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Abstract

This article is concerned with the exponential stability and the uniform propagation
of chaos properties of a class of Extended Ensemble Kalman-Bucy filters with respect to
the time horizon. This class of nonlinear filters can be interpreted as the conditional ex-
pectations of nonlinear McKean Vlasov type diffusions with respect to the observation
process. In contrast with more conventional Langevin nonlinear drift type processes,
the mean field interaction is encapsulated in the covariance matrix of the diffusion. The
main results discussed in the article are quantitative estimates of the exponential sta-
bility properties of these nonlinear diffusions. These stability properties are used to
derive uniform and non asymptotic estimates of the propagation of chaos properties
of Extended Ensemble Kalman filters, including exponential concentration inequalities.
To our knowledge these results seem to be the first results of this type for this class of
nonlinear ensemble type Kalman-Bucy filters.

Keywords : Extended Kalman-Bucy filter, Ensemble Kalman filters, Monte Carlo
methods, mean field particle systems, stochastic Riccati matrix equation, propagation
of chaos properties, uniform estimates.
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1 Introduction

From the probabilistic viewpoint, the Ensemble Kalman filter (abbreviated EnKF) proposed
by G. Evensen in the beginning of the 1990s [8] is a mean field particle interpretation of
extended Kalman type filters. More precisely, Kalman type filters (including the conven-
tional Kalman filter and extended Kalman filters) can be interpreted as the conditional
expectations of a McKean-Vlasov type nonlinear diffusion. The key idea is to approximate
the Riccati equation by a sequence of sample covariance matrices associated with a series of
interacting Kalman type filters.

In the linear Gaussian case these particle type filters converge to the optimal Kalman
filter as the number of samples (a.k.a. particles) tends to co. Little is known for nonlinear
and/or non Gaussian filtering problems, apart that they don’t converge to the desired op-
timal filter. This important problem is rather well known in signal processing community.
For instance, we refer the reader to [I3] [I5] for a more detailed discussion on these ques-
tions in discrete time settings. In this connection, we mention that these ensemble Kalman
type filters differ from interacting jump type particle filters and related sequential Monte



Carlo methodologies. These mean field particle methods are designed to approximate the
conditional distributions of the signal given the observations. It is clearly not the scope
of this article to give a comparison between these two different particle methods. For a
more thorough discussion we refer the reader to the book [5] and the references therein.
We also mention that the EnKF models discussed in this article slightly differ from more
conventional EnKF used to approximate nonlinear filtering problems. To be more precise
we design a new class of EnKF that converge to the celebrated extended Kalman filter as
the number of particles goes to 0.

These powerful Monte Carlo methodologies are used with success in a variety of scientific
disciplines, and more particularly in data assimilation method for filtering high dimensional
problems arising in fluid mechanics and geophysical sciences [16, 17, 18], 20, 211, 22}, 23], 24] 26].
A more thorough discussion on the origins and the application domains of EnKF is provided
in the series of articles [4}, 6, [9, [I1] and in the seminal research monograph by G. Evensen [10].

The mathematical foundations and the convergence of the EnKF has started in 2011 with
the independent pioneering works of F. Le Gland, V. Monbet and V.D. Tran [I5], and the one
by J. Mandel, L. Cobb, J. D. Beezley [20]. These articles provide Ls-mean error estimates for
discrete time EnKF and show that they converge towards the Kalman filter as the number of
samples tends to infinity. We also quote the recent article by D.T. B. Kelly, K.J. Law, A. M.
Stuart [13] showing the consistency of Ensemble Kalman filters in continuous and discrete
time settings. In the latter the authors show that the Ensemble Kalman filter is well posed
and the mean error variance doesn’t blow up faster than exponentially. The authors also
apply a judicious variance inflation technique to strengthen the contraction properties of
the Ensemble Kalman filter. We refer to the pioneering article by J.L. Anderson [I} 2, 3] on
adaptive covariance inflation techniques, and to the discussion given in the end of section[1.2
in the present article.

In a more recent study by X. T. Tong, A. J. Majda and D. Kelly [25] the authors
analyze the long-time behaviour and the ergodicity of discrete generation EnKF using Foster-
Lyapunov techniques ensuring that the filter is asymptotically stable w.r.t. any erroneous
initial condition. These important properties ensure that the EnKF has a single invariant
measure and initialization errors of the EnKF will not dissipate w.r.t. the time parameter.
Beside the importance of these properties, the only ergodicity of the particle process does
not give any information on the convergence and the accuracy of the particle filters towards
the optimal filter nor towards any type of extended Kalman filter, as the number of samples
tends to infinity.

Besides these recent theoretical advances, the rigorous mathematical analysis of long time
behavior of these particle methods is still at its infancy. As underlined by the authors in [13],
many of the algorithmic innovations associated with the filter, which are required to make a
useable algorithm in practice, are derived in an ad hoc fashion. The divergence of ensemble
Kalman filters has been observed numerically in some situations [12| [14, [19], even for stable
signals. This critical phenomenon, often referred as the catastrophic filter divergence in
data assimilation literature, is poorly understood from the mathematical perspective. Our
objective is to better understand the long time behavior of ensemble Kalman type filters
from a mathematical perspective. Our stochastic methodology combines spectral analysis
of random matrices with recent developments in concentration inequalities, coupling theory
and contraction inequalities w.r.t. Wasserstein metrics.

These developments have been started in two recent articles [6l [7]. The first one pro-



vides uniform propagation of chaos properties of ensemble Kalman filters in the context
of linear-Gaussian filtering problems. The second article is only concerned with extended
Kalman-Bucy filters. It discusses the stability properties of these filters in terms of exponen-
tial concentration inequalities. These concentration inequalities allow to design confidence
intervals around the true signal and extended Kalman-Bucy filters.

The first contribution of the article is to extend these results as the level of the McKean-
Vlasov type nonlinear diffusion associated with the ensemble Kalman-Bucy filter. Under
some natural regularity conditions we show that these nonlinear diffusions are exponentially
stable, in the sense that they forget exponentially fast any erroneous initial condition. These
stability properties are analyzed using coupling techniques and expressed in terms of 4-
Wasserstein metrics.

The main objective of the article is to analyze the long time behavior of the mean
field particle interpretation of these nonlinear diffusions. We present new uniform estimates
w.r.t. the time horizon for the bias and the propagation of chaos properties of the mean
field systems. We also quantify the fluctuations of the sample mean and covariance particle
approximations.

The rest of the article is organized as follows:

Section [I.1|presents the nonlinear filtering problem discussed in the article, the Extended
Kalman-Bucy filter, the associated nonlinear McKean Vlasov diffusion and its mean field
particle interpretation. The two main theorems of the article are described in section [I.2]
In a preliminary short section, section [2| we show that the conditional expectations and
the conditional covariance matrices of the nonlinear McKean Vlasov diffusion coincide with
the EKF. We also provide a pivotal fluctuation theorem on the time evolution of these
conditional statistics. Section [3] is mainly concerned with the stability properties of the
nonlinear diffusion associated with the EKF. Section [ is dedicated to the propagation of
chaos properties of the extended ensemble Kalman-Bucy filter.

1.1 Description of the models

Consider a time homogeneous nonlinear filtering problem of the following form

_ 1/2
{ dXy = A(Xy)dt + R/" dW and we set Gy = o (Y;, s <1t).

