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THE ROTATING NORMAL FORM OF BRAIDS IS

REGULAR

JEAN FROMENTIN

Abstract. Defined on Birman–Ko–Lee monoids, the rotating normal
form has strong connections with the Dehornoy’s braid ordering. It can
be seen as a process for selecting between all the representative words
of a Birman–Ko–Lee braid a particular one, called rotating word. In
this paper we construct, for all n > 2, a finite-state automaton which
recognizes rotating words on n strands, proving that the rotating normal
form is regular. As a consequence we obtain the regularity of a σ-definite
normal form defined on the whole braid group.

1. Introduction

Originally, the group Bn of n-strand braids was defined as the group of
isotopy classes of n-strand geometric braids. An algebraic presentation of Bn

was given by E. Artin in [1]:
〈

σ1, ... , σn−1

∣
∣
∣
∣

σiσj = σjσi for |i− j| > 2
σiσjσi = σjσiσj for |i− j| = 1

〉

. (1)

An n-strand braid is an equivalence class consisting of (infinitely many)
words in the letters σ±1

i . The standard correspondence between elements of
the presented group Bn and geometric braids consists in using σi as a code
for the geometric braid where only the ith and the (i+ 1)st strands cross,
with the strand originally at position (i+ 1) in front of the other.
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Figure 1. Interpretation of a word in the letters σ±1
i as a

geometric braid diagram.
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2 JEAN FROMENTIN

In 1998, J.S. Birman, K.H. Ko, and S.J. Lee [3] introduced and investi-
gated for each n a submonoid B+∗

n of Bn, which is known as the Birman–
Ko–Lee monoid. The name dual braid monoid was subsequently proposed
because several numerical parameters obtain symmetric values when they
are evaluated on the positive braid monoid B+

n and on B+∗
n , a correspon-

dence that was extended to the more general context of Artin–Tits groups
by D. Bessis [2] in 2003. The dual braid monoid B+∗

n is the submonoid of Bn

generated by the braids ai,j with 1 6 i < j 6 n, where ai,j is defined by
ai,j = σi · · · σj−1 σj σ−1

j−1 · · · σ−1
i . In geometrical terms, the braid ai,j cor-

responds to a crossing of the ith and jth strands, both passing behind the
(possible) intermediate strands.

1

4

≈

Figure 2. In the geometric braid a1,4, the strands 1 and 4
cross under the strands 2 and 3.

Remark. In [3], the braid ai,j is defined to be σj−1 · · · σi+1 σi σ
−1
i+1 · · · σ−1

j−1,
corresponding to a crossing of the ith and jth strands, both passing in
front of the (possible) intermediate strands. The two definitions lead to
isomorphic monoids. Our choice is this of [13] and has connections with
Dehornoy’s braid ordering: B+∗

n−1 is an initial segment of B+∗
n .

By definition, σi equals ai,i+1 and, therefore, the positive braid monoid B+

n

is included in the monoid B+∗
n , a proper inclusion for n > 3 since the braid

a1,3 does not belong to the monoid B+

3 .
For n > 2, we denote by An the set {ap,q | 1 6 p < q 6 n}. If p and q are

two integers of N satisfying p 6 q, we denote by [p, q] the interval {p, ..., q}
of N. The interval [p, q] is said to be nested in the interval [r, s] if the
relation r < p < q < s holds. The following presentation of the monoid B+∗

n

is given in [3].

Proposition 1.1. The monoid B+∗
n is presented by generators An and re-

lations:

ap,qar,s = ar,sap,q for [p, q] and [r, s] disjoint or nested, (2)

ap,qaq,r = aq,rap,r = ap,rap,q for 1 6 p < q < r 6 n. (3)

Since [2] and [3] it is known that the dual braid monoid B+∗
n admits

a Garside structure whose simple elements are in bijection with the non-
crossing partitions of n. In particular, there exists a normal form associated
with this Garside structure, the so-called greedy normal form.

The rotating normal form is another normal form on B+∗
n , and was in-

troduced in [12] and [13]. Roughly speaking, for every braid β ∈ B+∗
n the
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rotating normal form picks up a unique representative word on the letters An

among all of these representing β. It can be seen as a map rn from the dual
braid monoid B+∗

n to the set of words A∗
n. The language of all n-rotating

words, denoted by Rn, is then the image of B+∗
n under the map rn. We recall

that the rotating normal form is a dual version of the alternating normal
form introduced by P. Dehornoy in [8] and itself building on S. Burckel’s
normal form defined in [4]

The aim of this paper is to construct for all n > 2 an explicit finite-state
automaton which recognizes the language Rn, implying that the language of
n-rotating words is regular. Following [13] and [14] we can define, from the
rotating normal form, a σ-definite normal form defined on the whole braid
group. The corresponding language is then proven to be regular.

The paper is divided as follows. In section 2 we recall briefly the construc-
tion of the rotating normal form and its useful already known properties.
In the third section we describe the left reversing process on dual braid
monoids. In section 4 we give a syntactical characterization of n-rotating
normal words. In the fifth section we construct, for each n > 2, a finite-state
automaton which recognizes the language Rn of n-rotating normal words.
Section 5 is devoted to establish the regularity of the σ-definite normal form.
In last section we prove that the rotating normal form is not right-automatic.

2. The rotating normal form

The main ingredient used to define the rotating normal form is the Gar-
side automorphism φn of B+∗

n defined by φn(β) = δn β δ−1
n where δn =

a1,2 a2,3 ...an−1,n is the Garside braid of B+∗
n . In terms of Birman–Ko–Lee

generators, the map φn can be defined by:

φn(ap,q) =

{

ap+1,q+1 for q 6 n− 1,

a1,p+1 for q = n.
(4)

Geometrically, φn should be viewed as a rotation, which makes sense pro-
vided braid diagrams are drawn on a cylinder rather than on a plane rec-
tangle.

1
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Figure 3. Rolling up the usual braid diagram helps us to
visualize the symmetries of the braids ap,q. On the resulting
cylinder, ap,q naturally corresponds to the chord connecting
vertices p and q. With this representation, φn acts as a clock-
wise rotation of the marked circles by 2π/n.
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For β and γ in B+∗
n , we say that γ is a right divisor of β, if there exists a

dual braid β′ of B+∗
n satisfying β = β′ γ.

