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Abstract

The exponential stability and the concentration properties of a class of extended
Kalman-Bucy filters are analyzed. New estimation concentration inequalities around
partially observed signals are derived in terms of the stability properties of the filters.
These non asymptotic exponential inequalities allow to design confidence interval type
estimates in terms of the filter forgetting properties with respect to erroneous initial con-
ditions. For uniformly stable signals, we also provide explicit non-asymptotic estimates
for the exponential forgetting rate of the filters and the associated stochastic Riccati
equations w.r.t. Frobenius norms. These non asymptotic exponential concentration and
quantitative stability estimates seem to be the first results of this type for this class
of nonlinear filters. Our techniques combine y-square concentration inequalities and
Laplace estimates with spectral and random matrices theory, and the non asymptotic
stability theory of quadratic type stochastic processes.

Keywords : Concentration inequalities, non asymptotic exponential stability, Lya-
punov exponents, extended Kalman-Bucy filter, Riccati equation.

Mathematics Subject Classification : 93C55, 93D20, 93E11, 60M20, 60G25.

1 Introduction

The linear-Gaussian stochastic filtering problem has been solved in the beginning of the
1960s by Kalman and Bucy in their seminal articles [4, [5,9]. Since this period, Kalman-Bucy
filters have became one of the most powerful estimation algorithm in applied probability,
statistical inference, information theory and engineering sciences. The Kalman-Bucy filter
is designed to estimate in an optimal way (minimum variance) the internal states of linear-
Gaussian time series from a sequence of partial and noisy measurements. The range of
applications goes from tracking, navigation and control to computer vision, econometrics,
statistics, finance, and many others. For linear-Gaussian filtering problems, the conditional
distribution of the internal states of the signal given the observations up to a give time
horizon are Gaussian. The Kalman-Bucy filters and the associated Riccati equation coincide
with the evolution of the conditional averages and the conditional covariances error matrices
of these conditions Gaussian distributions.

Using natural local linearization techniques Kalman-Bucy filters are also currently used
to solve nonlinear and/or non Gaussian signal observation filtering problems. The resulting



Extended Kalman-Bucy filter (abbreviated EKF) often yields powerful and computational
efficient estimators. Nevertheless it is well known that it fails to be optimal with respect
to the minimum variance criteria. For a more thorough discussion on the origins and the
applications of these observer type filtering techniques we refer to the articles [13, 19} 20]
and the book by D. Simon [I§].

There is a vast literature on the applications and the performance of extended Kalman
filter, most on discrete time filtering problems, but very few on the stability properties, none
on the exponential concentration properties.

In the last two decades, the convergence properties of the EKF have been mainly devel-
oped into three different but somehow related directions:

The first commonly used approach is to analyze the long time behavior of the estimation
error between the filter and the partially observed signal. To bypass the fluctuations induced
by the signal noise and the observation perturbations, one natural strategy is to design
judicious deterministic observers as the asymptotic limit of the EKF when the observation
and the sensor noise tends to zero. As underlined in [3], in deterministic setting the original
covariance matrices of the stochastic signal and the one of the observation perturbations are
interpreted as design/tuning type parameters associated with the confidence type matrices
of the trusted model and the confidence matrix of associated with the measurements.

For a more detailed discussion on deterministic type observers as the limit of filters
when the sensor and the observation noise tends to zero we refer the reader to the seminal
article [I] and the more recent study [3]. Several articles proposed a series of observability
and controllability conditions under which the estimation error of the corresponding discrete
time observer converges to zero [1 2 19, 20]. These regularity conditions allows to control
the maximal and the minimal eigenvalues of the solution of the Riccati equations (and its
inverse).

One of the drawbacks of this approach is that it gives no precise information on the
stochastic EKF but on the limiting noise free-type deterministic observer. On the other
hand, up to our knowledge there doesn’t exist any uniform result that allow to quantify
the difference between the filter and its asymptotic limit with respect the time parameter.
Another drawback is that the initial estimation errors need to be rather small and the signal
model close to linear.

In general practical and stochastic situations, mean square errors doesn’t converge to
zero as the time parameter tends to co. The reasons are two folds: Firstly, the observation
noise of the sensors cannot be totally cancelled. On the other hand the internal signal states
are usually only partially observed, and some components may not be fully observable.

A second closely related strategy is to design a Lyapunov function to ensure the stochastic
stability of the EKF. Here again these Lyapunov functions are expressed in terms of the
inverse of the Riccati equation. These stability properties ensure that the mean square
estimation error is uniformly bounded w.r.t. the time horizon [II, 10, 14} 15]. The regularity
conditions are also based on a series of local observability and controllability conditions. As
any variance type estimate, these mean square error control are somehow difficult to use in
practical situations with rather crude confidence interval estimates.

The third and more recent approach is based on the contraction theory developed by
W. Lohmiller and J.J.E. Slotine in the seminal articles [IT], 12], and further developed
in [3]. This approach is also designed to study deterministic type observers. The idea
is to control the estimation error between a couple of close EKF trajectories in a given



region w.r.t. the metric induced by the quadratic form associated with the inverse of the
solution of the Riccati equation. This approach considers the partially observed signal as
a deterministic system and requires the filter to start in a basin of attraction of the true
state. In summary, these techniques show that the observer induced by the EKF converges
locally exponentially to the state of the signal when the quadratic form induced by the
inverse of the Riccati equation is sufficiently regular and under appropriate observability
and controllability conditions.

The objective of this article is to complement these three approaches with a novel
stochastic analysis based on exponential concentration inequalities and uniform y-square
type estimates for stochastic quadratic type processes.

Our regularity conditions are somehow stronger than the ones discussed in the above
referenced articles but they don’t rely on some observability and controllability conditions,
nor on suitable local initial conditions nearby the true signal state. Last but not least our
methodology applies to stochastic filtering problems, not to deterministic type observers.