4y, BX, dt + RY* av,

In the above display, (Wy, V;) is an (r1 +72)-dimensional Brownian motion, X is a r1-valued
random vector with mean and covariance matrix (E(Xy), Py) (independent of (W, V})), the

symmetric matrices Ri/ % and R%/ % are invertible, B is an (9 x r1)-matrix, and Yy = 0. The
drift of the signal is differentiable vector valued function A : z € R™ — A(z) € R™ with a
Jacobian denoted by 04 : x e R™ — A(z) e RO1xm),

The Extended Kalman-Bucy filter (abbreviated EKF) and the associated stochastic Ric-
cati equation are defined by the evolution equations

dX, = A(X)) dt+ PB'R;} [dYt ~ BX, dt] with X = E(Xo)
oP = 0AX))P + P0AX) + R— PSP, with (R,S):= (R, B'R;'B)

In the above display, B’ stands for the transpose of the matrix B.



We associate with these filtering models the conditional nonlinear McKean-Vlasov type
diffusion process

1/2

dX; = A (X, E[X, | Gi]) dt + RV? dW, + P,,B'R;"* [dYt - (BXt dt + RY? dvt)] (1)

with the nonlinear drift function
A(x,m) := A[m] + dA[m] (x —m)

In the above display (W, Vy, Xo) stands for independent copies of (Wy, V4, Xo) (thus inde-
pendent of the signal and the observation path), and P,, stands for the covariance matrix

Py =nt[(e —mi(e))(e —me(e))'] with n:=Law(X; | G;) and e(z):= .

We call the stochastic process defined in the Extended Kalman-Bucy diffusion or simply
the EKF-diffusion.

In section [2| (see proposition we will see that the G;-conditional expectation of the
states X; and their G;-conditional covariance matrices coincide with the EKF filter and the
Riccati equation presented in .

The Extended Kalman-Bucy filter (abbreviated En-EKF) coincides with the mean field
particle interpretation of the nonlinear diffusion process .

To be more precise, let (W, Vy, & )1<i<y be N independent copies of (W;, Vi, X). In
this notation, the En-EKF is given by the Mckean-Vlasov type interacting diffusion process

dg;’ A(glmq) dt + RY*aW, + pB'Ry* |aYi — (Be di+ By dV;) | (2)
for any 1 < ¢ < N, with the sample mean and the rescaled particle covariance matrices
defined by

m-—izg and pri= (1- =) Pry= 1 Mg —me) (& —m) (3)
PTN L Pe=\PTN) T T N 4 ™ !
1<i<N 1<i<N
with the empirical measures 7" := ~ 21<Z< N 5 . We also consider the N-particle model

G = (Cti)lgigN defined as & = (gt)lsisN by replacmg the sample variance p; by the true
variance P; (in particular we have &, = (o).

As mentioned in the introduction the En-EKF differs from the more conventional
one defined as above by replacing A(&, m;) by the signal drift A(&}). In this context the
resulting sample mean will not converge to the EKF but to the filter defined as in (1) by
replacing A(X;) by the conditional expectations E (A(X;) | G;). The convergence analysis of
this particle model is much more involved than the one discussed in this article. The main
difficulty comes from the dependency on the whole conditional distribution of the signal
given the observations. We plan to analyze this class of particle filters in a future study.

1.2 Statement of the main results

To describe with some precision our results we need to introduce some terminology. We
denote by Apin(S) and A (S) the minimal and the maximal eigenvalue of a given sym-
metric matrix S. We let p(P) = Apaz((P + P’))/2 the logarithmic norm of a given square
matrix P. Given (r; x ro) matrices P, ) we define the Frobenius inner product

(P,Q) = tr(P'Q) and the associated norm |P|% = tr(P'P)



where tr(C') stands for the trace of a given matrix. We also equip the product space R™ x
R™*™ with the inner product

{1, Py), (z9, P2)) := {(x1,29) + (Py, P;) and the norm ||(x, P)|? := {(x, P), (z, P))

In the further development of the article we assume that the Jacobian matrix 0A of the
signal drift function A satisfies the following regularity conditions:

Aoa = —2 infyern p(0A(z)) >0
(4)

|0A(z) — 0A(y)| < koa |z —y| for some kaq < 0.

where p(P) := Anaz(P) stands for the logarithmic norm of a symmetric matrix P. In the
above display |0A(z)—0A(y)| stands for the Lo-norm of the matrix operator (0A(x)—0A(y)),
and ||z — y| the Euclidian distance between = and y. A first order Taylor expansion shows
that

M) = (& —y, A(z) — A(y)) < =Aa |z —y[? with Ag = Asa/2 > 0. (5)

Given some § > 1, the J-Wasserstein distance Ws between two probability measures v and
v9 on some normed space (F, |.]) is defined by

Wo(v1, 15) = inf E (HZ1 - Z2\|5>.

The infimum in the above displayed formula is taken of all pair of random variable (Z1, Z)
such that Law(Z;) = v;, with i = 1,2.

In the further development of the article, to avoid unnecessary repetitions we also use
the letter ”¢” to denote some finite constant whose values may vary from line to line, but
they don’t depend on the time parameter.

Our first main result concerns the stability properties of the EKF-diffusion . It is no
surprise that these properties strongly depend on logarithmic norm of the drift function A
as well as on the size of covariance matrices of the signal-observation diffusion. For instance,
we have the uniform moment estimates

Xoa>0=VY5>1 sup {E[thné] v tr(B) v E[| X, — f(t||5]} <c (6)
=0
A detailed proof of these stochastic stability properties including exponential concentration

inequalities can be found in [7]. Observe that tr(F;) is random so that the above inequality
provides an almost sure estimate. To be more precise we use to check that

Ostr (Pr) < —Xoa tr (P) + tr(R) = tr(Py) < e 4t tr (Py) + tr(R)/Aoa (7)

To get one step further in our discussion, we consider the following ratio

)\aA )\aA )\aA
Ag = —— AR = —— and MAg:=—"—
57 0(S) B 4 (R) R oa

The quantity p(S) is connected to the sensor matrix B and to the inverse of the covariance
matrix of the observation perturbations. We also have the rather crude estimate

p(S) < tr(S) = |0R; *B|% < tr(RyY) | B|%



Roughly speaking, these three quantities presented above measure the relative stability
index of the signal drift with respect to the perturbation degree of the sensor, the one of the
signal, and the modulus of continuity of the Jacobian entering into the Riccati equation.
For instance, Ag is high for sensors with large perturbations, inversely \g is large for signals
with small perturbations.

Most of our analysis relies on the behavior of the following quantities:

(8¢)™" Ar Vg {1 + ARAS}_l

Noa/roa = (é - >\K2>\R) i <; - \/1>‘75> [1 ) i\/l)\?]