Definition 2.1. For n > 3 and β a braid of B+∗
n , the maximal braid β1

lying in B+∗

n−1 that right-divides the braid β is called the B+∗

n−1-tail of β.

Using basic Garside properties of the monoid B+∗
n we obtain the following

result (Proposition 2.5 of [13]) which allows us to express each braid of B+∗
n

as a unique finite sequence of braids lying in B+∗

n−1.

Proposition 2.2. Assume n > 3. For each non-trivial braid β of B+∗
n there

exists a unique sequence (βb, ..., β1) of braids of B+∗

n−1 satisfying βb 6= 1 and

β = φb−1
n

(βb) · ... · φn(β2) · β1, (5)

for each k > 1, the B+∗

n−1-tail of φ
b−k
n (βb) · ... · φn(βk+1) is trivial. (6)

Under the above hypotheses, the sequence (βb, ..., β1) is called the φn-
splitting of the braid β. It is shown in [13] that Condition (6) can be replaced
by:

for each k > 1, βk is the B+∗

n−1-tail of φ
b−k
n (βb) · ... · φn(βk−1) · βk. (7)

1

2

3

4

5

6
β1

φ6(β2)
φ2
6(β3)

φ3
6(β4)

Figure 4. The φ6-splitting of a braid of B+∗

6 . Starting from
the right, we extract the maximal right divisor that keeps
the sixth strand unbraided, then extract the maximal right
divisor that keeps the first strand unbraided, etc.

Example 2.3. Consider the braid β = a1,2a2,3a1,2a2,3 of B+∗

3 . Using rela-
tions (3) on the underlined factors we obtain:

β = a1,2a2,3a1,2a2,3 = a1,2a2,3a1,3a1,2 = a1,2a1,3a1,2a1,2.

We decompose β as φ3(γ1) · β1 with γ1 = φ−1
3 (a1,2a1,3) = a1,3a2,3 and β1 =

a1,2a1,2. As the word a1,2a1,3 is alone in its equivalence class, the braid
φ3(γ1) = a1,2a1,3 is not right-divisible by a1,2 and so its B+∗

2 -tail is trivial.
The braid φ3(γ1) is exactly the one of (6) for n = 3 and k = 1. Considering
γ1 instead of β we obtain γ1 = φ3(γ2) · β2 with γ2 = φ−1

3 (a1,3a2,3) = a2,3a1,2
and β2 = 1. As the word a1,3a2,3 is also alone in its equivalence class,
the braid φ3(γ2) = a1,3a2,3 is not right-divisible by a1,2 and so its B+∗

2 -
tail is trivial. The braid φ3(γ2) is the one of (6) for n = 3 and k = 2.
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We decompose the braid γ2 as φ3(γ3) · β3 with γ3 = φ−1
3 (a2,3) = a1,2 and

β3 = a1,2. As the braid φ3(γ3) = a2,3 is not right-divisible by a1,2, its B
+∗

2 -tail
is trivial. The braid φ3(γ3) it the one of (6) for n = 3 and k = 3. Eventually
we express γ3 as φ3(γ4) · β4 with γ4 = 1 and β4 = a1,2. The process ends as
the remaining braid γ4 is trivial. We conclude that the φ3-splitting of β is
(β4, β3, β2, β1) = (a1,2, a1,2, 1, a

2
1,2).

Before giving the definition of the rotating normal we fix some definitions
about words.

Definition 2.4. Assume n > 2. A word on the alphabet An is an An-
word. A word on the alphabet A±

n = An ⊔ A−1
n is an A±

n -word. The braid
represented by the A±

n -word w is denoted by w. For w, w′ two A±
n -words,

we say that w is equivalent to w′, denoted by w ≡ w′ if w = w′ holds. The
empty word is denoted by ε.

The n-rotating normal form is an injective map rn from B+∗
n to the set of

An-words defined inductively using the φn-splitting.

Definition 2.5. For β ∈ B+∗

2 , we define r2(β) to be the unique A2-word ak1,2
representing β. The rotating normal form of a braid β ∈ B+∗

n with n > 3 is:

rn(β) = φb−1
n

(rn−1(βb)) · ... · φn(rn−1(β2)) · rn−1(β1),

where (βb, ... , β1) is the φn-splitting of β. A word w is said to be n-rotating
if it is the n-rotating normal form of a braid of B+∗

n .

As the n-rotating normal form of a braid of B+∗

n−1 is equal to its (n− 1)-
rotating normal form we can talk, without ambiguities, about the rotating
normal form of a dual braid.

Example 2.6. We reconsider the braid β of Example 2.3. We know that
the φ3-splitting of β is (a1,2, a1,2, 1, a

2
1,2). Since r2(1) = ε, r2(a1,2) = a1,2

and r2(a
2
1,2) = a21,2 we obtain:

r3(β) = φ3
3(a1,2) · φ

2
3(a1,2) · φ3(ε) · a

2
1,2 = a1,2a1,3a1,2a1,2.

Some properties of the rotating normal form have been established in [13].
Connections, established in [12] and [13], between the rotating normal form
and the braid ordering introduced by P. Dehornoy in [6] are based on these
properties.

We finish this section with some already known or immediate properties
about φn-splittings and n-rotating words.

Definition 2.7. For every non-empty word w, the last letter of w is denoted
by w#. Assume n > 2. For each non-trivial braid β in B+∗

n , we define the
last letter of β, denoted β#, to be the last letter in the rotating normal form
of β.

Lemma 2.8 (Lemma 3.2 of [13]). Assume n > 3 and let (βb, ..., β1) be the
φn-splitting of a braid of B+∗

n .
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(i) For k > 2, the letter β#

k is of type a..,n−1 unless βk = 1.
(ii) For k > 3 and for k = b, we have βk 6= 1.

The fact that βb is not trivial is a direct consequence of the definition
of φn-splitting. As, for k > 2, the braid β′ = φn(β

#

k+1)βk is a right divisor

of φb−k
n

(βb) · ... · βk, it must satisfy some properties. In particular, if β#

k+1 =
ap−1,n−1 holds then the B+∗

n−1-tail of φn(ap,nβk) is trivial by (6).

