXt, pXtq dt ` R
1{2
1 dW t ` PtB

1R´1
2

”

dYt ´
´

BXtdt`R
1{2
2 dV t

¯ı

Using the decomposition

qPtSX̆t ´ PtSXt “ ´PtSpXt ´ X̆tq ` p qPt ´ PtqSX̆t

we readily check that

d
´

Xt ´ X̆t

¯

“

!”

ApXt, pXtq ´ApX̆t, qXtq

ı

´ PtSpXt ´ X̆tq

)

dt`
”

Pt ´ qPt

ı

SpXt ´ X̆tq dt` dMt

13



with the martingale

dMt :“
”

Pt ´ qPt

ı

B1R
´1{2
2 dpVt ´ V tq

ñ BtxMyt “ }

”

Pt ´ qPt

ı

B1R
´1{2
2 }2F “ tr

ˆ

”

Pt ´ qPt

ı2
S

˙

ď Vt :“ ρpSq }Pt ´ qPt}
2
F

When the initial random states X0 and X̆0 are possibly different but they have the same
first and second order statistics we have

pX0 “ qX0 and P0 “ qP0 ùñ @t ě 0 pXt “ qXt and Pt “ qPt

In this particular situation we have

ApXt, pXtq ´ApX̆t, qXtq “ BAp qXtq pXt ´ X̆tq

and
Bt

´

Xt ´ X̆t

¯

“

”

BAp qXtq ´ PtS
ı

pXt ´ X̆tq

This implies that

Bt}Xt ´ X̆t}
2 “ 2xpXt ´ X̆tq,

”

BAp qXtq ´ PtS
ı

pXt ´ X̆tqy ď ´λBA }Xt ´ X̆t}
2

This ends the proof of the first assertion.
More generally, we have

ApXt, pXtq ´ApX̆t, qXtq

“ BAp qXtq pXt ´ X̆tq

`

”

Ap pXtq ´Ap qXtq

ı

´ BAp qXtqp pXt ´ qXtq `

”

BAp pXtq ´ BAp qXtq

ı

pXt ´ pXtq

This yields the estimate

xXt ´ X̆t,
´

ApXt, pXtq ´ApX̆t, qXtq

¯

´ PtSpXt ´ X̆tqy

ď ´
λBA

2
}Xt ´ X̆t}

2 ` xXt ´ X̆t,
”

BAp pXtq ´ BAp qXtq

ı

pXt ´ pXtqy

`xXt ´ X̆t,
”

Ap pXtq ´Ap qXtq

ı

´ BAp qXtqp pXt ´ qXtqy

ď ´
λBA

2
}Xt ´ X̆t}

2 ` } pXt ´ qXt} }Xt ´ X̆t}

´

κBA }Xt ´ pXt} ` κBA ` }BA}
¯

We also have

xXt ´ X̆t,
”

Pt ´ qPt

ı

SpXt ´ X̆tqy ď }Pt ´ qPt}F }Xt ´ X̆t} }SpXt ´ X̆tq}
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This implies that

d}Xt ´ X̆t}
2

ď

”

´λBA }Xt ´ X̆t}
2 ` 2 } pXt ´ qXt} }Xt ´ X̆t}

´

κBA }Xt ´ pXt} ` κBA ` }BA}
¯ı

dt

`

”

2}Pt ´ qPt}F }Xt ´ X̆t} }SpXt ´ X̆tq}

ı

dt` 2
?
Vt }Xt ´ X̆t} dMt

with
Vt “ ρpSq }Pt ´ qPt}

2
F

and a rescaled continuous martingale Mt such that BtxMyt ď 1. On the other hand, we
have

2 }Xt ´ X̆t} } pXt ´ qXt}

´

κBA }Xt ´ pXt} ` κBA ` }BA}
¯

ď
λBA

4
}Xt ´ X̆t}

2 `
4

λBA
} pXt ´ qXt}

2
´

κBA }Xt ´ pXt} ` κBA ` }BA}
¯2

and
2}Pt ´ qPt}F }Xt ´ X̆t} }SpXt ´ X̆tq}

ď
λBA

4
}Xt ´ X̆t}

2 `
4

λBA
}Pt ´ qPt}

2
F }SpXt ´ X̆tq}

2

We conclude that

d}Xt ´ X̆t}
2 ď

„

´
λBA

2
}Xt ´ X̆t}

2 ` Ut


dt` 2
a

Vt }Xt ´ X̆t} dMt

with
Ut :“ αt } pXt ´ qXt}

2 ` βt }Pt ´ qPt}
2
F

and the parameters

αt :“
4

λBA

´

κBA }Xt ´ pXt} ` κBA ` }BA}
¯2

and βt :“
4

λBA
}SpXt ´ X̆tq}

2

By (8) and (19), for any δ ď 2´1
?
λS and any t ě s we have

E
´

α
δ{4
t } pXt ´ qXt}

δ{2 | Fs
¯4{δ

ď E
´

} pXt ´ qXt}
δ | Fs

¯2{δ
E
´

α
δ{2
t | Fs

¯2{δ

ď Zs exp
´

´pλBAp1´ εqpt´ sq
¯

for some process Zs satisfying the uniform moment condition (21). In the same vein we
check that