To better connect these quantities with the stochastic stability of the EKF diffusion we
discuss some exponential concentration inequalities that can be easily derived from our
analysis. These concentration inequalities are of course more accurate than any type of
mean square error estimate. Let )A(t(m, p) be the solution of the EKF equation starting
at (Xo, Py) = (m,p), and let X;(z) be the state of the signal starting at Xo(x) = x. Let
w(J) be the function

AR,S

5 € [0, o[> w(8) := \6/25 B + (5+\/3)]

For any time horizon ¢ € [0, o[, and any ¢ > 0 the probabilities of the following events

%) = Kilmp) P < oo () VAs/Ars

‘e*)\At _ 67/\(?141‘/‘

[Aa/Aoa — 1

+2 ¢ toat |z — m||2 + 8 w(d) tr(p)Q/)\s

and
_ ~ 1
|X¢(m,p) — Xo(m,p)|> < % @(8) v/ As/Ar,s + 8 @(6) e 4 tr(p)®/Ag

are greater than 1 — e 9. The proof of the first assertion is a consequence of theorem 1.1
in [7], the proof of the second one is a consequence of the Ls-mean error estimates .
These concentration inequalities show that the quantity

1 2
\/)\5’//\3’5 = 8¢ A\g [1 + ]

ARAS ARAS

can be interpreted as the size of a confidence interval around the values of the true signal,
as soon as the time horizon is large. It is also notable that the same quantity controls the
fluctuations of the EKF diffusion around the values of the EKF. These confidence intervals
are small for stable signals with small perturbations. The product term

1

s As3 tr(Ry) tr(BRy'B)

can be thought as a signal to noise ratio. Given a fixed signal to noise ratio, the confidence
intervals are small for high informative sensors with small perturbations.



We further assume that
()\K/\R/4) A )\R,S A ()\5/4) > 1 (8)

This condition ensures that 0 < Xa A< oA Conditiorl is clearly met as soon as Ag and
Ag are sufficiently large. As we shall see the quantity A\p4 represents the Lyapunov stability
exponent of the EKF. This exponent is decomposed into two parts. The first one represents
the relative contribution of the signal perturbations, the second one is related to the sensor
perturbations.

In contrast with the linear-Gaussian case discussed in [6], the stochastic Riccati equation
depends on the states of the EKF. As shown in [7] the stability of the EKF rely on a
stochastic Lyapunov exponent that depends on the random trajectories of the filter as well as
on the signal-observation processes. The technical condition allows to control uniformly
the fluctuations of these stochastic exponents with respect to the time horizon. A more
detailed discussion on the regularity condition , including a series of sufficient conditions
are provided in the appendix, section |5.1

Let gyt,v Xt) be a couple of EKF Diffusions starting from two random states with
mean (Xo, Xo) and covariances matrices (Fy, Fp). One key feature of these nonlinear dif-
fusions is that the G;-conditional expectations (Xy, X;) and the Gi-conditional covariance
matrices (P, 1515) satisfy the EKF and the stochastic Ricatti equations discussed in .

Whenever condition is satisfied we recall from [7] that for any € €]0,1] there exists
some time horizon s such that for any ¢ > s we have the almost sure contraction estimate

~ - - 2/5 ~ ~ -
E (IR0 P) = (X0 B)I 1G,) " < 2, exp| = (1= ) Raalt = 5)| (X, ) = (X, B2

with dg := 271 /Ag, and some random process Z; satisfying the uniform moment condition

supE (Z/") <o with a=2\gg ds. (9)
t=0
These conditional contraction estimates can be used to quantify the stability properties of
the EKF. More precisely, if we set

]P)t = LaW(j(\'t, Pt) and ]\I/Dt = LaW()\(/'t, f)t)

then the above contraction inequality combined with the uniform estimates @ readily
implies that

Vt = 1o WgS(Pt,I\ﬁ’t) < ¢ exp [—t (1—c¢) S\aA]

for any € € [0,1], with some time horizon t;. This stability property ensures that the
EKF forgets exponentially fast any erroneous initial condition. Of course these forgetting
properties of the EKF don’t give any information at the level of the process. One of the main
objective of the article is to complement these conditional expectation stability properties
at the level of the Mc-Kean Vlasov type nonlinear EKF-diffusion .

Our first main result can basically be stated as follows.

Theorem 1.1. Let (7;,7:) be the probability distributions of a couple (Yt,)u(t) of EKF
Diffusions starting from two possibly different random states. Assume condition (@ is



met with 0y := 6g/4 = 2. In this situation, for any € € [0, 1] there exists some time horizon
to such that for any t = ty we have

W3, (7 7i) < ¢ expl—t (1= ) Al with A >Xoa A (Aoa/4) (10)

Our next objective is to analyze the long time behavior of the mean field type En-EKF
model discussed in . From the practical estimation point of view, only the sample mean
and the sample covariance matrices are of interest since these quantities converge to the
EKF and the Riccati equations, as IV tends to co. Another important problem is to quantify
the bias of the mean field particle approximation scheme. These properties are related to
the propagation of chaos properties of the mean field particle model. They are expressed in
terms of the collection of probability distributions

IP’,{V = Law(m¢, pt) in = Law(ﬁtl) and Q; = Law(g})

Theorem 1.2. Assume that Apmin(S) > 0 and condition (§) is met with 6r.g := (eAr,s) A
ds = 2 In this situation, there exists some Ny = 1 and some 8 €]0,1/2] such that for any
N = Ny, we have the uniform non asymptotic estimates

Mg |1 1
tr(Py)? < =2 | = W PN P,) <cNP 11
R 5|3 ] = s (V) < )

In addition, when dr s = 4 we have the uniform propagation of chaos estimate
N -B
Sug) Ws (Qt ,Qt) <cN (12)
t=

We end this section with some comments on our regularity conditions.

The condition Ay, (S) > 0 is needed to control the fluctuations of the trace of the sample
covariance matrices of the En-EKF, even if the trace expectation is uniformly stable.

Despite our efforts, our regularity conditions are stronger than the ones discussed in [6] in
the context of linear-Gaussian filtering problems. The main difference here is that the signal
stability is required to compensate the possible instabilities created by highly informative
sensors when we initialize the filter with wrong conditions.

Next we comment the trace condition in . As we mentioned earlier, the stability
properties of the limiting EKF-diffusion are expressed in terms of a stochastic Lyapunov
exponent that depends on the trajectories of the signal process. The propagation of chaos
properties of the mean field particle approximation depend on the long time behavior of
these stochastic Lyapunov exponents. Our analysis is based on a refined analysis of Laplace
transformations associated with quadratic type stochastic exponents. The existence of these
x-square type Laplace transforms require some regularity on the signal process. For instance
at the origin we have

(tr(P) <) rip(Py) < 1/(48) = B (exp | 8]0 — Ko[?] ) <ee (13)

The proof of and more refined estimates can be found in [7].

From the numerical viewpoint the trace condition in is related to the initial location
of the particles and the signal-observation perturbations. Signals with a large diffusion part
are more likely to correct an erroneous initialization. In the same vein, the estimation



problems associated with sensors corrupted by large perturbations are less sensitive to the
initialization of the filter. In the reverse angle, when the signal is almost deterministic and
the sensor is highly informative the particles need to be initialized close to the true value of
the signal.