Definition 2.9. For n > 3 and p, r, s in [1, n − 1], we say that a letter ar,s
is an ap,n-barrier if the relation r < p < s holds.

There exists no ap,n-barrier with n 6 3 and the only ap,4-barrier is a1,3,
which is an a2,4-barrier. By definition, if the letter x is an ap,n-barrier, then
in the presentation of B+∗

n there exists no relation of the form ap,n · x =
y · ap,n allowing one to push the letter ap,n to the right through the letter x:
so, in some sense, x acts as a barrier.

The following result guarantees that the rotating normal form of a braid
satisfying some properties must contain an ap,n-barrier.

Lemma 2.10 (Lemma 3.4 of [13]). Assume n > 4, p ∈ [2, n − 2] and let β
be a braid of B+∗

n−1 such that the B+∗

n−1-tail of φn(ap,nβ) is trivial. Then
the rotating normal form of β is not the empty word and it contains an
ap,n-barrier.

It turns out that the above mentioned braid property are easily checked
for entries of a φn-splitting.

Lemma 2.11 (Lemma 3.5 of [13]). Assume n > 3 and let (βb, ..., β1) be
the φn-splitting of some braid of B+∗

n . Then, for each k in [2, b− 1] such
that β#

k+1 is not an−2,n−1 (if any), the rotating normal form of βk contains

a φn(β
#

k+1)-barrier.

3. Left reversing for dual braid monoid

The left-reversing process was introduced by P. Dehornoy in [7]. It is a
powerful tool for the investigation of division properties in some monoids as
stated by Proposition 3.6.

Definition 3.1. A monoid M defined by a presentation 〈S |R〉+ is left-
complemented if there exists a map f : S × S → S∗ satisfying:

R =
{
f(x, y)x = f(y, x)y | (x, y) ∈ S2

}

together with f(x, x) = ε for all x ∈ S.

As the relation x = x is always true for x ∈ S we say that M is left-
complemented even if x = x does not occur in R for x ∈ S.
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The monoidB+∗

3 with presentation of Proposition 1.1 is left-complemented
with respect to the map f given by

f(a1,2, a2,3) = f(a1,2, a1,3) = a1,3,

f(a2,3, a1,2) = f(a2,3, a1,3) = a1,2,

f(a1,3, a1,2) = f(a1,3, a2,3) = a2,3.

However the monoid B+∗

4 with presentation of Proposition 1.1 is not left-
complemented. Indeed there is no relation of type ... a1,3 = ... a2,4. It follows
that the words f(a1,3, a2,4) and f(a2,4, a1,3) are not well-defined.

In general for 1 6 p < r < q < s 6 n, the words f(ap,q, ar,s) and
f(ar,s, ap,q) are not defined for the presentation of B+∗

n given in Proposi-
tion 1.1. In order to obtain a left-complemented presentation of B+∗

n we
must exhibit some extra relations.

For example, the relation a2,3a1,4 a1,3 ≡ a3,4a1,2 a2,4 holds and so we can
consider f(a1,3, a2,4) to be a2,3a1,4. However the relation a1,4a2,3 a1,3 ≡
a3,4a1,2 a2,4 is also satisfied and so f(a1,3, a2,4) = a1,4a2,3 is an other valid
choice.

Lemma 3.2. For n > 2, the map fn : An ×An → A∗
n defined by:

fn(ap,q, ar,s) =







ε for ap,q = ar,s,

ap,s for q = r,

as,q for p = r and q > s,

ar,p for q = s and p > r,

ar,qap,s for p < r < q < s,

as,qar,p for r < p < s < q,

ar,s otherwise.

provides a structure of left-complemented monoid to B+∗
n .

Proof. Direct computations using Proposition 1.1 establish fn(x, y) · x ≡
fn(y, x) · y for all (x, y) ∈ A2

n. �

Assume n > 2. As illustrated above, the characterization of the map fn
from the presentation of B+∗

n is not well-defined: many choices are possible.
Our map fn admits the following remarkable property: for every letters ap,q
and ar,s of An, the last letter of the word fn(ap,q, ar,s) is of the form at,s,
with t 6 r, whenever q < s. This property will be use in the sequel, for
example in the proof of Lemma 4.6.

Definition 3.3. Assume n > 2. For w and w′ two A±
n -words, we say that

w left-reverses in one step to w′, denoted by w y
1 w′, if we can obtain w′

from w substituting a factor xy−1 (with x, y ∈ An) by fn(x, y)
−1fn(y, x). We

say that w left-reverses to w′, denoted by w y w′, if there exists a sequence
w = w1, ..., wℓ = w′ of A±

n -words satisfying wk y
1 wk+1 for k ∈ [1, ℓ− 1].
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Example 3.4. The word u = a1,2a2,3a1,2a
−1
1,3 left-reverses to a2,3a2,3 as the

following left reversing sequence shows (reversed factor are underlined)

a1,2a2,3a1,2a
−1
1,3 y

1 a1,2a2,3a
−1
1,3a2,3 y

1 a1,2a
−1
1,2a2,3a2,3 y

1 a2,3a2,3,

which is denoted by a1,2a2,3a1,2a
−1
1,3 y a2,3a2,3.

A consequence of Lemma 1.1 of [7] is the following definition of left de-
nominator and left numerator of an A±

n -word.

Definition 3.5. Assume n > 2. For w an A±
n -word, we denote by D(w) and

N(w) the An-words, if there exist, such that w y D(w)−1 N(w) holds. If
such words exist, then they are unique, hence the notations D(w) and N(w)
are unambiguous. The word N(w) is the left numerator of w while the
word D(w) is its left denominator.

Reconsidering Example 3.4, we obtain that the left denominator of u
is D(u) = ε and that its left numerator is N(u) = a2,3a2,3.

Assume n > 2. By Example 8 of [10] based on [3], the monoid B+∗
n is a

Garside monoid and fn is a left lcm selector. A consequence of Lemma 4.3
of [10] is that for every w ∈ A±

n , the words N(w) and D(w) exist. We obtain
also the following result:

Proposition 3.6. Assume n > 2. For w an An-word and ap,q in An, the
braid w is right-divisible by ap,q if and only if D(w · a−1

p,q) is empty.