E
´

Uδ{4t | Fs
¯4{δ

_ E
´

Vδ{4t | Fs
¯4{δ

ď Zs exp
´

´pλBAp1´ εqpt´ sq
¯
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for any s ě t0. By corollary 2.2 in [7] we have

E
´

}Xt ´ X̆t}
δ{4 | Fs

¯8{δ

ď exp

ˆ

´

„

λBA
2
pt´ sq

˙

}Xs ´ X̆s}
2

` n Zs
ż t

s
exp

ˆ

´

„

λBA
2
pt´ uq ` pλBAp1´ εqpu´ sq

˙

du

ď e´
λBA
2
pt´sq }Xs ´ X̆s}

2 `
n Zt0

|pλBAp1´ εq ´ λBA{2|
|e´

λBA
2
pt´sq ´ e´

pλBAp1´εqpt´sq|

The end of the proof of the theorem is now easily completed.

4 Quantitative propagation of chaos estimates

4.1 Laplace exponential moment estimates

The analysis of EKF filters and their particle interpretation is mainly based on the estimation
of the stochastic exponential function

EΓptq :“ exp

„
ż t

0
ΓApsq ds



with the stochastic functional

ΓApsq :“ ´
”

λBA ´
´

2κBA trpPtq ` ρpSq }Xt ´ pXt}

¯ı

Assume condition (8) is satisfied and set

ΛBA rε, δs {λBA :“ 1´
2

λKλR
`

1

λS

ˆ

3

4
´ δ

˙

´
1

δ

ελA
2λBA

Observe that for any δ ą 0 we have

ε “
1

2

λBA
λA

ùñ ΛBA

”

ε,
a

λS{2
ı

“ pλBA ě ΛBA rε, δs

The next technical lemma provides some key δ-exponential moments estimates. Its proof
is quite technical, thus it is housed in the appendix, section 5.2.

Lemma 4.1. • For any δ ą 0 and any 0 ď s ď t we have the almost sure estimate

E
´

pEΓptq{EΓpsqq
´δ | Fs

¯1{δ
ď exp

`

Λ´Γ pt´ sq
˘

with Λ´Γ “ λBA

„

1´
2

λKλR



(22)
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• For any ε P r0, 1s, any 0 ă δ ď e ε λR,S and any initial covariance matrix P0 such that

trpP0q
2 ď σ2pε, δq :“

λS
λR

„

1

2
`

1

λRλS



pe ελR,S{δ ´ 1q

for any time horizon t ě 0 we have the exponential δ-moment estimate

E
”

EΓptq
δ
ı1{δ

ď cδpP0q exp
“

Λ`Γ pε, δq t
‰

(23)

with the parameters

Λ`Γ pε, δq :“ 2κBAσpδq ´ ΛBA rε, δs ´ pδ ´ 1q ρpSq

cδpP0q :“ exp
`

1{δ ` δχpP0q{p2λSq
2
˘

• For any ε Ps0, 1s there exists some time horizon s such that for any t ě s and any
δ ď

?
λS{2 we have the almost sure estimate

E
´

EΓptq
δ | Fs

¯1{δ
ď EΓpsq Zs exp

´

´

!

p1´ εqpλBA ` pδ ´ 1qρpSq
)

pt´ sq
¯

(24)

for some positive random process Zt s.t.

@α ď λR,S
a

λS sup
tě0

E pZαt q ă 8

4.2 A non asymptotic convergence theorem

This section is mainly concerned with the estimation of the δ-moments of the square errors

Ξt :“ }pmt, ptq ´ p pXt, Ptq}
2 “ }mt ´ pXt}

2 ` }pt ´ Pt}
2
F

The analysis is based on a couple of technical lemmas.
The first one provides uniform moments estimates with respect to the time parameter.

Lemma 4.2. Assume that λminpSq ą 0. In this situation there exists some ν ą 0 such that
for any 1 ď n ď 1` νN we have

sup
tě0

E ptrpptqnq ă 8 sup
tě0

E
`

}ξ1
t }
n
˘

ă 8 and sup
tě0

E
`

}ζ1
t }
n
˘

ă 8

The second technical lemma provides a differential perturbation inequality in terms of
the Laplace functionals discussed in section 4.1.

Lemma 4.3. Assume that λminpSq ą 0. We have the stochastic differential inequality

dΞt ď Ξt

”

ΓAptq `
a

2ρpSq dΥ
p1q
t

ı

`

”

Vt dt`
a

Vt Ξt dΥ
p2q
t

ı

with a couple of orthogonal martingales s.t. BtxΥ
piq
¨ ,Υ

pjq
¨ yt ď 1i“j and some non negative

process Vt such that

sup
tě0

E pVnt q
1{n
ď cpnq{N for any 1 ď n ď 1` νN and some ν ą 0.
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The proofs of these two lemmas are rather technical thus they are provided in the
appendix, section 5.3 and section 5.4. We are now in position to state and to prove the
main result of this section.