To better connect our work with existing literature we end our discussion with some
connection with the the variance inflation technique introduced by J.L. Anderson in [11 2] [3]
and further developed by D.T. B. Kelly, K.J. Law, A. M. Stuart [I3] and by X. T. Tong,
A. J. Majda and D. Kelly [25]. In discrete time settings this technique amounts of adding
an extra positive matrix in the Riccati updating step. This strategy allows to control the
fluctuations of the sample covariance matrices. In continuous time settings, this technique
amounts of changing the covariance matrix P,, in the EKF diffusion by P, + 0 Id for
some tuning parameter 6§ > 0. The resulting EKF-diffusion is given by the equation

dX: = (AXGE[X: | G) ~0SX0) dt+P,B'Ry" |dYi— (BX, dt + Ry* av) |
+ [R}/Q AW, — 0 B’R;”det] +0 B'Ry" d,

The stabilizing effects of the variance inflation technique are clear. The last term in the r.h.s.
of the above displayed formula has no effect (by simple coupling) on the stability properties
of the diffusion. The form of the drift also indicates that we increase the Lyapunov exponent
by an additional factor 6 (as soon as p(S) > 0). In addition we increase the noise of the
diffusion by a factor 62, in the sense that the covariance matrix of the perturbation term
R}/ 2 dW,— 0 B'Ry Y Qth is given by Ry + 6%25. We believe that the stability analysis of
these regularized models is simplified by these additional regularity properties. This class
of regularized nonlinear diffusions can probably be studied quite easily using the stochastic
analysis developed in this article. We plan to develop this analysis in a forthcoming study.

2 Some preliminary results

This short section presents a couple of pivotal results. The first one ensures that the Ex-
tended Kalman-Bucy filter coincides with the Gi-conditional expectations of the nonlinear
diffusion X;. The second result shows that the stochastic processes (my,p;) satisfy the

same equation as <)A(t, Pt), up to some local fluctuation orthogonal martingales with angle
brackets that only depends on the sample covariance matrix p;.

Proposition 2.1. We have the equivalence
E(Xo) = Xo and Py =Py Vt=0 EX,|G)=X, and P, =P,
Proof. Taking the G;-conditional expectations in we find the diffusion equation
dE(X; | Gi) = A(E(X; | Gi) dt + Py, B'Ry [dY; — B E(X, | Gi)dt]
Let us compute the evolution of P,,. We set X; = X;—E(X; | G). In this notation we have

dX,

JAEX, | G)) X, dt + R)* dW,—P,,B'R;" [B)”(tdt + RY? th]
[PAE(X; | Gi)) — Py, S] Xi dt + R)* dW,—P,B'R,"* dV,



This implies that
XX = {[aA(f(t) - PtS] XX dt + XX [aA(f(t) - PtS]/ +(R+ PntSPm)} dt
+ [RY? W, Py BRS V) X4 X, [RY? W, - P, BRY V|
Taking the G;-conditional expectations we conclude that
0Py = [0AR) ~Py8| Py dt + Py [H(R) ~ P8 + (R+ Py 5Py
= 0A(X))Py, + PpdAXy) + R — Py, SPy,
This ends the proof of the proposition. |

Theorem 2.2 (Fluctuation theorem [6]). The stochastic processes (m¢,p:) defined in (3)
satisfy the diffusion equations

L
VN

with the vector-valued martingale M; = (Mt(k:))qu1 with the angle-brackets

dmy = A[my] dt + py B'Ry' (dY; — Bmy dt) + dM, (14)

oM (), My(K')y = R(k,K') + (peSpy) (k, k) (15)

We also have the matriz-valued diffusion

dpe = (0A[my] pr + proA[my]’ — peSpe + R) dt + dM, (16)

1
VN —1
with a symmetric matriz-valued martingale My = (My(k,1))1 <k 1<, and the angle brackets

at <M(k7 l)? M(k/7 l/)>t = (R + ptSpt) (k7 k/) pt(lv l/) + (R + ptSpt) (l7 l/) pt(ka k/)

+ (R + peSpe) (U, k) pe(K' 1) + (R + peSpe) (LK) pe(k, 1)
(17)
In addition we have the orthogonality properties

<M(k‘,l),ﬁ(l’)>t = (M(k,1), V(k:')>t = (M(l'), V(k:')>t =0
forany 1 <k, 1,I' <ry and any 1 < K < ro.
Proof. We have
d(&f —my) = [0A (my) — peB'S] (& — my)dt + dM;
with the martingale

) . 1 . B _ 1 .
dM; .= R} (th -5 2 dW{) — pB'R;V? <th -5 2 dV‘Z)

1<G<N 1<G<N

10



Notice that )
G (k), M (k) = <1 - ) (R + peSpe) (k. k)

N
and for ¢ £ j
(M (), M7 (K'))y = —% (R + peSpe) (k, )
The end of the proof follows the proof of theorem 1 in [6], thus it is skipped. This ends the
proof of the theorem. |

3 Stability properties

This section is dedicated to the long time behavior of the EKF-diffusion , mainly with
the proof of theorem We use the stochastic differential inequality calculus developed
in [0, [7]. Let ), be some non negative process defined on some probability space (€2, F,P)
equipped with a filtration F = (F;)>0 of o-fields. Also let (Z;, Z;") be some processes and
M; be some continuous F;-martingale. We use the notation

dYe < Z" dt + dMy < (dYy = Z; dt + dM;  with Z; < Z]') (18)

We recall some useful algebraic properties of the above stochastic inequalities.
Let ()¢, Z:r , Z¢, M) be another collection of processes satisfying the above inequalities,
and (a, @) a couple of non negative parameters. In this case it is readily checked that

daVi+ad) <(aZ+aZ,)dt+da M, +a M)

and

AW Ds) < [é:yt + Z Ve + at<M7M>t:| dt + Yy dMy + Vi dM,

We consider a couple of diffusions (Yt,)?t) coupled with the same Brownian motions
(V, W) and the same observation process Y;, and we set

Fi=Gvo <(XS,X'S), s < t)

Next proposition provides uniform estimates of the Lgs-centered moments of the EKF-
diffusion with respect to the time horizon.

Proposition 3.1. Assume that A\ga > 0. In this situation, for any § = 1 and any time
horizon s = 0 we have the uniform almost sure estimates

_ A~ 2/8 _ ~
E (HXt —XtH6 | ]_-S> / < e—)\aA(t—S) HXs _XsH2
(19)
(26— 1) [A,;}u +2 (ArAg) D) + Qe_AaA(tJrS)tr(Po)z)\gl]

11



Proof. We have
d(X, - X)) = [aA()?t) - PtS] (X,— X)) dt + RV*dW,— P,B'R,"? dV,
This implies that

dIX - Xi|?
- [2@ - X, [aA(Xt) - PtS] Xy — X)) + tr(Ry) + tr(PES)] dt + dM,

< [—roa 1% = Rl2 + 4| dt+ ang,
with the process
Uy = tr(R) +tr(P2S) < tr(R) + p(S)tr(Py)?
< tx(B) + p(S) (7" t(Po) + 1/5)
and the martingale
dM, := 2(X, — X, R)/* dW, — B,B'R;"* dV,)
Observe that the angle bracket of this martingale satisfy the property
oMY, = KX,;— X, (R+ PSP) (X, — X)) <4X, - X;|*> |R+ PSP

By corollary 2.2 in [7] for any § > 1 we have

— ~ 2/6 _ ~
(% - %7 | 7)< exp(=hoalt— ) K — &,

+(26 — 1) Jt exp (—Aoa(t —u)) (tr(R) + p(S)tr(P,)?) du

s

Observe that by

o(S) f exp (—Aoalt — u)) tr(Py)? du

S

< 2p(8) f exp (—Aaa(t — u)) [6_2’\““ tr(Py)? + 1/&5] du

< 2(AFAs) Tt + 2exp (—Aaalt + 8))tr(Po)*Ag?t

This ends the proof of the proposition.