Since the left denominator of u = a1,2a2,3a1,2a
−1
1,3 is empty, the braid a1,3

right-divides the braid a1,2a2,3a1,2.

4. Characterization of rotating normal words

The aim of this section is to give a syntactical characterization of n-
rotating words among An-words.

Lemma 4.1. Assume n > 3. For β in B+∗

n−1 there is equivalence between
(i) an An-word representing β contains an ap,n-barrier,
(ii) every An-word representing β contains an ap,n-barrier.

Proof. Clearly (ii) implies (i). For (i) ⇒ (ii) it is sufficient to prove that
relations of Proposition 1.1 preserve ap,n-barriers. For relation (2) this is
immediate since it conserves involved letters. If one of the three words
ar,sas,t, as,tar,s and ar,tar,s of relations (3) contains an ap,n-barrier then the
two others also, as illustrated by the following chord diagram.

t

sp

r

n
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A letter ar,s is an ap,n-barrier if and only if its chord intersects properly that
of the letter ap,n. �

As a consequence, containing an ap,n-barrier is not a word property but
a braid one.

Lemma 4.2. Assume that n > 3. A non-empty braid β ∈ B+∗
n has triv-

ial B+∗

n−1-tail if and only if there exists a unique letter in An that right-
divides β, and this letter is of the form a..,n.

Proof. If ap,n is the only letter right-divising β, then the B+∗

n−1-tail of β is
certainly trivial. Conversely, assume that the B+∗

n−1-tail of β is trivial. Hence,
no letter ap,q with q < n right-divides β. Assume, for a contradiction, that
two distinct letters ap,n and aq,n with p < q < n right-divide β. The braid
β is then right-divisible by their lcm

ap,n ∨ aq,n = ap,q aq,n = aq,n ap,n = ap,n, ap,q,

hence by ap,q, which is impossible since the B+∗

n−1-tail of β is trivial. �

We conclude that, under some hypotheses, the last letter of a word is a
braid invariant.

Definition 4.3. For n > 3 and p, q ∈ [2, n − 1], we say that an n-rotating
word w is an ap,n-ladder lent on aq−1,n−1 if there exist a decomposition

w = v0 x1 v1 . . . vh−1 xh vh,

a strictly increasing sequence j(0), ..., j(h), with j(0) = p and j(h) = n− 1,
and a sequence i(1), ..., i(h) such that:

(i) for each k 6 h, the letter xk is ai(k),j(k) with i(k) < j(k − 1) < j(k),
(ii) for each k < h, the word vk contains no aj(k),n-barrier,
(iii) the last letter of vh is aq−1,n−1.

1
2
3
4
5
6

Figure 5. An a2,6-ladder lent on a3,5 (the last letter). The
gray line starts at position 1 and goes up to position 5 using
the bar of the ladder. The empty spaces between bars in
the ladder are represented by a framed box. In such boxes
the vertical line representing the letter ai,j does not cross the
gray line. The bar of the ladder are represented by black
thick vertical lines.

Condition (i) is equivalent to saying that for each k 6 h, the letter xk is
an aj(k−1),n-barrier of type a..,j(k).
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An immediate adaptation of Proposition 3.9 of [13] is:

Lemma 4.4. Assume n > 4, p ∈ [2, n − 2] and let β be a braid of B+∗

n−1 such
that the B+∗

n−1-tail of φn(β) is trivial and such that β contains an ap,n-barrier.
Then the rotating normal form of β is an ap,n-ladder lent of β#.

In order to obtain a syntactical characterization of n-rotating words we
want a local version of condition (6) characterizing a φn-splitting. The
following result is the first one in this way.

Proposition 4.5. Assume n > 4. For β ∈ B+∗

n−1 and p ∈ [2, n − 2] there is
equivalence between:

(i) the B+∗

n−1-tail of φn(ap,nβ) is trivial,
(ii) the B+∗

n−1-tail of φn(β) is trivial and β contains an ap,n-barrier,

Our proof of Proposition 4.5 rests on the following Lemma.

Lemma 4.6. Assume n > 3. For u an An−1-word and p ∈ [1, n − 1], the left
denominator D(ua−1

p,n) is not empty. More precisely, their exists q ∈ [1, p]

such that D(ua−1
p,n)

−1 begins with a−1
q,n.

Proof. Assume that w1, ..., wℓ is a reversing sequence from the word w1 =
ua−1

p,n to the wordD(w1)
−1N(w1). For k ∈ [1, ℓ] we denote by y−1

k the leftmost
negative letter in wk, if such a negative letter exists in wk. We will show by
induction on k ∈ [1, ℓ] the existence of a non-increasing sequence r(k) such
that yk = ar(k),n.

By construction, we have r(1) = p and y1 = ar(1),n. Each reversing

step consists in replacing a factor xy−1 of wk by fn(x, y)
−1fn(y, x). For

k ∈ [1, ℓ − 1], if the reversed factor of wk does not contain the leftmost
occurence of y−1

k in wk then, yk+1 equals yk and so r(k+1) = r(k). Assume
now that the reversed factor contains the leftmost negative letter yk of wk

and that yk is equal to ar(k),n. In particular, their exits a positive letter x

such that the reversed factor is of the form xy−1
k = xa−1

r(k),n. As all letters

of wk on the left of the leftmost negative letter of wk must belong to An−1,
the letter x is of the form ai,j with 1 6 i < j < n. Lemma 3.2 implies

fn(x, yk) = fn(ai,j, ar(k),n) =







ai,n for j = r(k),

ar(k),jai,n for i < r(k) < j,

ar(k),n otherwise,

which gives in particular

xy−1
k = ai,ja

−1
r(k),n y

{

a−1
i,n · · · for i < r(k) 6 j,

a−1
r(k),n · · · otherwise.

(8)

It follows that yk+1 is equal to ar(k+1),n with r(k+1) 6 r(k). Eventually we

obtain that ua−1
p,n left reverses to a−1

r(ℓ),n · · · with r(ℓ) 6 r(1) = p and so the

desired property on D(uap,n) holds. �



THE ROTATING NORMAL FORM OF BRAIDS IS REGULAR 11

Proof of Proposition 4.5. Let us first assume (i). As the theB+∗

n−1-tail of φn(β)
is a right-divisor of φn(ap,n β) the first statement of (ii) holds and the second
statement of (ii) is Lemma 2.10.