Theorem 4.4. Assume that p2´1
?
λSq ^ peλR,Sq ě 2. In this situation, there exists some

N0 ě 1 and some α Ps0, 1s such that for any N0 ď N , 1 ď δ ď p4´1
?
λSq ^ p2

´1eλR,Sq and
any initial covariance matrix P0 of the signal we have the uniform estimates

trpP0q
2 ď

1

2

λS
λR

„

1`
2

λRλS



ùñ sup
tě0

ErΞδt s1{δ ď c{Nα

Proof. We set
Eptq :“ EΓptqEΥptq “ eLt

with the exponential martingale

EΥptq :“ exp
”

a

2ρpSq Υ
p1q
t ´ ρpSqt

ı

and the stochastic process

Lt :“

ż t

0
ΓApuq du`

a

2ρpSq Υ
p1q
t ´ ρpSqt

Observe that for any δ ě 0 we have

E´δΥ ptq “ exp
”

´δ
a

2ρpSq Υ
p1q
t ` δρpSqt

ı

“ exp rδp1` 2δqρpSqts E1{2
´2δΥptq

with the exponential martingale

E´2δΥptq :“ exp
”

´2δ
a

2ρpSq Υ
p1q
t ´ 4δ2ρpSqt

ı

In the same vein we have

EδΥptq “ exp
”

δ
a

2ρpSq Υ
p1q
t ´ δρpSqt

ı

“ exp rδp2δ ´ 1qρpSqts E1{2
2δΥptq

with the exponential martingale

E2δΥptq :“ exp
”

2δ
a

2ρpSq Υ
p1q
t ´ 4δ2ρpSqt

ı

This yields the estimates

E
´

E´δptq
¯

“ exp pδp1` 2δqρpSqtq E
”

EΓptq
´δ E1{2

´2δΥptq
ı

ď E
”

EΓptq
´2δ

ı1{2
exp pδp1` 2δq ρpSqtq

E
´

Eδptq
¯

ď E
”

EΓptq
2δ
ı1{2

exp pδp2δ ´ 1q ρpSqtq

Using (22) and (23) we find the estimates

E
´

E´δptq
¯1{δ

ď exp
`“

p1` 2δq ρpSq ` Λ´Γ
‰

t
˘

(25)

E
´

Eδptq
¯1{δ

ď cδpP0q exp
`“

p2δ ´ 1q ρpSq ` Λ`Γ pε, δq
‰

t
˘

(26)
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The estimate (26) is valid for any ε P r0, 1s and any

δ ď e ε λR,S and trpP0q ď σpε, δq

Using the fact that

dE´1
ptq ď ´e´Lt

´

ΓAptq dt`
a

2ρpSq dΥ
p1q
t ´ ρpSqdt

¯

`
1

2
e´Lt 2ρpSq BtxΥ

p1qyt dt

ď ´E´1
ptq

´

ΓAptq dt`
a

2ρpSq dΥ
p1q
t

¯

we find the stochastic inequality

dpΞt E
´1
ptqq ď E´1

ptq dΞt ` Ξt dE
´1
ptq ´ 2E´1

ptq Ξt ρpSq dt

ď E´1
ptq Ξt

”

ΓAptq `
a

2ρpSq dΥ
p1q
t

ı

` E´1
ptq

”

Vt dt`
a

Vt Ξt dΥ
p2q
t

ı

´E´1
ptq Ξt

”

ΓAptq dt`
a

2ρpSq dΥ
p1q
t

ı

´ 2E´1
ptq Ξt ρpSq dt

“ E´1
ptq

”

pVt ´ 2 Ξt ρpSqq dt`
a

Vt Ξt dΥ
p2q
t

ı

For any δ ě 2, this implies that

dpΞt E
´1
ptqqδ ď δ Ξδ´1

t E´δptq
”

pVt ´ 2 Ξt ρpSqq dt`
a

Vt Ξt dΥ
p2q
t

ı

`δ Ξδ´1
t Eptq´δ pδ ´ 1q

2
Vt dt

“ δ Ξδ´1
t E´δptq

„ˆ

δ ` 1

2
Vt ´ 2 Ξt ρpSq

˙

dt`
a

Vt Ξt dΥ
p2q
t



Taking the expectation we obtain

BtE
”