12



Theorem 3.2. When the initial random states X and )“(0 have the same first and second
order statistics (Xo, Py) = (Xo, Po) we have the almost sure contraction estimates:

|t = Xil* < exp[-Aoat] [Xo — Xol?

More generally, when condition (@ is met with Ag = 4%, for any € € [0, 1[ there exists some
s such that for any t = s and any 1 < § < 474 \/Ag we have

. 1/6 _ _ . _
E(IX - X2 | %) <exp[-(1—eaalt—9)] [IXe- X2+ 2, (0

with some exponent Asa = XaA A (Noa/2), and some process Z, satisfying the uniform
moment condition

supE (2?/4) <o forany o <Args VAs. (21)

t=0

Before getting into the details of the proof of this theorem we mention that is a
direct consequence of combined with the uniform estimates . Indeed, applying ,
for any § > 2 we have

E (X, - XtH5>1/6 <exp[—(1—e)haalt — 5)/2] (E 1%, - XSH5]1/5 +E [zg/z]1/5>
Using and the fact that
1<6/2<1671 v/ As <47 Aps Vs
we conclude that
Ws(ne, 7)) < ¢ exp [—t (1—e)(1— s/t)XaA/Q] < c exp [—t (1- 2e)XaA/2]

as soon as s/t < e. The end of the proof of is now clear.
Now we come to the proof of the theorem.
Proof of theorem [3.2k
We have

X, = AX,R)dt + RB® AW, + PRB'RE;" [avi— (BXdt+ B)® dV, )]
Using the decomposition
PSX,— PSX, = —-PSX:-X,)+ (P — P)SX,
we readily check that
a (X - %)

- {[A(Yt, X)) — AKX, )V(t)] —PS(X, - )“(t)} dt + [Pt — é] S(X, — X,) dt + dM,

13



with the martingale

AM, = [Pt - é] B'R;Y? d(V, - V)

~ o « 12 -
= WM = | [Pt - Pt] BRy Y2 = tr ([Pt . pt] S> <V = p(S) | B — B

When the initial random states X, and X, are possibly different but they have the same
first and second order statistics we have

)20:)\50 and P():I{)O = Vt>=0 Xt:)\ét and Pt:j:/)t
In this particular situation we have
AX 1, X)) — A(Xy, X)) = 0A(Xy) (X — Xy

and 2 <Yt B Xt) _ [aA()?t) - PtS] (X: — Xy)

This implies that
M]Yt - Xtuz = 2<(Yt - Xt), [614()2}) - PtS] (Yt - Xt)> g —)\aA Hyt - XtHQ

This ends the proof of the first assertion.
More generally, we have

AX, X)) — AX, X))
= 0A(Xy) (X¢ — Xy)
+ [A()?t) - A()?t)] AKX — X)) + [aA()?t) - aA()?t)] (X, — X))
This yields the estimate

(X, — X, (A(Yt, X)) — AKXy, )V(t)) ~PS(X, - X))

Aaa . . ~ - A
< =T X = X + (Ko = X, [0A(R) — 04K | (K= X))
+(X, - X, [A(f(t) - A()V(t)] — AKX, — X))
Aaa o S .
< =" XK= Kl + 1R = Kl 1K = Kl (woa 1K — el + roa + J0A])

We also have

Ko =X, [P = B S(Xe = X)) < |P = Bille [ K2 = il [S(Xe = X))

14



This implies that

d|X; — X2
< o I = Xl + 2 [ R = Kall 1K = Xl (woa 1Ko — Rell + woa + [04]) | dt

+[21P = Bllp 1% - Xl 15X = X0l de + 299 [ X, — Xo|| dM

with 5
Vi = p(9) |P — P F
and a rescaled continuous martingale M; such that 5t<ﬂ>t < 1. On the other hand, we

have o R o ~
2 X = Xel| 1% = il (04 IXe = Kl + woa + [04])

Aoa

_ . 4 - - _ N 2
< SPHIT = P+ R = X? (moa K= il + o +[04])

and - o . y
2|17 — Bl [ Xe — Xe| [S(Xe — X4

A — . 4 - o
< PAX - X2+ |B - BE IS - X))
4 AoA
We conclude that

_Aoa

4%, - X2 < [ ’

X, — X% + ut] dt + 24/V; | X, — X4|| dM,

with
Us = o | X — Xil* + By | Py — B3

and the parameters

4 - s 2 4 y
o i= 5 (roa IXe = Rill + roa +[04]) and 8= 1 [S(X; - %)
oA AoA

By and , for any 6 < 27'\/Ag and any ¢t > s we have

B (ol 1% - X0 | 7)< B(1%- X001 B)T B (a1 7)T
< Zs exp (—3\3,4(1 —€)(t — s))

for some process Z, satisfying the uniform moment condition . In the same vein we
check that

E (USM ] .7-;)4/5 v E (VS/‘l ] .7:5>4/5 < Z, exp (—XaA(l —e)(t — s))

15



for any s > to. By corollary 2.2 in [7] we have

E (Hyt _ X-tH6/4 ‘ fs)8/6

+nZ, Lt exp <_ [)\;A(t—u) + Aol — €)(u— S)D du

< e % (=9 1K, — X% + — n Zy, |€JC;A (t—s) _ ef:\aA(lfe)(tfs)|
‘)\6.4(1 — 6) — /\aA/Q‘
The end of the proof of the theorem is now easily completed. |

4 Quantitative propagation of chaos estimates

4.1 Laplace exponential moment estimates

The analysis of EKF filters and their particle interpretation is mainly based on the estimation
of the stochastic exponential function

Er(t) := exp Ut T 4(s) ds]

0

with the stochastic functional
FA(S) = — [)\E)A — (2%&5,4 tl‘(Pt) + p(S) HX,; — Xt” )]

Assume condition is satisfied and set

9 1 /3 1 ey
Aoale. 8] Dag =1 — (N
oale0]/Aaa or T e (4 ) 5 Zhox

Observe that for any § > 0 we have

1A N
€ = 5 )\Lj :AaA [6,&/2] = >\6A >A§A [676]

The next technical lemma provides some key d-exponential moments estimates. Its proof
is quite technical, thus it is housed in the appendix, section

Lemma 4.1. e For any § >0 and any 0 < s <t we have the almost sure estimate

E ((5{‘(15)/51*(8))75 | ]__8)1/5 <exp(Ap (t—s)) with Ap = Xoa [1 — )\KZ)\R]
(

22)
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e Foranyee[0,1], any 0 <0 < e € Ar,g and any initial covariance matriz Py such that

As |1 1
tr(FPp)” < o”(e,0) : Y [2 + ARAS] (e €eAr,5/0 —1)

for any time horizon t = 0 we have the exponential -moment estimate
S1/0
E [&(t) ] < c5(Py) exp [Afi(e,0) t] (23)

with the parameters

A{(e,0) = 2krpa0(8) —Apale, 6] — (6 —1)p(S)
cs(Po) exp (1/6 + 0x(Po)/(2As)?)

e For any € €]0,1] there exists some time horizon s such that for any t = s and any
d < +/As/2 we have the almost sure estimate

1/6 ~
E (&) | 7o) <&n(s) 2, exp(—{(1-Roa+ (6-1p(S)} (t=5)) (24
for some positive random process Z; s.t.