We now prove (ii) ⇒ (i). By Lemma 4.2 and Condition (ii), there exists
a unique letter in An that right-divises φn(β) and it is of type a..,n. It follows
that the last letter β# of β is of type a..,n−1. We denote by w the rotating
normal form of β. Let ar,s be an An-letter different from β#. It remains to
show that ar,s cannot be a right divisor of ap,n β.

Assume first s 6 n− 1. Then the letter ar,s belongs to An−1. As β lies
in B+∗

n−1, Lemma 4.2 implies that the braid ar,s could not be a right-divisor
of β. Hence, by Proposition 3.6 the word D(w a−1

r,s) must be non-empty. As

the reversing of an A±

n−1-word is also an A±

n−1-word, there exists a letter at,t′
with t′ < n such that:

ap,nw a−1
r,s y ap,n a

−1
t,t′ · · · ,

holds. Clearly, the braid at,t′ is not a right divisor of ap,n (since we have
t′ < n). Therefore, by Proposition 3.6, the left denominator of ap,nw a−1

r,s is
not empty, and we conclude that ar,s is not a right divisor of ap,nβ.

Assume now s = n. Hypotheses on β plus Lemma 4.4 imply that w is an
ap,n-ladder lent on β#. Following Definition 4.3, we write

w = v0 x1 v1 · · · vh−1 xh vh.

By Lemma 4.6, there exist two maps η and µ from N to itself such that

wa−1
r,n = wha

−1
η(h),n y w′

ha
−1
µ(h),n · · · y ... y w0a

−1
η(0),n · · · y w′

0a
−1
µ(0),n · · · ,

where for all k ∈ [0, h],

wk = v0 x1 v1 · · · vk−1 xk vk,

w′

k = v0 x1 v1 · · · vk−1 xk.

By construction w0 is v0 while w′
0 is the empty word and η(h) is r. For

k ∈ [0, h], Lemma 4.6 with u = vk and p = η(k) imply that the word

wk a
−1
η(k),n · · · = w′

k vk a
−1
η(k),n · · ·

left-reverses to w′

k a
−1
µ(k),n · · · with µ(k) 6 η(k). Then, for k 6= 0, Lemma 4.6

(with u = vk−1 and p = µ(k)) implies that the word

w′

k a
−1
µ(k),n · · · = wk−1 xk a

−1
µ(k),n · · ·

left-reverses to wk−1 a
−1
η(k−1),n · · · with η(k − 1) 6 µ(k). Using an inductive

argument on k = h, ..., 0 we then obtain:

µ(0) 6 η(0) 6 µ(1) 6 ... 6 µ(h) 6 η(h) = r. (9)

Following Definition 4.3 we write xk = ai(k),j(k).
We will now prove for all k ∈ [0, h − 1],

µ(k + 1) 6 j(k + 1) ⇒ η(k) < j(k). (10)
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Let k ∈ [0, h − 1] and assume µ(k + 1) 6 j(k + 1). Definition 4.3 (i)
guarantees the relation i(k + 1) < j(k) < j(k + 1). For the case where
µ(k + 1) 6 i(k + 1) we have:

η(k) 6 µ(k + 1) 6 i(k + 1) < j(k),

and we are done in this case. The remaining case is µ(k + 1) > i(k + 1). By
relation (8), with i = i(k + 1), j = j(k + 1) and r = µ(k + 1) (satisfying the
relation i < r 6 j) we obtain

xk+1 a
−1
µ(k+1),n = ai(k+1),j(k+1) a

−1
µ(k+1),n y a−1

i(k+1),nv,

for some A±
n -word v. In particular, we have η(k) = i(k + 1) < j(k) and (10)

is established.
For k = h− 1 the left-hand member of (10) is satisfied since j(h) is equal

to n− 1 and
µ(h) 6 η(h) = r 6 n− 1

holds by definition of r. Properties (9) and (10) imply µ(k) < j(k) for
all k ∈ [0, h − 2]. In particular we have µ(0) < j(0) = p together with
wa−1

r,n y a−1
µ(0),n · · · . As aµ(0),n cannot be a right divisor of ap,n it follows

that the left denominator of ap,nw a−1
r,n is also non-empty and so that ar,n is

not a right divisor of ap,nβ. �

As the reader can see, the case p = n− 1 is excluded from Proposition 4.5.
This case is treated by the following result.

Proposition 4.7. Assume n > 3. For β a non-trivial braid of B+∗

n−1 there
is equivalence between:

(i) the B+∗

n−1-tail of φn(an−1,nβ) is trivial,
(ii) the B+∗

n−1-tail of φn(β) is trivial.

Proof. As a right divisor of φn(β) is also a right of φn(an−1,n β), the im-
plication (i) ⇒ (ii) is clear. Let us now prove (ii) ⇒ (i). For x ∈ An−1

and y, z in An, the only relations in B+∗
n of the form an−1,n x = y z with

(y, z) 6= (an−1,n, x) are commutations relations, for which x is of type ap,q
with p < q < n− 1. Hence, if w is a representative of β, the relations in
the dual braid monoid B+∗

n−1 allow only transforming the word an−1,nw into
words of the form uan−1,n v. The An−2-word u represents a dual braid that
commute with an−1,n and u v represents β. By Lemma 4.2 the only letter in
An that right-divides φn(β) is of type a..,n, hence any representative word
of β must end with a letter of type a..,n−1. In particular v is not an An−2-
word and so v is not empty and it admits only β# as last letter. We have
then established that every representative word of an−1,n β ends with the
letter β# which is of type a..,n−1. Therefore, the B+∗

n−1-tail of φn(an−1,n β) is
trivial. �

Theorem 4.8. Assume n > 3. A finite sequence (βb, ..., β1) of braids
in B+∗

n−1 is the φn-splitting of a braid of B+∗
n if and only if:

(i) for k > 3 and k = b, the braid βk is not trivial,
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(ii) for k > 2, the B+∗

n−1-tail of φn(βk) is trivial,
(iii) if, for k > 3, we have β#

k 6= an−2,n−1, then βk−1 contains an φn(β
#

k )-
barrier.