pΞt E
´1
ptqqδ

ı

ď
δpδ ` 1q

2
E
„

´

Ξt E
´1
ptq

¯δ´1
E´1

ptq Vt


´ 2δ ρpSq E
„

´

Ξt E
´1
ptq

¯δ


On the other hand using lemma 4.3 and the Laplace estimate (25) we have

E
ˆ

´

Ξt E
´1
ptq

¯δ´1
E´1

ptq Vt
˙

ď E
ˆ

´

Ξt E
´1
ptq

¯δ
˙1´1{δ

E
´

E´2δ
ptq

¯1{p2δq
E
`

V2δ
t

˘1{p2δq

ď
c

N
exp

`“

p1` 4δq ρpSq ` Λ´Γ
‰

t
˘

E
ˆ

´

Ξt E
´1
ptq

¯δ
˙1´1{δ
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This yields

BtE
´

pΞtE
´1
ptqqδ

¯1{δ

ď
1

δ
E
´

pΞtE
´1
ptqqδ

¯
1
δ
´1
BtE

´

pΞtE
´1
ptqqδ

¯

ď ´2ρpSqE
´

pΞtE
´1
ptqqδ

¯1{δ
`
pδ ` 1q

2

c

N
exp

`“

p1` 4δqρpSq ` Λ´Γ
‰

t
˘

from which we conclude that

E
´

pΞt E
´1
ptqqδ

¯1{δ
ď exp t´2ρpSqtu E

´

Ξδ0

¯1{δ
`

c

N
exp

 `

p1` 4δqρpSq ` Λ´Γ
˘

t
(

ď
c

N
exp

 `

p1` 4δqρpSq ` Λ´Γ
˘

t
(

By Cauchy Schwartz inequality we also have

E
´

Ξ
δ{2
t

¯2{δ
“ E

ˆ

Eptqδ{2
´

Ξt E
´1
ptq

¯δ{2
˙2{δ

ď E
´

pΞt E
´1
ptqqδ

¯1{δ
E
´

Eδptq
¯1{δ

Using (26) we conclude that for any ε P r0, 1s and any δ ď e ε λR,S and trpP0q ď σpε, δq

E
´

Ξ
δ{2
t

¯2{δ
ď cδpP0q

c

N
exp

 `

6δρpSq ` Λ´Γ ` Λ`Γ pε, δq
˘

t
(

(27)

On the other hand, by theorem 2.1 in [7] for any δ ě 1 we also have

E
´

Ξ
δ{2
t | Fs

¯2{δ
ď E

„

exp

ˆ

δ

ż t

s
tΓApuq ` pδ ´ 1qρpSqu du

˙

| Fs
1{δ

ˆ

"

Ξs `
1

N

δ ` 1

2

ż t

s
E
”

Vδu | Fs
ı1{δ

du

*

(28)

with the rescaled process

Vt :“ exp

ˆ
ż t

s
r´ΓApuq ` 2p1´ δqρpSqs du

˙

Vt

of the process Vt defined in lemma 4.3.
On the other hand using (24) for any ε Ps0, 1s there exists some time horizon s “ spεq

such that for any t ě s and any δ ď 1
2

?
λS we have the almost sure estimate

E
´

Ξ
δ{2
t | Fs

¯2{δ
ď Zs exp

´

´p1´ εq pλBApt´ sq
¯

ˆ

"

Ξs `
δ ` 1

2

ż t

s
E
”

Vδu | Fs
ı1{δ

du

*

with some process Zs such that

sup
tě0

E pZαt q ă 8 for any α ď
2

e

a

λS

ˆ

ď
1

2
λR,S

a

λS

˙
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Combining Cauchy-Schwartz inequality with (22) and lemma 4.3 we readily check that

E
”

Vδu | Fs
ı1{δ

“ E
„

Vδu exp

ˆ

δ

ż u

s
r´ΓApvq ` 2p1´ δqρpSqs dv

˙

| Fs
1{δ

ď E
”

V2δ
u

ı1{p2δq
exp p2p1´ δqρpSqpu´ sqq E

”

pEΓpuq{EΓpsqq
´2δ | Fs

ı1{p2δq

ď
c

N
exp

“`

2p1´ δqρpSq ` Λ´Γ
˘

pu´ sq
‰

This yields the estimate

E
´

Ξ
δ{2
t | Fs

¯

ď Zδ{2s exp

ˆ

´
δ

2
p1´ εq pλBA pt´ sq

˙

ˆ

!

Ξs `
c

N
exp

“`

2p1´ δqρpSq ` Λ´Γ
˘

pt´ sq
‰

)δ{2

This implies that for any 1 ď δ{2 ď 1
4

?
λS we have

E
´

Ξ
δ{2
t | Fs

¯

ď c Zδ{2s exp

ˆ

´
δ

2
p1´ εq pλBA pt´ sq

˙

ˆ

"

Ξδ{2s `
1

N δ{2
exp

„

δ

2

`

2p1´ δqρpSq ` Λ´Γ
˘

pt´ sq

*

Taking the expectation and choosing ε ď 1{2, there exists some time horizon t0 such that
for any s ě 0 and any τ ě s` t0

E
´

Ξ
δ{2
τ

¯2{δ

ď c exp
´

´pλBA pτ ´ ps` t0qq{2
¯

"

1`
1

N
exp

“`

2p1´ δqρpSq ` Λ´Γ
˘

pτ ´ ps` t0q
‰

*

for any 2 ď δ ď 1` νN for some ν ą 0, and for some finite constant cpδq ă 8. This implies
that for any time horizon t ě 0 and any

2 ď δ ď 2´1
a

λS ^ p1` νNq

we have

E
´

Ξ
δ{2
s`t0`t

¯2{δ
ď c exp

˜

´
pλBA
2

t

¸

"