In our framework the signal process is assumed to be uniformly and exponentially stable,
and the sensor function is linear. In this apparently simple nonlinear filtering problem the
quantitative analysis of the EKF exponential stability is based on sophisticated probabilistic
tools. The complexity of these stochastic processes can be measured by the fact that the
EKEF is a nonlinear diffusion process equipped with a diffusion correlation matrix satisfying
a coupled nonlinear and stochastic Riccati equation. Filtering problems with linear signals
and nonlinear sensor functions are somehow simpler to analyze since the stability of the
signal is directly transfer to the one of the Riccati equation.

This study has been motivated by one of our recent research project on the refined
convergence analysis Ensemble type Kalman-Bucy filters. To derive some useful uniform
convergence results with respect to the time horizon we shown in [6] that the signal process
needs to be uniformly stable. This rather strong condition cannot be relaxed even for linear
Gaussian filtering models. We plan to extend these results for nonlinear filtering models
based on the non asymptotic estimates presented in this article.

In this context we present new exponential concentration inequalities to quantify the
stochastic stability of the EKF. They allow to derive confidence intervals for the deviations
of the stochastic flow of the EKF around the internal states of the partially observed signal.
These estimates also show that the fluctuations induced by any erroneous initial condition
tends to zero as the time horizon tends to +oc0.

Our second objective is to develop a non asymptotic quantitative analysis of the stability
properties of the EFK. In contrast to the linear-Gaussian case discussed in [6], the Riccati
equation associated with the EFK depends on the states of the filter. The resulting system is
a nonlinear stochastic process evolving in multidimensional inner product spaces. To analyze
these complex models we develop a stability theory of quadratic type stochastic processes.
Our main contribution is a non asymptotic Ly-exponential stability theorem. This theorem
shows that the IL,-distance between two solutions of the EKF and the stochastic Riccati
equation with possibly different initial conditions converge to zero as the time horizon tends
to 0. We also provide a non asymptotic estimate of the exponential decay rate.

The rest of the article is organized as follows:

In the next two sections, section [1.1| and section [1.2] we present the nonlinear filtering
models discussed in the article and we state the main results developed in this work. Sec-
tion [2] is concerned with the stability properties of quadratic type processes. This section



present the main technical results used in the further development of the article. Most of
the technical proofs are provided in the appendix. Section [3]is dedicated to the stochastic
stability properties of the signal and the EKF. The end of the article is mainly concerned
with the proofs of the two main theorems presented in section |1.2

1.1 Description of the models

Consider a time homogeneous nonlinear filtering problem of the following form

— 1/2
{ dX; = AX)dt + R/ dW; and we set F; = o (Y, s <t).

dY, = BX,dt + RY*dV,

In the above display, (W, V;) is an (r; 4+ r2)-dimensional Brownian motion, X is a 71-
valued Gaussian random vector with mean and covariance matrix (E(Xy), ) (independent

of (Wi, V;)), the symmetric matrices R}/ % and R;/ % are invertible, B is an (rg x r1)-matrix,
and Yy = 0. The drift of the signal is differentiable vector valued function A : x € R —
A(x) € R™ with a Jacobian denoted by 64 : x € R™ — A(z) € R"*™), In the further
development of the article we assume that the Jacobian matrix of A satisfies the following
regularity conditions:

—Xoa = Supgegn pP(0A(z) + 0A(z)") <0
(1)

[0A(x) — 0A(y)| < Kkoa |xr—y| for some kpa < 0.

where p(P) := A\pqaz(P) stands for the maximal eigenvalue of a symmetric matrix P. In the
above display |0A(z)—0A(y)| stands for the Lo-norm of the matrix operator (0A(x)—0A(y)),
and |z — y| the Euclidian distance between z and y.

A Taylor first order expansion shows that

(1) = (& =y, A(z) = A(y)) < =Aa |z —y|*  with x> Xoa/2 > 0. (2)
The Extended Kalman-Bucy filter is defined by the evolution equations

dX; = A(X)dt+ P,B'R;" [dYt —B)?tdt] with  Xp = E(Xo)

P = OAXy)P, + POA(Xy) + Ry — P SP, with §:= B'R;'B (3)

where B’ stands for the transpose of the matrix B. For nonlinear signal processes the
random matrices P; cannot be interpreted as the error covariance matrices. Nevertheless,
rewriting the EKF in terms of the signal process we have

dX, - X)) = [(AX) - AR) - BS(X, — X,)] dt + R, ?aW, — P,B'R, av,

Replacing (A(X;) — A(X;)) by the first order approximation 0A(X;)(X; — X;) we define a
process

X, = [0A(X) — PiS)X, dt + Ry 2w, — BB Ry *av,
It is a simple exercise to check that the solution of the Riccati equation coincides with the
Fy-conditional covariance matrices of X;; that is, for any ¢ > 0 we have P, = E ()N(t)N({ | ]-"t)_
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1.2 Statement of the main results

We let ¢i(x) = X; and ¢i(z) := x; be the stochastic and the deterministic flows of the
stochastic and the deterministic systems

dX, = A(Xy) dt + RV*dW,
oy = A(my) starting at xo = po(x) = = X = ¢o(x).