Proof. Let (βb, ..., β1) be the φn-splitting of some braid of B+∗
n . Condition (i)

is Lemma 2.8.(ii). Condition (6) implies that the B+∗

n−1-tail of

φb−k
n

(βb) · ... · φn(βk+1)

is trivial for k > 1. In particular the B+∗

n−1-tail of φn(βk+1) must be trivial
for k > 1, which implies (ii). Condition (iii) is Lemma 2.11.

Conversely, let us prove that a sequence (βb, ..., β1) of braids of B
+∗

n−1 satis-
fying (i), (ii) and (iii) is the φn-splitting of some braid of B+∗

n . Condition (i)
implies that βb is not trivial. For k > 2 we denote by γk the braid

γk = φb−k
n (βb) · ... · φn(βk+1) · βk.

For k > 3, and for k > 2 whenever β2 6= 1, we first prove

β#

k is the only An-letter that right-divides γk. (11)

We note that Condition (i) guarantees the existence of β#

k for k > 3. For
k = b, Condition (ii) implies that the B+∗

n−1-tail of φn(βb) is trivial. Hence, by
Lemma 4.2 the only An−1-letter that right-divides βb is β

#

b . Since any right
divisors of a braid of B+∗

n−1 lies in B+∗

n−1, we have established (11) for k = b.
Assume (11) holds for k > 4, or k > 3 whenever β2 6= 1, and let us

prove it for k − 1. By Condition (ii), there exists p such that β#

k is ap−1,n−1.
Conditions (ii) and (iii) imply that the B+∗

n−1-tail of φn(βk−1) is trivial and
that βk−1 contains an ap,n-barrier whenever p < n− 1 holds. Hence, by
Proposition 4.5 (for p < n− 1) and Proposition 4.7 (for p = n− 1), the
B+∗

n−1-tail of the braid φn(ap,nβk−1) is trivial. Using Lemma 4.2, we obtain
that φn(ap,nβk−1) is right-divisible by a unique An-letter. It follows that the
unique An-letter right-divising ap,n βk−1 is β#

k−1.
We denote by uap−1,n−1 and v two An-words representing γk and βk−1

respectively. The braid γk−1 is then represented by φn(u)ap,nv. Let y be
an An-letter different from β#

k−1. As y is not a right divisor of ap,n βk−1,
Proposition 3.6 implies the existence of an An-letter x different from ap,n
satisfying

φn(u)ap,nvy
−1

y φn(u)ap,nx
−1 · · · .

The word φn(u)ap,n represents φn(γk). By induction hypothesis x is not a
right divisor of φn(γk). Then Proposition 3.6 implies that D(φn(u)ap,nx

−1)
is not empty. It follows D(φn(u)ap,nvy

−1) 6= ε and so, always by Propo-
sition 3.6, the letter y is not a right divisor of γk−1. Eventually we have
established (11) for k > 3.

A direct consequence of (11) and Condition (ii) is that the only An-letter
right-dividing φn(γk) is of type a..,n and so, by Lemma 4.2 the B+∗

n−1-tail
of the braid γk is trivial for k > 3 and for k = 2 whenever βk 6= 1. It
remains to establish that the B+∗

n−1-tail of φn(γ2) is also trivial whenever β2
is trivial. Assume β2 = 1. Condition (iii) implies β#

3 = an−2,n−1. By (11),
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an−2,n−1 is the only An-letter that right-divides γ3. Since γ2 = φn(γ3) holds,
the letter φ2

n(an−2,n−1) = a1,n is the only letter right-dividing φn(γ2). In
particular the B+∗

n−1-tail of φn(γ2) is trivial. �

Conditions (i), (ii) and (iii) are easy to check if the braids β1, ..., βb are
given by their rotating normal forms.

Corollary 4.9. Assume n > 3 and let (wb, ..., w1) be a finite sequence
of An−1-words. The An-word

φb−1
n

(wb) · ... · φn(w2) · w1, (12)

is n-rotating if the following conditions are satisfied:
(i) for k > 1, the word wk is (n− 1)-rotating,
(ii) for k > 3, the word wk ends with ap−1,n−1 for some p,
(iii) the word w2 is either empty (except for b = 2) or ends with ap−1,n−1

for some p,
(iv) if, for k > 3, the word wk ends with ap−1,n−1 with p 6= n− 1 then the

word wk−1 contains an ap,n-barrier.

Proof. Assume that (wb, ..., w1) satisfies Conditions (i)-(iv) and let us prove
that the word w defined in (12) is rotating.

We denote by βi (resp. β) the braid represented by wi (resp. w). By Con-
dition (i) and Definition 2.5, the word w is rotating if and only if (βb, ..., β1) is
a φn-splitting. Conditions (ii) and (iii) imply Condition (i) of Theorem 4.8.
Theorem 4.8.(iii) is a consequence of (ii) and (iv).

We now prove Condition (ii) of Theorem 4.8. Let k be in [2, b]. If
the B+∗

n−1-tail of φn(βk) is not trivial, then there exists ap,q, with 1 6 p <
q < n, that right-divides φn(βk). As βk lies in B+∗

n−1, we must have p 6= 1 and
therefore βk is right-divisible by ap−1,q−1 with q − 1 6 n− 2. The B+∗

n−1-tail
of wk is then not trivial. Since the word wk is (n − 1)-rotating, its last
letter must come from its B+∗

n−1-tail. Hence wk must end with a letter ai,j
satisfying j 6 n− 2, which is in contradiction with Conditions (ii) and (iii).

We conclude applying Theorem 4.8. �

It is not true that any decomposition of an n-rotating word as in (12)
satisfies Conditions (i)−(iv) of Corollary 12. However we have the following
result.

Proposition 4.10. For n > 3 and every n-rotating word w, there exists
a unique sequence (wb, ..., w1) of (n− 1)-rotating words such that w decom-
poses as in (12) and Conditions (ii) − (iv) of 4.9 hold.