1`
1

N
exp

“`

2p1´ δqρpSq ` Λ´Γ
˘

t
‰

*

This yields the uniform estimates

sup
uPrt`t0,8r

E
´

Ξδ{2u

¯2{δ
“ sup

sě0
E
´

Ξ
δ{2
s`t0`t

¯2{δ
ď c

#

exp

«

´
pλBA
2

t

ff

`
1

N
exp rλΓts

+
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with the parameters

λΓ :“ Λ´Γ ´ 2ρpSq “
λBA

2

„ˆ

1´
4

λKλR

˙

`

ˆ

1´
4

λS

˙

ą 0

On the other hand, by (27) for any time horizon t ě 0 and any δ ď e λR,S and any P0

s.t. trpP0q ď σp1, eλR,S{2q we have the uniform estimates

sup
sPr0,t0`ts

E
´

Ξδ{2s

¯2{δ
ď c

1

N
exp

“

λ1Γt
‰

with

λ1Γ :“ 5eλBA λR,S{λS ` Λ´Γ ` Λ`Γ p1, eλR,S{2q

We conclude that for any time horizon t ě 0

sup
sě0

E
´

Ξδ{2s

¯2{δ
ď c

#

exp

«

´
pλBA
2

t

ff

`
1

N
exp

“

pλΓ _ λ
1
Γqt

‰

+

Choosing t “ tpNq such that

t “ tpNq :“ logN{
!

pλBA{2` pλΓ _ λ
1
Γq

)

We conclude that

sup
sě0

E
´

Ξδ{2s

¯2{δ
ď c N´α with α “

pλBA
pλBA ` 2

`

λΓ _ λ1Γ
˘
Ps0, 1s

This ends the proof of the theorem.

Corollary 4.5. Assume that p4´1
?
λSq ^ p2

´1eλR,Sq ě 2. In this situation, there exists
some N0 ě 1 and some α Ps0, 1s such that for any N0 ď N and any initial covariance matrix
P0 of the signal

trpP0q
2 ď

1

2

λS
λR

„

1`
2

λRλS



ùñ sup
tě0

E
`

}ξ1
t ´ ζ

1
t }

2
˘

ď cpP0q{N
α

for some finite constant cpP0q ă 8 whose values depends on P0.

Proof. Using (2) we have

dpξ1
t ´ ζ

1
t q “

“

pBApmtq ´ ptSq ξ
1
t ` ptSXt `Apmtq ´ BApmtq mt

‰

dt

´

”

pBAp pXtq ´ PtSq ζ
1
t ` PtSXt `Ap pXtq ´ BAp pXtq pXt

ı

dt` dMt

with the martingale

dMt :“ ppt ´ PtqB
1R
´1{2
2 dpVt ´ V

1
t q
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This yields

dpξ1
t ´ ζ

1
t q

“

”

pBApmtq ´ ptSq pξ
1
t ´ ζ

1
t q ` ppt ´ PtqSpXt ´ ζ

1
t q ` pBApmtq ´ BAp pXtqq ζ

1
t

ı

dt

`

”´

Apmtq ´Ap pXtq

¯

`

´

BAp pXtq ´ BApmtq

¯

mt ` BAp pXtq p pXt ´mtq

ı

dt` dMt

with
ÿ

1ďkďr1

BtxMpkq,Mpkqyt ď 2ρpSq } pt ´ Pt}
2
F

This implies that

d}ξ1
t ´ ζ

1
t }

2

ď 2xξ1
t ´ ζ

1
t , dpξ

1
t ´ ζ

1
t qy ` 2ρpSq } pt ´ Pt}

2
F dt

ď
 

´λBA}ξ
1
t ´ ζ

1
t }

2 ` 2ρpSq } pt ´ Pt}
2
F ` 2}ξ1

t ´ ζ
1
t }

ˆ

”

}pt ´ Pt}F }SpXt ´ ζ
1
t q} `

`

κBA
`

}ζ1
t } ` }mt}

˘

` 2}BA}
˘

}mt ´ pXt}

ı)

dt` dMt

with the martingale
dMt “ 2xξ1

t ´ ζ
1
t , dMty

Notice that

2ρpSq } pt ´ Pt}
2
F

`2}ξ1
t ´ ζ

1
t }

”

}pt ´ Pt}F }SpXt ´ ζ
1
t q} `

`

κBA
`

}ζ1
t } ` }mt}

˘

` 2}BA}
˘

}mt ´ pXt}

ı

ď
λBA

2
}ξ1
t ´ ζ

1
t }

2 ˆ εt

with the process

εt :“ 2ρpSq } pt ´ Pt}
2
F

`4
”

}pt ´ Pt}
2
F }SpXt ´ ζ

1
t q}

2 `
`

κBA
`

}ζ1
t } ` }mt}

˘

` 2}BA}
˘2
}mt ´ pXt}

2
ı

{λBA

By theorem 4.4 we have
sup
tě0

Epεtq ď cpP0q{N
α

as soon as p4´1
?
λSq ^ p2

´1eλR,Sq ě 2 and initial covariance matrix P0 of the signal is
chosen so that

trpP0q
2 ď

1

2

λS
λR

„

1`
2

λRλS


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This implies that

BtE
`

}ξ1
t ´ ζ

1
t }

2
˘

ď ´
λBA

2
E
`

}ξ1
t ´ ζ

1
t }

2
˘

` cpP0q{N
α

The end of the proof of the corollary is now a direct consequence of Gronwall lemma.