We also let &; = (P4, Uy) be the stochastic flow associated with the EKF and the Riccati
stochastic differential equations; that is

By (Xo, Ry) = (¢’t(-’207P0),‘Ift()Afo7P0)) = (tipt)
Given (71 x rg) matrices P, Q) we define the Frobenius inner product
(P,Q) = tr(P'Q) and the associated norm |P|% = tr(P'P)

where tr(C) stands for the trace of a given matrix. We also equip the product space R™ x
R"*7 with the inner product

{z1, P1), (2, P2)) :={x1,29) + (P, P2y and the norm |(z, P) ||2 :={(z, P),(z, P))

We recall the y-square Laplace estimate
E (exp |[Xo = Xol?/x(R)|) <e with x(R) i= drip(Ry) (4)

The proof of and more refined estimates are housed in the appendix. We have the rather
crude almost sure estimate

dtr (P) = tr ((aA(f(t) + aA(f(t)’)Pt) +tr(Ry) — tr(SP?)
< oa tr(P) + tr(Ry)
This readily yields the upper bound
tr(P) < (P) := e 24" tr (Py) + tr(R1)/Aaa = suptr(P) < tr (Py) + tr(R1)/Aaa (5)

=0
Most of the analysis developed in the article relies on the following quantities:

i — S) tr(R
03uim 142 man with Toa(t) = 72(P) p(S) tr(R) " —pae o 1= ) U
AoA  Aoa

(6)

The quantity p(.S) is connected to the sensor matrix B and to the inverse of the covariance
matrix of the observation perturbations. We also have the rather crude estimate

—1/2 —1/2 _
p(S) < tr(S) = |0Ry *B|%: < |Ry % | Bl% < tr(Ry ) | B|%

Our first main result concerns the stochastic stability of the EKF and it is described in
terms of the function
2

§ € [0, o[ w(8) := % E + (5+\/S)]

More precisely we have the following exponential concentration theorem.



Theorem 1.1. For any initial states (x,Z,p) € R™+1+01X1) and any time horizon t €

[0,0[, and any & = 0 the probabilities of the following events are greater than 1 — e 0

tI‘(Rl)

@) — @ < w(6) )
o) - 2@ < 4w(o) T 02, ®)

|€*/\At _ e*)\aAt’

A4 — Xaal

+2e 204l |z — 2|2 + 8w (4) p(S) tr(p)?

The proofs of the concentration inequalities and are provided respectively in
section and section See also theorem and theorem for related Laplace x-
square estimates of time average distances.

The role of each quantity in and is clear. The size of the events the “confidence”
are proportional to the signal or the observation perturbations, and inversely proportional
to the stability rate of the systems. More interestingly, formula shows that the impact
of the initial conditions is exponentially small when the time horizon increases.

Our next objective is to better understand the stability properties of the EKF and the
corresponding stochastic Riccati equation. To this end, it is convenient to strengthen our
regularity conditions. We further assume that

Aoa >/ 2kgatr(R1) v (4p(S)) (9)

and for some o > 1

deqy

AS) W) [, BRI 0)

XA Aa AoA  AoA

In contrast with the linear-Gaussian case, the Riccati equation depends on the inter-
nal states of the EKF. As a result its stability properties are characterized by a stochastic
Lyapunov exponent that depends on the random trajectories of the filter as well as on the
signal-observation processes. Condition is a technical condition that allows to control
uniformly the fluctuations of these stochastic exponents with respect to the time horizon.
By @ this condition is met as soon as

ae tr(Ry) [1 + % t;((}éﬁ)] < Aa/2

Loosely speaking, when the signal is not sufficiently stable the erroneous initial conditions
of EKF may be too sensitive to small perturbations of the sensor. When the exponential
decay to equilibrium of the signal is stronger than these spectral instabilities the EKF and
the corresponding stochastic Riccati equations are stable and forgets any erroneous initial
conditions.

We set R .

At = ”675 <X0,P0) — 6,5 (Xo,P()) ”2



and

Moy = 1o Foa @) - Jp(S) ll_z i((i)]

Aoa  Aoa AoA 4

We are now in position to state our second main result.

Theorem 1.2. When Apa > 0 we have the uniform estimates

Vn>1 supE(A}) < o
t=0
Assume conditions (@ and (@) are satisfied for some a > 1. In this situation, for any

€ €]0,1] there exists some time horizon s such that for any t > s we have the almost sure
contraction estimate

L [ Xoa 5/2 2/8
== 1 E(A s < Z —(1—e)A(t— Ag
b= (=D = E(a] £) exp[~ (1= €) At - 5)]

for some random process Z; s.t. sup;>oE (Zf“s) < 0.

Theorem [1.2] readily implies the stability §-moment Lyapunov exponent estimates

lim inf—5i log E(A?) = A

t—00 t
In addition we have the non asymptotic estimates

2/ (20-1)/(60)
]E(Af/2> < v(@) exp{—(1—e)A (t_s)}E[Aga/@a—l)] *

with
s 1/(8a)
v(a) :=supE (Zta ) <
=0

We end this section with some comments on our regularity conditions. Notice that A
doesn’t depends on the parameter ¢ nor on p(S). As mentioned above, we believe that
these technical conditions can somehow be relaxed. These conditions are stronger than
the ones discussed in [6] for linear-Gaussian models. In contrast with the linear case, the
Riccati equation in nonlinear settings is a stochastic process in matrix spaces. For this class
of models, these technical conditions are used to control the fluctuations of the stochastic
Riccati equation entering into the EKF.

2 Stability properties of quadratic type processes

Let (Uy, Vi, Wr, V;) be some non negative processes defined on some probability space (2, F,P)
equipped with a filtration F = (F;)>0 of o-fields. Also let (Z;, Z;") be some processes and
M; be some continuous F;-martingale. We use the notation

dYe < Z" dt + dMy < (dYy = Z; dt + dM;  with Z; < Z]1) (11)



Let us mention some useful properties of the above stochastic inequalities.
Let (Y4, Z:r , Z¢, My) be another collection of processes satisfying the above inequalities.
In this case it is readily checked that

AV + V) < (2 + Z]) dt + d(M, + M)

and

dVy) < [?:_yt + Z Ve + 5t<M,m>t] dt + YV, dMy + Y, dM,

Let (H,{.,.)) be some inner product space, and let A, : z € H — Ai(x) € H be a
linear operator-valued stochastic process with finite logarithmic norm p(A;) < c0. Consider
an H-valued stochastic process A; such that

dHXtHQ < [<Xt, At-)(t> + Ut] dt + dM; (12)
for some continuous F;-martingale M, with angle bracket satisfying the following property
My <V |47+ Wy |2

This section is concerned with the long time quantitative behavior of the above quadratic
type processes. The main difficulty here comes from the fact that A; is a stochastic flow of
operators. As a result we cannot apply conventional Lyapunov techniques based on Dynkin’s
formula, supermartingale theory and/or more conventional Gronwall type estimates.