Va < )\st A/ As supE(Zta) < o0

t=0

4.2 A non asymptotic convergence theorem
This section is mainly concerned with the estimation of the J-moments of the square errors
i = [(me i) = (X4, P)[? = |me = Xel® + |pe — Pil%
The analysis is based on a couple of technical lemmas.
The first one provides uniform moments estimates with respect to the time parameter.

Lemma 4.2. Assume that \pin(S) > 0. In this situation there ezists some v > 0 such that
for any 1 <n <14+ vN we have

supE (tr(py)"™) < o0 supE (Hg,}”") <o and supE (HC,}H") <
=0 =0 =0

The second technical lemma provides a differential perturbation inequality in terms of
the Laplace functionals discussed in section [4.1

Lemma 4.3. Assume that A\pin(S) > 0. We have the stochastic differential inequality

a2, < E [Tat) +v/20(8) dX | + [V dt + 0 Z a1
with a couple of orthogonal martingales s.t. 8t<T.(i),T.(j)>t < 1;—; and some non negative

process Vi such that

SupE(Vf)l/n <c¢(n)/N  foranyl<n<1+vN and some v > 0.
t=0

17



The proofs of these two lemmas are rather technical thus they are provided in the
appendix, section and section We are now in position to state and to prove the
main result of this section.

Theorem 4.4. Assume that (271/As) A (eArs) = 2. In this situation, there exists some

No = 1 and some « €]0,1] such that for any No < N, 1 <6 < (47 Ag) A (27 edrs) and
any initial covariance matrix Py of the signal we have the umform estimates
tr(Po)2<1 )\5{14- } — supE[E!]Y? < ¢/N®
2 AR ARAS =0

Proof. We set
E(t) := Er(t)Ex(t) = e~

with the exponential martingale
er(t) = exp | v2p(8) TV - p(S)t]

and the stochastic process

Ly = ft T 4(u) du+~/2p(S) Tgl) _

0

Observe that for any § > 0 we have

£ = exp[ 5v/20(8) TV + 5p(S ]—exp[5(1+25)p(5)t] V2 (1)

with the exponential martingale

E_2o7(t) —exp[ 25~/2p(S T(l) 462 p( S)]

In the same vein we have
EY(t) = exp [cw 20(S) TV — 8p(S ] = exp [8(20 — 1)p(S)t] E3(1)

with the exponential martingale

Easy(t) := exp [25«/2/} T — 452 (S)t ]

This yields the estimates

E (E*‘s (t))

exp (3(1 + 28)p(S)t) B[ €n(t) ™ €15 (1)]
< E[Ep(t)_%]l/ ® exp (501 + 26) p(S)1)
E(EW) < E [5p(t)25]1/ * exp (6(20 — 1) p(S)?)
Using and we find the estimates
E (E"s(t))w < exp ([(1+20) p(S) + Ag]) (25)

E (?(t))” "< () exp ([(26 = 1) p(S) + Aft (e, 8)] t) (26)

18



The estimate is valid for any € € [0,1] and any
d<eelrsg and tr(Fp) <o(ed)
Using the fact that

dE () < —eFr (FA(t) dt +/2p(8) d1iV - p(S)dt>+%e_Li 20(8) o TDY, dt

< €' (FA(t) dt + /2p(S) dﬂ”)

we find the stochastic inequality

A ') < &) dE + 5 dE ) — 287 (t) B4 p(S) dt
< €'n = [rA(t) +/2p(8) dTE”] +&7' ) [vt dt +/Vs dﬁ?)]

~E7 (1) &1 |Ta®) dt++/20(8) aTV| — 2871 (1) = p(S) dt
-1

A0 [(vt — 25 p(S)) dt + V= dﬁ”]

For any ¢ > 2, this implies that

A=) < §=VEW) (V- 22 p(S)) dt +/Vi 5 dTP]

+0 BT EW@) T Mvt dt

2
s (641
= 5= E ) <‘; V-2 5, p(5)> dt +/Vs Z dTﬁ”]

Taking the expectation we obtain

OE [(Et ?’%t))‘s] < 5(5;1) IE[ (E E’l(t))(s_l NIt Vt]

19



This yields
o 1/8
oE (=7 1))

' OE (e 1))

< —2p(9E (22 ®)7) " + LU o ([(1+ 49)0(5) + AF] 1)

c

— ¢
2 N
from which we conclude that

E ((Et E_l(t))(S)l/é < exp{—2p(9)t} E (Eé)w + % exp { ((1 + 40)p(S) + Ay) t}
< % exp {((1+40)p(S) + A7) t}

By Cauchy Schwartz inequality we also have
_5aN\2/8 _ 1 \2\ o 15 /s N1/S
E (:/ ) —E (E(t)‘w (:t g (t)) <E ((:t 3 (t))‘5> E (5 (t))
Using we conclude that for any € € [0,1] and any 0 < e € Ar g and tr(Fp) < o(e, )

E(2°)" < arh) & exp{(690(S) + AF + Af(e.9) 1) (27)

On the other hand, by theorem 2.1 in [7] for any § > 1 we also have

B (2?1 7) " <Efew (5 [ (ra) +6-10t) du)|fs}l/5

_ 1 6+1 (¢ —5 1/8
x{_s+N2 SE[VUU-'S] du}

(28)

with the rescaled process

Vi i= exp (Jt [T a(u) +2(1 —6)p(S)] du> Vi

S

of the process V; defined in lemma [4.3]
On the other hand using for any € €]0,1] there exists some time horizon s = s(¢)
such that for any ¢ > s and any § < % v/ As we have the almost sure estimate

2/8 ~ S+1 [t = 1/5
(H6/2 | ]-") < Zs exp (— (1 —€)Xoalt — 5)) {_,5 + — E [Vﬁ | .7:5] du}
with some process Z; such that

2
supE (Z7) <o for any a<e\/)\< = AR5 VA >

=0 2

[

20



Combining Cauchy-Schwartz inequality with and lemma we readily check that
_ 1/6
E|V. | %]

_E {v;j exp (5 J L0 a() + 2(1 — 6)p(S)] dv) | ]—"3]1/5

S

<E [Vﬁé]l/(m exp (2(1 —0)p(S)(u—s)) E [(Sp(u)/gr(s))_za | ]:5]1/(26)

< % exp [(2(1 = 6)p(S) + AF) (u —s)]

This yields the estimate

2= 17) <287 on (5 (1-9 S 0-9)

= S e [0 - 0p(s) + A7) (- 9)]}

This implies that for any 1 < §/2 < i vAs we have

x {53/2 + N%W exp [g (2(1 = 8)p(S) + Ap) (t — 8)]}

Taking the expectation and choosing € < 1/2, there exists some time horizon ¢y such that
for any s > 0 and any 7 = s + tg

E (Ef/ 2)2/5

~

< ¢ exp (*)\aA (t—(s+ to))/2) {1 + % exp [(2(1 = 6)p(S) + Ap) (1 — (s + to)]}

for any 2 < § <1+ vN for some v > 0, and for some finite constant ¢(d) < co. This implies
that for any time horizon ¢t > 0 and any