Proof. By definition of a rotating normal word and by Lemma 2.8 such a
sequence exists. Let us prove now the unicity. Assume w is a n-rotating nor-
mal word and that (wb, ..., w1) and (w′

c, ..., w
′
1) are two different sequences of

(n− 1)-rotating normal words satisfying Conditions (ii) and (iii) of Corol-
lary 4.9. Let k be the minimal integer satisfying wk 6= w′

k. Since the sum of
the word lengths of the two sequences are the same, we have k 6 min{b, c}.
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Without loss of generality, we may assume that w′

k is a proper suffix of
wk, i.e., wk = u ·w′

k. Let x be the last letter of w′

k+1 or the last letter of w
′

k+2
if wk+1 is empty. By Conditions (ii) and (iii) of Corollary 4.9, the letter x is
equal to ap−1,n−1 for some p and wk admits either φn(ap−1,n−1)w

′

k = ap,nw
′

k

or φ2
n(ap−1,n−1)w

′

k = a1,p+1w
′

k as suffix. The first case is impossible since wk

is an An−1-word. The second case may occur only for k = 1 and w′
2 = ε.

In this case w′
2 is empty and so Condition (iv) of Corollary 4.9 implies that

the last letter of w′
3, which is x, is equal to an−2,n−1. This implies that wk

admits a1,nu as suffix, which is also impossible since wk is an An−1-word. �

A direct consequence of Corollary 4.9 and Proposition 4.10 is

Theorem 4.11. For n > 3, an An-word w is rotating if and only if it can
be expressed as in (12) subject to Conditions (i)− (iv) of Corollary 4.9.

5. Regularity

In this section we will show that the language of n-rotating words, denoted
by Rn, is regular, i.e., there exists a finite-state automaton recognizing the
language of n-rotating words. As the rotating normal form is defined using
right division it is more natural for an automaton to read words from the
right. For w = x0 · ... · xk an An-word we will denote by Π(w) the mirror
word xk · ... · x0. By Theorem 1.2.8 of [11] the language Rn is regular if and
only if the language Π(Rn) is. In this section we will construct an automaton
recognizing Π(Rn).

For us a finite-state automaton is a 6-tuple (S ∪ {⊗}, A, µ, Y, i,⊗) where
S ∪ {⊗} is the finite set of states, A is a finite alphabet,

µ : (S ∪ {⊗})×A → S ∪ {⊗}

is the transition function, Y ⊆ S is the set of accepting states and i is the
initial state. In this paper each automaton is equipped with an undrawn
dead state ⊗ and each state except the dead one is accepting, i.e., Y = S
always hold.

To characterize A it is enough to describe µ on (s, x) ∈ S × A in-
stead of (S ∪ {⊗}) × A. For example an automaton recognizing the lan-
guage R2 = Π(R2) is A2 = ({1,⊗}, {a1,2}, µ2, {1}, 1,⊗) with µ2(1, a1,2) = 1.
The corresponding automaton diagram is:

1

a1,2

The horizontal arrow points to the initial state.
We will now construct an automaton A3 recognizing the language Π(R3).
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Proposition 5.1. An A3-word xebb · ... · ae31,3 a
e2
2,3 a

e1
1,2 where

xk =







a1,2 if k ≡ 1 mod 3,

a2,3 if k ≡ 2 mod 3,

a1,3 if k ≡ 3 mod 3.

is rotating if and only if ek 6= 0 for all k > 3.

Proof. The 2-rotating words are powers of a1,2. Let w be the word of the
statement. Defining wk to be aek1,2, we obtain

w = φb−1
n

(wb) · ... · φn(w2) · w1.

As each non-empty word wk ends with a1,2, Condition (iv) of Corollary 4.9
is vacuously true. Hence the word w is rotating if and only if it satisfies
Conditions (ii) and (iii) of Corollary 4.9, i.e., ek is not 0 for k > 3. �

As a consequence the following automaton recognizes the language Π(R3):

1

2

30

a1,2

a2,3

a1,3

a1,2

a1,3

a2,3

a1,3

a1,2

a2,3

We now explain the principle of our construction of an automaton An

recognizing the language Π (Rn) for n > 4. Following the Condition (i) of
Corollary 4.9, the construction will be done by induction on n > 3. Quite
natural it will be more complicated for n > 4 than for n = 2 and n = 3
since Condition (iv) of Corollary 4.9 is not empty for n > 4 and must be
checked. As suggested by Condition (ii) the language R∗

n (see Definition 5.2)
of n-rotating words ending with a letter a..,n is in the core of the process.
Hence, instead of directly construct the automaton An we will construct an
automaton A∗

n recognizing the language Π(R∗
n). As the language Π(Rn) is

the concatenation of Π(Rn−1) and Π(R∗
n), the automaton An is naturally

obtained from An−1 and A∗
n.

Assume that the automaton A∗
n−1 recognizing Π(R∗

n−1) is given. In or-
der to check Condition (iv) of Corollary 4.9, we must modify A∗

n−1 to store
information about the existence of a..,n-barriers in the involved word. A
duplication of states contained in A∗

n−1 together with some standard modi-
fications on the transition function allow us to store one bit of information.
Since there is exactly n−3 types of a..,n-barriers we must multiply the num-
ber of states of A∗

n−1 by at most 2n−3 in order to obtain an automaton B0
n−1

recognizing Π(R∗
n−1) and detecting barriers.
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Then, for k ∈ [1, n − 1] we construct an automaton Bk
n−1 recognizing

the language Π(φk
n(R

∗
n−1)) by applying φk

n to B0
n−1. Eventually we obtain

A∗
n by plugging cyclically automata B0

n−1, ...,B
n−1
n−1 . Transitions between au-

tomata Bk
n−1 and Bk+1

n−1 will be done in respect with Condition (iv) of Corol-

lary 4.9 thanks to informations about encountered barriers stored in Bk
n−1.

Definition 5.2. For n > 2, we denote by R∗
n the language of n-rotating

words that are empty or end with a letter of type ap,n for some p.

As explained above, we will first construct by induction on n > 3 an
automaton A∗

n for the language Π (R∗
n).

Definition 5.3. A partial automaton is a 6-tuple P = (S∪{⊗}, A, µ, S, I,⊗)
where S, A and µ are defined as for an automaton and I : A → S ∪ {⊗} is
the initial map. The closure of a partial automaton P is the automaton

A(P ) = (S ∪ {◦,⊗}, A, µc, S ∪ {◦}, ◦,⊗)

whose transition function is given by

µc(s, x) =

{

I(x) if s = ◦,

µ(s, x) otherwise.