Next theorem provides a way to estimate these processes in terms of geometric type
processes and exponential martingales.

Theorem 2.1. When U; = 0 = V; we have the almost sure estimate

t t t
1%]? < | A]? exp ( j p(A) ds) exp ( j NI f W, ds)
0 0 0

with a martingale Ny s.t. 04(N ) < 1. More generally, for any n = 1 we have

B 2 < [exp (n Jot {p(As) " <ng1) Ws} ds | .7:0>]1/n

(13)
x {Xo2+£ <IE [ | ]-”0]1/"+ (";1) E[V, | ]-"0]1/"> ds}

with the rescaled processes

Uy /Uy = exp (— Lt [p(As) + (n = HW] dS) = ViV

The proof of this theorem is rather technical thus it is housed in section [5.2] in the
appendix.

Corollary 2.2. When U; = 0 =V} we have

s | 7 <& (o ([ [ ota) + 22w o) m)m %l ()

8



When p(A;) < —ay and Wy < wy for some constants ay, wy, and Xy = 0 we have

2 ! ¢ n—1 (%

(n

1) E(vg)l/”] s

(15)

x [IE @)+

with
n—1
2
Proof. The first assertion is a direct consequence of the estimates stated in theorem

Replacing W, and p(A;) by w; and (—ay) from the start in the proof of theorem [2.1) we find
that

An(a&ws) = Qs — Ws

t
E (| &[™ | Fo)*™ < exp (—J An(as, ws) d8> | %ol
0

1 t n—1
—i—f exp (— {f An (@, wy) du + f Wy du])
0 s 2 0

e s p | as

x [IE U | Fo)'" + 2

In the above display we have used the fact that

t -1 S -1 s
f(—au—i—nwu) du—l—f (—au—i—nwu) du—l—f (ay, — (n—1) wy) du
s 2 0 2 0
t -1 —1 (s
S—J (au—n wu> du—L qudu
s 2 2 0

This ends the proof of the corollary.

Proposition 2.3. Assume that p(A;) < —a for some parameter a > 0, and Xy = 0 = W,.
Also assume that for any n > 1 and any t = 0 we have

EWUMY™ <uy and EWVHY" <y

for some functions ug, vy = 0. In this situation, for any e €]0,1] we have the uniform
estimates

(o[ g ) <2 o (SN0 e 0

for any functions (u(a),vi(a)) such that

t t
J e %) g ds < wg(a) and f e 7%y, ds < vy(a)
0 0

9



In addition, when vy = v for any € € [0, 1] we have

a2 t a ¢ t 1/2
E (exp |:4’U € J;) H‘)C's“2 d$:|> < E (exp |:U Him J;)us d$:|> (17)

The proof of the proposition is provided in the appendix, section [5.3}
We end this section with some comments on the estimate . Let us suppose that

d|X|* = [~a [ X +u] dt +dM;
for some u = 0 (with Xy = 0). In this case, by Jensen’s inequality we have

a B(|%[%) = u (1-e7*)

2 t 1 1
= E | exp 2 e |21 ds | ) = exp et 1——[1—e]]|=exp Teut (1-=
v 0 v at v at

The r.h.s. of gives the estimate

a? t 9 a 1
E | exp ;6 OHXSH ds| | < exp Eeutm

The above estimates coincides for any e € [0, 1] and any u > 0 as soon as

1 1
t>= a <1 + \/ﬁ)
3 Stochastic stability properties

3.1 The signal process

This section is mainly concerned with the stochastic stability properties of the signal process.
One natural way to derive some useful concentration inequalities is to compare the flow of
the stochastic process with the one of the noise free deterministic system discussed in the
beginning of section [1.2

We start with a brief review on the long time behavior of the semigroup ¢ (z). It is
readily check that

dtler(@) —ei@)? < —2xaller(@) — e W)P = lei(@) — @i(y)] < e o —y|
This contraction property ensures the existence and the uniqueness of a fixed point
Ve 20 pi(a.) i= 20 == Az,) = 0= |@i(2) — 2| < M |z — 2|

We let d¢i(z) be the Jacobian of the stochastic flow ¢.(z). We have the matrix valued
equation

00 (x) = 0A(de(x)) dpy(x) = ddi(x) u = exp (L 0A(ds(x)) ds> U

10



for any u € R™. This implies that

|0¢(2)] := sup [6¢(2) ul < exp(=Aoat/2) —tme O

[ul<1

Using the formula

1
o) = n(w) = | b0n(a+ ety =) (5= ) de
we easily check the almost sure exponential stability property

l¢e(x) = de(y)] < exp (—=Aaat/2) [z -y (18)

The same analysis applies to estimate the Jacobian d¢;(z) of the deterministic flow ¢ (x).
Using the estimate

[$¢(Xo) — ¢4 (B (X0)) | < e 47 | Xo — E(Xo) |

we also have .
o || 14(X0) = 6. (B (X0) I ds < | X0~ E (X0) |
from which we conclude that

) — & (e (J2 [ Joux0) -6, (B 060 17 ds) ) < ¢

Next proposition quantify the relative stochastic stability of the flows (¢, ¢¢) in terms of
L,-norms and y-square uniform Laplace estimates.