5 Appendix

5.1 Regularity conditions

Notice that for any α, x ě 0 we have

x

1` 1{x
ą 2α ðñ x ą α

´

1`
a

1` 2{α
¯

and by (8)

λR,S ą p8eq
´1 λR

a

λS

„

1`
1

λR
?
λS

´1

This shows that

p8eq´1 λR
?
λS

”

1` 1
λR
?
λS

ı ą α ðñ λR
a

λS ą 4 α e
´

1`
a

1` 1{p2αeq
¯

ùñ λR,S ą α

Also observe that

λS ą 4 and λR ą 2 α e
´

1`
a

1` 1{p2αeq
¯

ùñ λR,S ą α

This yields the sufficient condition

pλKλRq ^ λS ą 4 and λR
a

λS ą 4e
´

1`
a

1` 1{p2eq
¯

ùñ p8q

Also observe that for any α ě 1 we have

pλK{αq ^ pλS{4q ą 1 and λR ą 2 α e
´

1`
a

1` 1{p2αeq
¯

ùñ pλKλR{4q ^ pλR,S{αq ^ pλS{4q ą 1

5.2 Proof of lemma 4.1

We have

´ΓAptq “ λBA ´
´

2κBA trpPtq ` ρpSq }Xt ´ pXt}

¯

ď λBA r1´ 2{pλKλRqs

The end of the proof of (22) is now clear. Observe that

EΓptq
δ “ exp

„

δ

ż t

0

”´

2κBA trpPsq ` ρpSq }Xs ´ pXs}

¯

´ λBA

ı

ds



ď exp

„

δλBA

„

2

λK

ˆ

trpP0q `
1

λR

˙

´ 1



t



exp

„

δ ρpSq

ż t

0
}Xs ´ pXs} ds


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We let φtpxq “ Xt be the stochastic flows of signal starting at X0 “ x. We recall the
contraction inequality

}φtpxq ´ φtpyq} ď exp p´λBAt{2q }x´ y} (29)

A proof of (29) can be found in [7], section 3.1. This inequality implies that

ż t

0
}Xr ´ pXr} dr “

ż t

0
}φrpX0q ´ pXr} dr

ď

ż t

0
}φrpX0q ´ φrp pX0q} dr `

ż t

0
}φrp pX0q ´ pXr} dr

ď

ˆ
ż t

0
e´λBAr{2 dr

˙

}X0 ´ pX0} `

ż t

0
}φrp pX0q ´ pXr} dr

ď 2}X0 ´ pX0}{λBA `

ż t

0
}φrp pX0q ´ pXr} dr

This implies that

exp

„

δ ρpSq

ż t

0
}Xs ´ pXs} ds



ď exp
”

2δ}X0 ´ pX0}{λS

ı

exp

„

δρpSq

ż t

0
}φsp pX0q ´ pXs} ds



Using the estimate x´ 1{4 ď x2, which is valid for any x we have

ż t

0
pp}φup pX0q ´ pXu} ´ 1{4q ` 1{4q du ď t{4`

ż t

0
}φrp pX0q ´ pXr}

2dr

we find that

exp

„

δρpSq

ż t

0
}Xs ´ pXs} ds



ď exp
”

2δ}X0 ´ pX0}{λS

ı

exp pδtρpSq{4q

ˆ exp

„

δρpSq

ż t

0
}φsp pX0q ´ pXs}

2 ds



This yields

E
„

exp

„

δ ρpSq

ż t

0
}Xs ´ pXs} ds



| X0



ď exp ptδρpSq{4q exp
”

2δ}X0 ´ pX0}{λS

ı

ˆE
„

exp

„

δρpSq

ż t

0
}φsp pX0q ´ pXs}

2 ds

˙
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We also have the series of inequalities

1

ρpSq

1

1` πBAp0q

λ2
A

4trpRq

ě
1

ρpSq

λ2
BA

4

1

1` πBAp0q

1

4trpRq
ě

λSλR
2ˆ 42

1

1{2` trpP0q
2pρpSq{trpRqq ` ρpSqtrpRq{λ2

BA

“
1

42
λS λR

ˆ

2
λR
λS

trpP0q
2 `

„

1`
2

λRλS

˙´1

ě
e

8e

a

λS λR

„

1`
2

λRλS

´1
˜

1` 2
λR
λS

trpP0q
2

„

1`
2

λRλS

´1
¸´1

“ e λR,S

˜

1` 2
λR
λS

trpP0q
2

„

1`
2

λRλS

´1
¸´1

This shows that

δρpSq ď
ε

1` πBAp0q

λ2
A

4trpRq

for some ε P r0, 1s as soon as

trpP0q
2 ď

1

2

λS
λR

„

1`
2

λRλS



´e

δ
ε λR,S ´ 1

¯

for any δ ď e ε λR,S

The end of the proof of (23) is a direct consequence of theorem 3.2 in [7].
The last assertion resumes to lemma 4.1 in [7]. This ends the proof of the lemma.