2<0<2'/As A (1+vN)

we have
5 ~
2(2,)" o (5 ) {1+ el -oms <20yl

This yields the uniform estimates

2/8 52 2/8 Noa 1
E (=9/2 = E = < e ——tl+ = e Art
o BEP) T m s (E) e oo |5 vy el
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with the parameters

= (o) ()]

2

On the other hand, by . ) for any time horizon ¢ > 0 and any 0 < e Ar,s and any Fp
s.t. tr(P) < o(1,eAp,s/2) we have the uniform estimates

2/6 1
su E (=9/2 < ¢c— e Lt
se[o, t(E)th] ( ) N < [Are]

with
Ai“ = belpa AR,S/)\S + Al: + Alf(l,e)\R’s/Q)

We conclude that for any time horizon ¢ = 0

2/6 A 1
supE( 5/2) <c { exp [—ZA t] + N oXP [()\p v Af)t]}

s=0

Choosing t = ¢(NN) such that

t=t(N):=logN/ {XaA/Q + (Ar v /\/r)}

We conclude that

~

2/8 A
supE ( 5/2> <c N % with a=x oA €]0,1]
50 Aoa + 2 ()\r v )‘/F)

This ends the proof of the theorem. |

Corollary 4.5. Assume that (471\/Ag) A (27YeArs) = 2. In this situation, there exists
some Ny = 1 and some « €]0, 1] such that for any Ny < N and any initial covariance matriz
Py of the signal

tr(Py)” <

1 )\5[1+ 2

2 Ar ARAS]:T;EEUQ G ) < e(Po)/N*

for some finite constant c¢(Py) < o0 whose values depends on Py.

Proof. Using we have

&t — ¢ = [(aA(mt) —pS) & + pSXy + A(my) — 0A(my) mt] dt

- [(aA(f(t) — PS) ¢} + PSX, + A(X) — 0A(XY) f(t] dt + dM,

with the martingale
My = (p — P)B'R; 2d(V; — V)
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This yields

aeh - ¢)
= [(@A@m) = piS) (€ = 1) + (= P)S(X = ) + (0A(my) = 0A(R0) ¢} | dt

+ [(A(mt) - A()?t)) + (aA(f(t) - 6A(mt)> me + AR (Xe —me) ] dt + dM,
with
D1 M(k), M(k)y < 20(S) | pr — P&

1<k<r;

This implies that
dl& — ¢ |?
<2 = ¢ d(E = ¢y +2p(8) | pe— Pill dt

< {=Xoaléi = G117 +20(9) | pe — Pl3 +20€ — G

< [Ipe = Pl 18X = GOl + (roa (IGH] + Imel) +210A1) [me— Xil|} dt + dM
with the martingale o
dM; = 2§ = ¢, dMy)
Notice that

2p(S) | pt — Pi| %
+2)&f — ¢/ [Hpt —Plr |S(Xe = )|+ (80a (|G + [mell) + 2[0A]) [me — fft“]

A
o foA

< lE =GP xe

with the process

e :=2p(S) | pe — Pil7

2 ~
4| lpe = PUE IS(Xe = G2 + (koa (IGH + el +20041)° e = Rl | /Ao

By theorem [4.4] we have

supE(e;) < ¢(Py)/N®

=0
as soon as (4 1y/Ag) A (27ledrs) > 2 and initial covariance matrix Py of the signal is
chosen so that

1 2
tr(Py)? < 3 As [1 + ]
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This implies that

A
QE (|6 — %) < =5 E (& —¢/I1P) +e(Po)/N*

The end of the proof of the corollary is now a direct consequence of Gronwall lemma.

5 Appendix

5.1 Regularity conditions

Notice that for any a,x = 0 we have

T

m>2a — x>a(1+ 1+2/a)

and by

1 -1
A 8¢) " Ap /g |1+ —rno
RS > (8e¢) R’\/S[‘F)\Rm}

This shows that

Ar VA
(8¢) ! R—ls >a < Ip\Vls>4dae (1 +4/1+ l/(2ae)) — Apg > o
L+ |

Also observe that

As>4 and Ap >2ae (1+ 1+1/(2ae)> — Aps > a
This yields the sufficient condition

(AkAr) AAs >4 and Ar Vs >de (14/1+1/2)) — (§

Also observe that for any a > 1 we have
(Ag/a) A (As/4)>1 and Ap >2ace (1 +4/1+ 1/(20[6))
— ()\K)\R/4) A ()\Rﬂg/a) A ()\5/4) >1

5.2 Proof of lemma 4.1
We have
“TaA(t) = Aoa— (2@,4 tr(P) + p(S) | X; — X ) < oall—2/O0xAn)]

The end of the proof of is now clear. Observe that

&) = exp [5 fo t [(zw tr(By) + p(S) | Xs — X, ) - )\aA] ds}

< exp [&M [fK (tr(Po) + A1R> - 1] t] exp [5 o(S) L X, - R ds}
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We let ¢(z) = X; be the stochastic flows of signal starting at Xg = x. We recall the
contraction inequality

l¢e(x) = de(y)] < exp (=Aaat/2) [z -y (29)

A proof of can be found in [7], section 3.1. This inequality implies that

t t
LXT—XA dr fo 60 (X0) — X dr

t t
< fo 16,(X0) — 6,(Ro)] dr+j0 6, (Ro) — X, dr
t t
< <J e hoar/2 dr) [ Xo — Xol| + f [or(Xo) — X | dr
0 0
t
< 2| X0 — Kol/hoa + j 16,(Ro) — R, | dr
0

This implies that
t =R =R t N =R
exp |8 9(5) [ 13~ Kol ds| < exp [201% ~ Ral/as] exp [00(5) [ on(Ro) - il ]
0 0
Using the estimate x — 1/4 < 22, which is valid for any = we have
t =R =N t =R ~
| 6o = Rl = 1)+ vy dus e [ on(Ro) - Ko fPar
0 0
we find that
t
esxp [6p<s> [[1x -2 ds} < exp 201X = Kol/As] exp (0to(5)/4)
0
t
< oxp [5p(5) [ 1680 - 222 ds}
This yields

E[exp {6 o(5) fo X, - X, ds] |Xo] < exp (190(5)/4) exp | 26X — Rol/As]

<& [exp[301) [ 10020 - 2.7 as))

0
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We also have the series of inequalities

1 1 2
p(S) 1+ mo4(0) 4tr(R)

1 @ 1 1 ASAR 1

Z0(S) 4 T4 moa(0) d(R) ~ 2x 42 172+ w(Ro)(p(S)/ur(R)) + pl(S)er(B)/AZ,

= — Ag A 2 — tr( P, 1
12 NS AR < s r(Po) +[ +/\R)\S]>

\%

-1
e 2 17! AR ) 2 17!
— A/ Ag A 1 14+2 — tr(F~, 1
se V9N [ URAS] ( 2 [ *ARAS]

A 9 171\
—e\ 1+2 28 (P2 |1
© ARS8 ( * As H(Fo) { +)\R)\S} )

This shows that

5p(S) < € 2
PY)S T 7a4(0) 4t2(R)

for some € € [0, 1] as soon as

1
tr(Py)? < As

2 e
- = — — <
S5 Y [1~|— ](56)\375 1) foranyé\ee)\gg

ARAS

The end of the proof of is a direct consequence of theorem 3.2 in [7].
The last assertion resumes to lemma 4.1 in [7]. This ends the proof of the lemma.