Proposition 3.1. For any n = 1 and any x € R™ we have the uniform moment estimates

E (|é(2) — ee(@)|2) " < (n = 1/2) tr(R1)/Aa (19)

In addition, for any € €]0,1] we have the uniform Laplace estimates

supE (exp | ) M jouo) - P |) < 5550+ e | 1]

as well as

B (e | s  [[ 1) o) ] ) <o [ 22 ]

Combining with the concentration inequality we prove that the probability of
the events

[6e(2) = pe(@)[* < w(0) tr(R1)/Aa

is greater than 1 — e, for any ¢ > 0 and any initial states € R". This ends the proof of
(-

Proof of proposition [3.1

We have

d(X, — z) = [A(Xy) — A(zy)] dt + RV dW,

11



with X = zg, and therefore
d|X: — x> = [2¢A(X:) — A(zy), Xy — x4, ) + tr(Ry)] dt + dM;
<[22 Xy — @) + tr(Ry)] dt + dMy
with the martingale
AM; := A X —z, RY 2 AW, = oMy = 4 tr (Ry(Xy — 20)(X; — 21)) < A tr(Ry) | Xy—1)?
The end of the proof is now a direct consequence of and proposition applied to
X = | X — x| Az = —ax = —2X s U =u=1tr(R) and V,=v=4tr(Ry)

The proof of the proposition is now completed. |

3.2 The Extended Kalman-Bucy filter

This section is mainly concerned with the stochastic stability and the concentration prop-
erties of the semigroup of the EKF stochastic process. As for the signal process discussed
in section (3.1 - 1| these properties are related to Lj)-mean error estimates and related x-square
type Laplace inequalities. Our main results are described by the following theorem.

Let (Xt, P,) be the solution of the evolution equations (3 starting at (XO, Py).

Theorem 3.2. For any n > 1 we have

tr(Ry) UgA \e*)‘At — e*)“”‘t|

AA T + |/\A _ )\E}A‘ ,O(S) tl“(Po)Q} (20)

E (1% - 2) ™" < 20 - 1 |

For any € €]0,1] and any Py there exists some time horizon to(e, Py) such that

(I—¢) Aa 5 9 1 1—e¢ e 1
B (o (g i o0 =R ) <5 oo (55) 4575 e

In addition for any t = s = 0 and any € €]0, 1] we have

B (oo g | o2 as]) < e e-s] @)

1+ moa(s) 4tr(Ry) Js

Before getting into the details of the proof of this theorem we mention that (8)) is a direct
consequence of combined with and . Indeed, applying ([26]) to

S s tr(Ry) o3 et — gAoat
~ IR0y~ Rl and 2 = a{ S Toa LS i) ane)
A [Aa — Aoal

by we readily check that the probability of the events
e () — @4(Z,p)]?

tr(Ry) O‘%A |e_’\At — e_)‘aAt|

— + StrPQ}
SV o] p(S) tr(FPo)

< 2exp (—Aaat) |z — 2| + 8w (6) {

12



is greater than 1 —e =%, for any § > 0 and any initial states (x,Z, p) € R"+71+(1x71) Ip this
connection, the Laplace estimates readily implies that the probability of the events

J

I N N 1
= [ eE) - R aes (54 L) @ male)

4tr(R1)
Aa

is greater than 1 — e 9, for any § > 0 and any time horizon t.
Now we come to the proof of the theorem.
Proof of theorem [3.2:

We set X, 1= ¢y(Xo) — X;. We have

d| X2 < (2 (A(3e(R0)) — A(X), X — 2 (P.SXs, X + tr(Ry) + tr(spf)) dt + dM,
with the martingale
dM, = 2X! (R; Y2qw, — B.B'RyY Qth) s M
This yields the estimate
d|X|* < [—2X4 Bk + U] dt +dM; with U = u = [tr(Ry) + m2(P) p(S)]
Also observe that
oMy < 4| X7 (tr(Ry) +tr(SPY)) < Vi |X)?  with V= v 1= duy.

On the other hand we have
‘e*AAt _ 67)\6‘4”
A4 — Aoal

t
26_2>\AtJ 62(>\A—)\(‘;A)S ds =
0

This implies that

t t 2
f o 2Aa(t—s) 732 ds < Qtr(PO)Q 6—2>\Atj e~2Bas g o 1 <tr(R1)>
0 0 A

—Aat _ —Aaat 1 2
S w4 ()
A — NOA

This implies that

t —Aat _ —daat 2
0

224 A4 — Aoal A AoA
tr(Ry) <1 p(S) tr(Rl)) |e=rat — g=oat| )
= 5t + S) tr(F,
A 2 AoA AsA |)‘A_)‘6A| P( ) ( 0)

= w(a):=v(a)/4

Applying proposition 2.3] to Az := —ax = —2\ gz, we find that

(1 — 6) 1 2 1 1—c¢ e 1
E X, < - — f 0,1].
(exp [ - Sue(a) || 5 exp 1 + NG or any € €]0, 1]

13




Using the fact that for any non negative real numbers x, y, A\ we have

1 1 - 1
L M e s L (i)
r+e Ny x l+ePy/x x

and Aat Aoat

TAAL __ 5,7 AQA

e e | ey 0

A4 — Aoal

we find that
—1
1 > (-9 A [tr(Rl) <1+ p(S) tr(RQ)]
u(a) Xoa | Aaoa \2  doa Aaa

for any t > t(e), for any € € [0, 1] and some t(e).
The end of the proof is now a direct consequence of and proposition applied to

Az = —ar = =20 gz and  w = v/d <u=v/4:=[tr(Ry) + 3(P) p(S)]

with ¢ € [s,0[. The proof of the theorem is now completed. |

4 Proof of theorem [1.2

We let (X;, P;) be the solution of the equations starting at (Xo, Py). We denote by
(X4, P;) the solution of these equations starting at some possibly different state (X, Pp).
Firstly we have