5.3 Proof of lemma 4.2

Using (16) we have

dtrpptq “
`

trppBA rmts ` BA rmts
1
qptq ´ trpSp2

t q ` trpRq
˘

dt`
1

?
N ´ 1

dMt

ď
“

´λBA trpptq ´ r
´1
1 λminpSq trpptq

2 ` trpRq
‰

dt`
1

?
N ´ 1

dMt

with a martingale Mt with an angle bracket

BtxMyt “ 4trppR` ptSptqptq ď 4trpptq
`

ρpRq ` ρpSq trpptq
2
˘

Using lemma 4.1 in [6] we have

1 ď n ď 1`
pN ´ 1q

2r1

λminpSq

λmaxpSq
ùñ sup

tě0
E ptrpptqnq ă 8
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By (14) we have

dmt “ rA rmts ´ ptSmt ` ptSXts dt` pt B
1R
´1{2
2 dVt `

1
?
N

dM t

Since M t is independent of Vt we have

d}mt}
2 “ p2 xmt, rA rmts ´ ptSmt ` ptSXtsy ` trpR` ptSptqq dt` dĂMt

with the martingale

dĂMt “ 2 xmt, pt B
1R
´1{2
2 dVty ` 2

1
?
N
xmt, dM ty

and the angle bracket

BtxĂMyt “ 4 xmt, pR` ptSptqmty{N ` 4 xmt, pptSptqmty ď Vt }mt}
2

with
Vt :“ 4 rtrpR` ptSptq{N ` trpptSptqs

Observe that

xmt, A rmtsy “ xmt ´ 0, A rmts ´Ap0qy ` xmt, A r0sy

ď ´λA }mt}
2 ` }Ap0q} }mt} ď ´pλA{2q }mt}

2 ` }Ap0q}2{p2λAq

This yields the estimate

d}mt}
2 ď

`

´λA }mt}
2 ` }Ap0q}2{λA ` 2}mt} }ptS} }Xt} ` trpR` ptSptq

˘

dt` dĂMt

from which we find that

d}mt}
2 ď

ˆ

´
λA
2
}mt}

2 ` Ut
˙

dt`
a

Vt dNt

with BtxN yt ď 1 and

Ut :“ }Ap0q}2{λA ` }ptS}
2 }Xt}

2{λA ` trpR` ptSptq

Arguing as in the proof of theorem 3.2 we conclude that

@1 ď 3n ď 1` pN ´ 1q{p2r1q sup
tě0

E
`

}mt}
2n
˘

ă 8

Using (2) we have

dξ1
t “

“

pBA rmts ´ ptSq ξ
1
t ` ptSXt `A rmts ´ BA rmts mt

‰

dt` dMt

with the martingale

dMt :“ R
1{2
1 dW

1
t ` ptB

1R
´1{2
2 dpVt ´ V

1
t q
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This implies that

d}ξ1
t }

2 “
“

2xξ1
t ,
“

pBA rmts ´ ptSq ξ
1
t ` ptSXt `A rmts ´ BA rmts mt

‰

y

`trpRq ` 2trpptSptqs dt` dMt

ď
“

´pλBA{2q }ξ
1
t }

2 ` Ut
‰

dt` dMt

with
dMt :“ 2xξ1

t , dMty ùñ BtxMyt ď Vt }ξ1
t }

2

and

Ut :“ 2}ptSXt `A rmts ´ BA rmts mt}
2{λBA ` trpRq ` 2trpSp2

t q

Vt “ 4 ptrpRq ` 2trpptSptqq

The end of the proof follows the same arguments as above, so it is skipped. This completes
the proof of the lemma.

5.4 Proof of lemma 4.3

By (14) and (16) we have

dppt ´ Ptq “ Πt dt` dMt and dpmt ´ pXtq “ Πt dt` dMt

with the drift terms

Πt “

´

BApmtqpt ´ BAp pXtqPt

¯

`

´

BApmtqpt ´ BAp pXtqPt

¯1

`pPt ´ ptqSPt ` ppPt ´ ptqSPtq
1 ´ pPt ´ ptqSpPt ´ ptq

Πt “ pApmtq ´Ap pXtqq ´ ptSpmt ´ pXtq ` ppt ´ PtqSpXt ´ pXtq

and the martingales

dMt :“
1

?
N ´ 1

dMt dMt :“ ppt ´ Ptq B
1R
´1{2
2 dVt `

1
?
N

dM t

Using the decomposition

BApmtqpt ´ BAp pXtqPt “ BApmtqppt ´ Ptq ` pBApmtq ´ BAp pXtqqPt

we check that

Πt “
“

BApmtq ´
1
2ppt ` PtqS

‰

ppt ´ Ptq ` ppt ´ Ptq
“

BApmtq ´
1
2ppt ` PtqS

‰1

`pBApmtq ´ BAp pXtqqPt ` PtpBApmtq ´ BAp pXtqq
1
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This implies that

xpt ´ Pt,Πty ď ´λBA }pt ´ Pt}
2
F ` 2κBA trpPtq }pt ´ Pt}F }mt ´ pXt}

from which we prove that

d}pt ´ Pt}
2
F “ 2 xpt ´ Pt, dppt ´ Ptqy

`
2

N ´ 1
rtrppR` ptSptqptq ` trpR` ptSptqtrpptqs dt

ď

!