5.3 Proof of lemma [4.2]
Using we have

dir(ps) = (tr((0A[me] + 0A[my]")pe) — tr(Sp7) + tr(R)) dit + \/% dM,
< [—)\aA tr(pe) — Tfl)\mm(S) tr(pt)2 + tr(R)] dt + \/% dM,

with a martingale M; with an angle bracket

OlM)y = Atr((R + peSpe)pe) < 4tr(p) (p(R) + p(S) tr(pe)?)

Using lemma 4.1 in [6] we have

E (t "
2rq )\max(S) - igg ( r(pt) ) =

26



By we have

1/2 1 —
dVy + — dM

dmy = [A[my] — peSmy + peSXy] dt + py B'Ry
Since M, is independent of V; we have

d”thZ = (2 <mt, [A [mt] — ptSmt + ptSXt]> + tr(R + ptSpt)) dt + dj\\jt

with the martingale

dM, = 2 (my, py B'Ry Y2 dVy) + 2 AN,

\/» <mt7

and the angle bracket
oMy, = 4 {my, (R+ pieSpr)ma)/N + 4 (my, (peSpe)may < Vi |my?

with
V, =4 [tr(R +pt5pt)/N + tr(ptSpt)]

Observe that

(me, Alme]) = (my = 0, A[me] — A(0)) + (mz, A[0])
< = el + JAQ)] mell < =(Aa/2) |me|® + [ A0)[2/(220)

This yields the estimate
dima® < (=Aa [mel® + JAQ)/Aa + 2lmel [peS| |1Xe] + te(R + peSpe)) dt + dM,

from which we find that
A
< (<5 mel? + ) at Vs an

with d;(N); <1 and
Up = AP/ A4+ [peSI? | Xel?/Xa + tr(R + piSpe)
Arguing as in the proof of theorem [3:2] we conclude that

VI<3n<1+ (N-1)/2r1)  supE(|m*) <o
0

=

Using we have
déf = [(0A[me] — peS) & + peSXy + A[me] — 0A[my] my] dt + dM,

with the martingale
My = RY*dW, + pB'Ry (v, - V)
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This implies that

dlet)* = [2¢ [(0A[me] — piS) & + peSXy + Almy] — 0A[my] my])

+tr(R) + 2tr(p:Spy)] dt + dM;

N

[—(Xoa/2) |1 + U] dt + dM,

with L .
dM; := 20&}, dM;y — 0,(M); <V, ||€ ]2
and
U = 2|piSX; + A[my] — 0A [my] my|?/Noa + tr(R) + 2tr(Sp?)
Vi = 4(tr(R) + 2tr(p:Spr))

The end of the proof follows the same arguments as above, so it is skipped. This completes
the proof of the lemma. [

5.4 Proof of lemma [4.3]
By and we have
d(ps — P) =T, dt + dM; and d(m; — X;) = I, dt + dM,
with the drift terms
A~ ~ /
m, = ((?A(mt)pt - aA(Xt)Pt> + (8A(mt)pt - aA(Xt)Pt)
+(Pr = p)SP + (P — pt)SPy) — (Pr — pi) S(Pr — pr)
O = (Alme) = AX) —peS(me — Xo) + (pr — P)S(Xe — Xy
and the martingales

1 i _ 1 —
dM; = dM;  dM, = (p;— P) B'Ry"* av; + AN,

VN -1 VN

Using the decomposition
OA(my)ps — 0A(X) Py = 0A(my)(py — Pr) + (0A(my) — 0A(Xy)) P,
we check that

I, = [0A(my) — Y (pe + P)S] (r — Py) + (pe — P) [0A(my) — 3 (pe + P)S]

+(0A(my) — 0A(X,)) Py + Pi(0A(my) — 0A(XY))
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This implies that

=PIl < —Aoa lpe — Pil% + 2604 tr(Py) |pe — Polr e — X

from which we prove that

dlp: — Pl3 = 2{pi— Py, d(p — P))
[tr((R + peSpe)pe) + tr(R + peSpe)tr(pe)] dt

N1
< {—2)\% Ipe = Pi|3 + 4604 tr(P) |pe — Pill e [me — X4
2
N1 [tr((R + peSpe)pe) + tr(R + ptSpt)tr(pt)]} dt + dNy

_|_

with the martingale
2
(pt — P, dMy) = tr((pe — Pr)d M)

Ne = =

After some computations we find that

4
N < N_1 Ipe — Pil|% tr(pe(R + peSpy))
In much the same vein we have

(my — )A(t,ﬁt> = {(my — )A(t, (A(my) — A(Xt)) —peS(my — Xt)
A4 fme = Xel? + p(8) | Xe = Xe|| Ipe — Billp [ me — X

+ (pr — P)S(Xe — X4))
<

This implies that
dlm; — X[ = 2 {(me — Xy), d(my — X))
1
+ (tr(S(pt —-P)H + N tr(R + ptSpt)> dt

< {=2xa e = X2+ 20(8) 1% = Rill Ipe = Pille Iy = X

1 _
FoS)l = P+ 3y (R4S | + 4N,

with the martingale
2 .
—= ((my — Xy), dMy)

@m=4<m”—2¢¢ﬂ9:2<m%—i¢u%—a)HRjﬂdmy+¢N

In addition we have
. N 4 N N
ANy < 4p(S) [my — Xi|?|pe — P% + N {(m¢ — X4), (R + peSpe) (me — X4))
~ 2 4 ~
< 2p(8) (I = XilP + I = Pill) "+ 5 Imi = Kl (R + puSp)
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Combining the above estimates we find that

A% < {=2Aa e = Kol + 2 Ipe = Pl e = Kil| (2604 tr(P) + p() 1X:— il ) |

— (2Xoa — p(8)) |pe — Pl dt

1 -
+N {tr(R + peSpe) + [tr((R + peSpi)pr) + tr(R + prSp)tr(pe)] } dt + dN; + dN;

N -1

Recalling that
204 =2 Xoa >0 and 2XMs4 — p(S) = Aoa

this yields the estimate

42 < {2oa B+ 2 p = Bille I — Rl (2604 tr(R) + p(8) X, - | )} at

1 4N __
N <N — (B +peSpy) tr(pe) + tr(B + ptSpt)> dt + dN'y + dN,

On the other hand using the inequality 2ab < a? + b? we prove that

dE, < - {)\aA _ (2,% tr(P) + p(S) | X; — X )} =, dt

1

+N <1 + 141/]\7 tr(pt)> [tr(R) + tr(S)tr(pt)z] dt + dNy + dN;

from which we conclude that

1
dZ; < <FA(t) S+ N Ltt) dt +d Y, with U = (1+8tr(p)) [tr(R) + p(S) tr(p:)?]

and the martingale Y, := Tgl) + T?) given by

dYM = 2¢(my— X0), (e — P) B'RyY? dvy)
2 o 2
ar? il — X,),dM,)) + ———— (p, — P,,d]M,
t \/N <(mt t) t> \/ﬁ <pt t t>

Observe that

(r® @y, = o

~ 2
XDy < 20(8) (Ime = Kl + e — PIE) < 20(5) =2
4 ~ 4 _
Xy < | Ime=Rel® +2 = Bl tr(p)| (R +piSpo) < < Uh 0
This ends the proof of the lemma. |
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