(@) @@ and @) —Vn>1  swpE ([|Xe~ K>+ [P~ BIF") < o0
t=

We couple the equations with the same observation processes. In this situation we find
the evolution equation

AX, - X)) = (A(Xt) - A()V(t)) dt + P,B'R;" [dYt - Bf(tdt]
~BB'R;" |avi - BXdt|

~

_ ([A(Xt) — A()v(t)] + bBB'Ry* [B (X — Xt)]) dt

+(P, — P)B'R;" [B(Xt - f(t)] dt + P,B'R;" [B(Xt - f(t)] dt + dM,

with the martingale
dM; = [Pt - é] B'R; Y av,

This implies that
d(X; — X;)

~

- ([A(Xt) —AX)] + BS (X, — X)) + (P, — B)S(X; — )?t)) dt + dM,

14



from which we conclude that

d| X, — Xy
= AKX — Xp, [AKXy) — A(X)] = PS (X — X)) + (P — P)S(Xy — Xy) ) dt
< 12 _
+tr (S[Pt—Pt] )dt+th

with the martingale o R
dMy =2 (X — Xy, dMy)
The angle bracket of M; is given by

oy = du ([P B|S[P - B| (% - X)X - %)

41X, - X)), [Pt - 1—2] S [Pt - Pt] (X, — X))
A~ o ~ - - 2
< 4p(8) K= Xl |1P— PAE <2 p(8) (I1Ke — Kl + [P - PilF)
Recalling that A4 = \p4/2, also observe that the drift term in is bounded by
—Aoa [ Xe = Xa|? + 28; | X — Xel|Py = Bl e + p(S) | P — Bl
with R
Bi = p(S)|Xi — X4

In much the same way we have

(P, — P)

~

~ ~  ~ ~ ~ / ~ ~
- <6A(Xt)Pt - aA(Xt)Pt) + <6A(Xt)Pt - aA(Xt)Pt> + B SB - P, SP,

- ([&A(f(t) — AX)P; + 0AX)[P, — E]) + ([&A(f(t) — QAKX B + 0A(X) [P, — E])'

+i (P, +P)S(B, — B) + 1 (B, — P)S(P, + P)
In the last assertion we have used the matrix decomposition
1 1
PSP -QS5Q =5 (P+Q)S(P-Q)+5 (P-Q)S(P+Q)
Recalling that
9718, P,— B|? = 27 Y0 P,— By, P, — P = (P, — P, 04(P,— B,)) = tr ((Pt — B)au(P, — ﬁt))

we find that

2 10| — B3 = 2tr (&A()v(t)(Pt - 1%)2) + 2t ([aA(fct) — QA(X)P(P; — é))

—tr ((é + P)S(B, — Pt)Q)

A\

2tr (aA()V(t)(Pt . é)Q) +2tr ([aA(f(t) —0AX)PU(P; — é))

15



This implies that

WP — B3 < —2Xoa |B — B3 + 204 P — Bl X: — X

with
oy = 2kopT(P)
We set
a = [ I X) cyCme g <, A de 4 dM
1Pt — Pllp
with

[ —Xoa 284 =

.At— ( 2at —2)\aA+p(S) ) and Mt—Mt

Notice that
—AoA Bt + oy )

(Ae +At)/2 = < B+ ar —2Xaa + p(S)

Observe that
p(Ar) = Amaz (A + A)/2)
—é (3Xaa — p(9)) + \/le (Noa — p(9))* + (B + au)® < —Aaa + B + v

PA 1= = (hoa — 2r0am(P) — p(S) | X0 — Kil )

N

The final step is based on the following technical lemma.

Lemma 4.1. Assume condition (@) is satisfied for some o > 1. In this situation, for any
€ €]0,1] there exists some time horizon s such that for any t > s we have the almost sure

5= \/g — E (exp [5 ) A + (65— 1p(S)) du] | fs)w (24)

< Zs exp(—(1—¢€)A(t—s))

estimate

for some positive random process Z; s.t. sup;>oE (Zta‘s) < 00.
The end of the proof of theorem [1.2]is a direct consequence of this lemma, so we give it

first. Combining with we find that

2/8
E (|41 | 7)™ <2 exp(= (1= Al —9)) |4

This ends the proof of theorem
Now we come to the proof of the lemma.

Proof of lemma 4.1k
For any t > s = 0 we have the estimate

(A < —(Noa — 2r0a7s(P)) + B = —Asals) + p(S) | X: — X

16



with
AaA(S) = oA — 2KpA TS(P) —>s0 AaA = oA — 2KpA tr(Rl)/)\aA >0

asS Soo1 as
oA > \/2K04 tr(Rl)

For any € €]0, 1], there exists some time horizon ¢ (FPp) such that

t=s=c(P) = (1—-¢€ <Asas)/Doa<1
= p(A) < —(1—€)Aoa+p(S) | X: — X

On the other hand, the contraction inequality implies that

t =N t =N
f X, — X, dr = f 6r—s(Ba(X0)) — X, | dr

S S

N

t - t ~ ~
j 6r—s(Xs) — brs(R)] dr + f 6r_s(Re) = Ro] dr

A

t t

( [ erowr dr) .= Rl + [ 16r-s(R0) - Rel ar
S R t R S R

< 2N, — Kul/hoa + f 6r—s(K2) — X, dr

The above inequality yields the almost sure estimate

e (e [{ [ (A0 + G- 0(s) au} | )

s

<exp[—0{(1—€)Asa+ (1—6)p(5)}(t—s)]

< 2.8 (o5 {0 [ 1o - R | 17)

with %
2, 1= exp [20(8) X, — Xl/Aa4]

Using the estimate = — 1/4 < 22, which is valid for any = we have

| o= Rl =1+ ) du< (= )1 [ oua(Re) - Rl

S S

we find that

e (e [{ [ @40 + G- o)} du] | 2.)