´2λBA }pt ´ Pt}
2
F ` 4κBA trpPtq }pt ´ Pt}F }mt ´ pXt}

`
2

N ´ 1
rtrppR` ptSptqptq ` trpR` ptSptqtrpptqs

*

dt` dNt

with the martingale

dNt “
2

?
N ´ 1

xpt ´ Pt, dMty “ trpppt ´ PtqdMtq

After some computations we find that

BtxN yt ď
4

N ´ 1
}pt ´ Pt}

2
F trpptpR` ptSptqq

In much the same vein we have

xmt ´ pXt,Πty “ xmt ´ pXt, pApmtq ´Ap pXtqq ´ ptSpmt ´ pXtq ` ppt ´ PtqSpXt ´ pXtqy

ď ´λA }mt ´ pXt}
2 ` ρpSq }Xt ´ pXt} }pt ´ Pt}F }mt ´ pXt}

This implies that

d}mt ´ pXt}
2 “ 2 xpmt ´ pXtq, dpmt ´ pXtqy

`

ˆ

trpSppt ´ Ptq
2q `

1

N
trpR` ptSptq

˙

dt

ď

!

´2λA }mt ´ pXt}
2 ` 2ρpSq }Xt ´ pXt} }pt ´ Pt}F }mt ´ pXt}

`ρpSq}pt ´ Pt}
2
F `

1

N
trpR` ptSptq

*

dt` dN t

with the martingale

dN t “ 2 xpmt ´ pXtq, dMty “ 2 xpmt ´ pXtq, ppt ´ Ptq B
1R
´1{2
2 dVty `

2
?
N
xpmt ´ pXtq, dM ty

In addition we have

BtxN yt ď 4ρpSq }mt ´ pXt}
2}pt ´ Pt}

2
F `

4

N
xpmt ´ pXtq, pR` ptSptqpmt ´ pXtqy

ď 2ρpSq
´

}mt ´ pXt}
2 ` }pt ´ Pt}

2
F

¯2
`

4

N
}mt ´ pXt}

2 trpR` ptSptq

29



Combining the above estimates we find that

dΞt ď
!

´2λA }mt ´ pXt}
2 ` 2 }pt ´ Pt}F }mt ´ pXt}

´

2κBA trpPtq ` ρpSq }Xt ´ pXt}

¯)

dt

´p2λBA ´ ρpSqq }pt ´ Pt}
2
F dt

`
1

N

"

trpR` ptSptq `
2N

N ´ 1
rtrppR` ptSptqptq ` trpR` ptSptqtrpptqs

*

dt` dNt ` dN t

Recalling that
2λA ě λBA ą 0 and 2λBA ´ ρpSq ě λBA

this yields the estimate

dΞt ď

!

´λBA Ξt ` 2 }pt ´ Pt}F }mt ´ pXt}

´

2κBA trpPtq ` ρpSq }Xt ´ pXt}

¯)

dt

`
1

N

ˆ

4N

N ´ 1
trpR` ptSptq trpptq ` trpR` ptSptq

˙

dt` dN t ` dNt

On the other hand using the inequality 2ab ď a2 ` b2 we prove that

dΞt ď ´

!

λBA ´
´

2κBA trpPtq ` ρpSq }Xt ´ pXt}

¯)

Ξt dt

`
1

N

ˆ

1`
4

1´ 1{N
trpptq

˙

“

trpRq ` trpSqtrpptq
2
‰

dt` dN t ` dNt

from which we conclude that

dΞt ď

ˆ

ΓAptq Ξt `
1

N
Ut
˙

dt` dΥt with Ut :“ p1` 8trpptqq
“

trpRq ` ρpSq trpptq
2
‰

and the martingale Υt :“ Υ
p1q
t `Υ

p2q
t given by

dΥ
p1q
t :“ 2 xpmt ´ pXtq, ppt ´ Ptq B

1R
´1{2
2 dVty

dΥ
p2q
t :“

2
?
N
xpmt ´ pXtq, dM ty `

2
?
N ´ 1

xpt ´ Pt, dMty

Observe that

xΥp1q,Υp2qyt “ 0

BtxΥ
p1qyt ď 2ρpSq

´

}mt ´ pXt}
2 ` }pt ´ Pt}

2
F

¯2
ď 2ρpSq Ξ2

t

BtxΥ
p2qyt ď

4

N

”

}mt ´ pXt}
2 ` 2 }pt ´ Pt}

2
F trpptq

ı

trpR` ptSptq ď
4

N
Ut Ξt

This ends the proof of the lemma.
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