< oxp [ {(1— )Aoa + (3/4— 5)o(S)) (¢ )]
« Z.E (exp [5,;(5) f [bu_s(Ry) — Rul? du] | ]-"5>

17



By we can also choose s sufficiently large so that

0= ;\/g = 0p(S)dtr(Ry) (1 + maa(s)) < )\A%

In this situation, by (22]) we have
<1
‘ ‘ 2

0p(S) <
p(S) 224 1—1—71'5,4(8) 4tI‘(R1)

= & (o (38) [ Joraf0-R2ar) | ) < o] -]

We conclude that

E <exp [5{ft(p(Au) (65— 1),)(5))} du] ’ fs> s

s

koa tr(Ry) 1 p(S)
< exp {—(1 —€) Aoa {1 -2 m )\aAl 15 +(3/4—0) )\aA} (t— 8)] Z

< exp[—(1—¢) At - 5)] Z,

The last assertion comes from the formula

_ 1 Ao
=\ 09

:>1+§p(5)_ ﬂaAtr(Rl)_i_(s@
4 Xoa Aoa  Aoa 40 AoA

koA tr(R1) p(S) |3 |p(S)
—1-2 o4 4[R2 B2 g >0
AoA oA Aoa |4V Xoa

On the other hand we have

HXS - )25H = Hgbs(XO) - Xs” < HQZ)S(XO) - Qbs(/\XO)H ":\”Qbs(XO) - XSH
< e X — B (Xo) || + [gs(Xo) — X

This shows that

S) e S) .
2 <o (520 Jou(Ro) - 1) exp (500 02 1%~ B (X0)

Under the assumption and using we have
(S) _a [p(S) L Aoa

g A2 _ &
@ AoA 2 AoA 860’314 tI‘(Rl)

— 3p>1 1 supoE (exp (pad|on(Xo) — K (p(5)/A0a)) ) < o

18



We can also choose s sufficiently large so that

(0] —Aass
3p(S) e a2 < Xaa/x(Po)

a—1

— & (o (a6 ((8)/n) 2 1Xa—E(Xo) ) ) <

This ends the proof of the lemma. ]

5 Appendix

5.1 Concentration properties and Laplace estimates

This section is mainly concerned with the proof of (4)).
The initial state X of the signal is a Gaussian random variable with mean Xy and some

covariance matrix Fy. In this case Xy — )’(\'0 law PO1 / 2W1 and
E (|10 — Rol*") < p(Ro)" E (JW1]*")

Recalling that ||I#7]? is distributed according to the chi-squared distribution with r; degrees
of freedom we have

vy < 1/(2p(By)) B (&0 00) < | (rPOIMIT) (1 - 2yp(Ry)) 2 < oo

Using the fact that

1 2 12 12
—t— —log (1 —2t) = ¢ 2 < 1—2t) V2 ¢ t
5 o8 ) 2, 2 B ST = ) Pt T o

n=0
for any 0 <t < 1/2, we check that

12 1—t t

Vo<t < (1— 2 t =1t <
(1=me)/ T T T S e

for any € €]0,1/r1[. This yields

W0 <y < (1-11e)/(2p(R) B (X0 %0) < exp (p(Ro)/e)

Choosing v = (1 — 2r1€)/(2p(P)), with € €]0,1/(2r1)[ we find that

1 | Xo — Xo|? 1 1
Ve €]0,1/(2 E - — — ] < - — -
e €l0,1/(2r)| <exp [(2 ) P2 ) <o (5 e
We check by choosing
27“1 —1 1 1 ”X(] - )20”2 1
€= s =7~ =E|exp|——F— < exp <
Ary 2ry Ary 4ri1p(Py) 2r; —1




More generally, for any non negative random variable Z such that
2n\1/(2n)
E (Z ) < z +4/n  for some parameter z > 0
and for any n > 1 we have

E (Z*") < (z*n)" < £ (g zQ)nE(VQ”)

for some Gaussian and centre random variable V with unit variance. We check this claim

using Stirling approximation

E(VZ) = 2—”@

n!
/ 2n ,—2n n
> 6_1 2—n dmn (27”6) € _ \/56_1 g nn
\/ﬂ n" e " e

By proposition 11.6.6 in [7], the probability of the following event

(Z/2)? < \6/2 B + (5 \/5)}

is greater than 1 — e~?, for any § > 0
The above estimate also implies that

e 1

E (exp (17%)) < NN

% E (exp (t(z)V?)) =

from which we check that

()< (-2 = EBlew(i72) < & exp (i) [1+ 205])
< Gewe[1+1(E-1]) =g ow(

In summary we have
t<(1—e)/(2%) = E (exp (t2?)) < £ exp €2 14—1
V2 4 €

Choosing t = (1 — €)/(2%e) we conclude that

Ve €]0,1] E(@Xp[te <Z>2D < \% exp <i 1_662>

20
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5.2 Proof of theorem
When U; = V; = 0 we have

d|X]? < p(Ar) [ Xl dt + /W | Xe]* dN;

with the martingale

dN

This implies that

1
WL X2

d/\/lt — at<N>t <1

1
dlog |G)° < )72 (p(A) JGI? dt -+ /W, [ dNG) = 5 W dt

1
_ <p(,4t)2 Wt) dt + /Wy dN,

from which we prove that

0

t
exp (—f p(AL) ds) 1% < 1% &

with the exponential martingale

t 1 t
6}:=exp<f A/ Ws d. ST 5 stds>
0 0

Next we provide a proof of the second assertion based on the above formula. For any

n = 0, we observe that

¢ B ¢
exp (—nf p(Ay) ds) 14" < exp (”(”21) f W, ds> | X2 &,(n)
0 0

with the collection of exponential martingales

¢ 2t
E(n) := exp <nf VW, dN — % J Wi ds)
0 0

This implies that

2

e (e (- | t (o + o w) o) g | 7) < ol

0

Arguing as above we use the decomposition

e 17 = (oo (t [

to check that

E (4" | Fo) < E (exp (n

(n

(p(As) +

; D W5> ds>




This ends the proof of the first assertion
More generally, we have

d|X|* < [p(Ar) |1 X + U] dt + dM,
This yields

x>

<n |20 d) )2 + 2D | 22 (W, |+ VA2 de

< _An(Atuwt) HXtHant +n I:(n;l) Vt +Ut ] ”XtHQ(n*l) dt +n ”XtHz(nil) th

with 1
M) = ) + My,
Observe that
A (A We) — A (A, We) = —np(Ay) —n(n—1) Wy/2

+(n—1) p(A) +(n—1)(n—2) Wy/2
= —p(A) — (n— 1)

This shows that

t
U U, = exp < f [An(As, We) — A1 (As, We)] ds> = Vi/V,
0
We set .
V' = exp (J An(A87WS>dS) | >
0

Notice that

t
exp ( J An(As,Ws)ds> Uy |21
0

t
— 12D exp ( | An1<As,ws>ds)
0

t
X exp <J [An(Asa WS) - An—l(As, Ws)] d5> ut = ytnilﬁt
0

This shows that

_ -1) — -
ayp <n Ypt {uﬁ(”z )vt] dt + dM,

with the martingale

t
= e ([ AAwds ) 120D dnt
0
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This implies that

_ n—1) —
8tE(yf|fo)<nE<f_l [Ut-l-( )Vt]|fo)
Using Hoélder inequality we have
77 Am—1 7 1/n n 1-1/n
E(Ut Vi |f0) <]E(Z/{t |fo) E ()] | Fo)

This yields the estimate

(n—1)
2

GE} | Fo) <n EP | Fo)l { E @) | 7o) + E V) | Fo)'" }

and therefore

n 1 n —ld=1/n mn
AEY} | Fo)'" = B Fo)TTY AEOY | Fo)

< k@ 17"+ " ey R

We conclude that

(n—1)
2

n t —n n —n 1/n
B | F)V" < B | Fo)V +L []E @ | F)"" + E(V" | Fo) /] ds

Using the decomposition
1t 1t
E(|X|™ | Fo) =E (exp <—2J An(AS,WS)d:s) exp (2f An(AS,WS)d:s) | A" | .7-"0>
0 0
and Cauchy-Schwartz inequality we check that
t 1/n .
B |70 < (o (- [ AAamis) | 7)) BP0
0

This implies that
t 1/n
E (X" | Fo)¥" <E <e><p (‘J An<As,ws>dS>>
0

e [ [s@ 7 Mm@ )] ]

2

This ends the proof of the theorem.
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5.3 Proof of proposition
By , for any m > 1 we have the uniform estimate

E (J4[2)""™ < (u(a) + mun(a) = 2 E (JG7") < (2u(0))™ + (2u(a))™ m™

Using Stirling approximation we have

N
|

emt > Quy(a))™ m™

(27 vi(a))"m™ <
m! = V2 /1= 2ev(a)y

(eyve(a))™ 277

Sl

for any v < 1/(2ev,(a)). This yields

9| (a%\\"’) N !
V2 /1= 2evyv(a)

Choosing v = (1 — €)/(2evt(a)), with € €]0, 1] we find that

(I—¢) 1 2]) 1 1zcw(@) e 1
E(ex X <= e e ul@ 4 —
< P { e 2vi(a) ad 2 24/2 /e
This ends the proof of . Now we come to the proof of .
We have

dHXt”2 < [—CL H/YtH2 +Z/{t] dt + th
This implies that

t t s t s
J |2,% ds < J e {J e U, du} ds +j e * [J e d/\/lu] ds
0 0 0 0 0

On the other hand, by an integration by part we have

t S t

aJ e 9* <J e™ U, du) ds = J (1 — e_a(t_s)) Us ds
0 0 0
t s t

aJ e 4 (f e d/\/lu) ds = f (1 — e_“(t_s)> dM
0 0 0

This implies that
t t
a J 12,2 ds < J U ds + MY
0 0

and

with the terminal state ﬂi” of the collection of martingales ﬂff) on [0, ] defined by

Vo<us<t M= f (1 - e*a“*S)) dM,
0

— My, <o &)

Therefore for any v > 0 we have
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t t o 2
y [(a ~1) J 1,2 ds —f U, ds] <o M - L,
0 0

This implies that

E<exp {7 [(a—;v) f: 12,2 ds—ﬂus ds” |}'0> <1

Using the decomposition

t
T (0T 2
exp[2 (a 5 v) L | Xs || ds]
t t t
gl gl J 2 gl
=exp|= |la—=w [ Xs|| ds—JZ/lsdstexp{ Jlxlsds]
[2 R 2 ) 0 | 0 2 Jo

Replacing v/2 by v, by Cauchy-Schwartz inequality we find that

E <exp [v ~ (% - ~y> K EAk dsD <E (exp [27 Jotus dst

for any v < a/v. Observe that

We also have
v () = & e e VP a2+ VP e}

Choosing the smallest value we prove that
t 2 t
E <exp [v a/v J EAk ds]) < E (exp [((a/v) — 4/ (a/v)? — 404/1)) f Us ds])
0 0

dovfv ¢ )

= E|ex
< p[(a/v)—i— (a/v)? —4a/v Jo
>1/2

Us ds

for any 8 = a/v < a?/(2v)?, or equivalently

E <exp {v B8 Lt Bk ds]) < E <exp [(a/v) " (Af/ R Lt Uy ds

This ends the proof of the proposition.
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