In the sequel, we will plug partial automata using their initial maps. A
partial automaton is represented as an automaton excepted for the initial
map I: for each x ∈ A we draw an arrow attached to the state I(x) and
labelled x. We say that a partial automaton recognizes a given language if
its closure does.

1

2

3

a2,3

a1,3

a1,2

a2,3

a1,3

a1,3

a1,2

a2,3 1

2

3◦

a2,3

a1,3

a1,2

a1,3

a2,3

a1,3

a1,2

a2,3

Figure 6. The partial automaton P3 and the corresponding
closure, which recognizes the language Π(R∗

3).

We will now show how to construct by induction a partial automaton P ∗
n

recognizing Π (R∗
n) for n > 3. For n = 3 this is already done by Figure 6.

For the sequel we assume that n > 4 and that

P ∗

n−1 = (S∗

n−1 ∪ {⊗}, An−1, µ
∗

n−1, S
∗

n−1, I
∗

n−1,⊗)

is a given partial automaton which recognizes the language Π (R∗
n−1).
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We construct a partial automaton P 0
n that recognize Π(R∗

n−1) and store
informations about the encountered barriers. We define S0

n to be the set

S0
n = {0} × S∗

n−1 × P({a2,n, ..., an−2,n}).

A state in S0
n is then written (0, s,m). The integer 0 is used to identify this

particular partial automaton among those that will eventually constitute P ∗
n .

The set m stores informations on encountered barriers.
For ai,j ∈ An−1 we denote by bar(ai,j) the set of letters ap,n such that ai,j

is an ap,n-barrier, i.e.,

bar(ai,j) = {ap,n | i < p < j}.

Definition 5.4. We define P 0
n = (S0

n ∪ {⊗}, An−1, µ
0
n, S

0
n, I

0
n,⊗) to be the

partial automaton defined by: for all x ∈ An−1,

I0n(x) =

{

(0, I∗n−1(x),bar(x)) if I∗n−1(x) 6= ⊗,

⊗ if I∗n−1(x) = ⊗.

and for all (0, s,m) ∈ S0
n and for all x ∈ An−1,

µ0
n((0, s,m), x) =

{

(0, µ∗
n−1(s, x),m ∪ bar(x)) if µ∗

n−1(s, x) 6= ⊗,

⊗ if µ∗
n−1(s, x) = ⊗.

Proposition 5.5. The partial automaton P 0
n recognizes the language Π(R∗

n−1).
Moreover an accepted An-word Π(w) contains an ap,n-barrier if and only if
P 0
n has state (0, s,m) with ap,n ∈ m after reading Π(w).

Proof. We denote by A and A′ the closure of P ∗
n−1 and P 0

n respectively.
Assume w = w1 · . . . · wℓ is an An-word of length ℓ. For all k ∈ [1, ℓ], we
denote by sk (resp. s

′

k) the state of the automaton A (resp. A′) after reading
the k-th letter of Π(w), i.e., the letter wℓ−k+1. By construction of µ0

n, for
all k ∈ [1, ℓ], we have

s′k =

{

⊗ if sk = ⊗,

(0, sk,mk) otherwise (for a certain set mk).

In particular s′ℓ 6= ⊗ if and only if sℓ 6= ⊗. Hence both automata accept the
word Π(w) or not and so P 0

n recognizes Π(R∗
n−1) since P ∗

n−1 does.
Let us prove the result on mℓ whence Π(w) is accepted. By an immediate

induction of k ∈ [1, ℓ], the set mk contains bar(wℓ)∪ . . .∪ bar(wℓ−k+1). The
set mℓ is then bar(w1) ∪ ... ∪ bar(wℓ). We conclude by definition of bar(),
that w contains an ap,n-barrier if and only if ap,n belongs to mℓ. �

As the only ap,4-barrier in A4 is a1,3, the partial automaton P 0
4 is obtained

from P ∗
3 by connecting edges labelled a1,3 to a copy of P3, as illustrated on

Figure 7.
We now construct n− 1 twisted copies of P 0

n using the word homomor-
phism φn. For t = (0, s,m) ∈ S0

n and k ∈ [1, n − 1], we define Φk
n(t) to be
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∅
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0,3
∅
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0,2
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a1,2
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a1,3
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0,1
∅

0,2
a2,4

0,3
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0,1
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a1,3 a1,2
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a1,2

a2,3
a1,3

Figure 7. The partial automaton P 0
4 . Obsolete transitions

from P ∗
3 are in gray. New added transitions are dashed. The

right partial automaton is P 0
4 without inaccessible states.

the state (k, s,m). We also define Sk
n to be Φk

n

(
S0
n

)
and

P k
n =

(

Sk
n ∪ {⊗}, φk

n
(An−1) , µ

k
n, S

k
n, I

k
n,⊗

)

,

to be the partial automaton given by Ikn(φ
k
n
(x)) = Φk

n

(
I0n(x)

)
and

µk
n((k, s,m), φk

n
(x)) = Φk

n

(
µ0
n((0, s,m), x)

)
,

with the convention Φk
n(⊗) = ⊗. In other words, P k

n is obtained from P 0
n by

replacing the letter x by φk
n(x) and the state (0, s,m) by (k, s,m). By Propo-

sition 5.5, we obtain immediately that P k
n recognizes the language φk

n
(Π(R∗

n))
and store informations about encountered barriers.

We can now construct the partial automaton P ∗
n by plugging cyclically n

partial automata P k
n for k ∈ [0, n − 1]. Transition between two adjacent

partial automata is done using initial maps accordingly to Condition (iv) of
Corollary 4.9.

Definition 5.6. We define P ∗
n = (S∗

n ∪ {⊗}, An, µ
∗
n, Sn, I

∗
n,⊗), with S∗

n =
S0
n ⊔ ... ⊔ Sk

n to be the partial automaton given by

I∗n(x) =







I1n(x) if x = ap,n with p 6= 1,

I2n(x) if x = a1,n,

⊗ otherwise,

and with transition function

µ∗

n((k, s,m), φk
n(x)) =







µk
n((k, s,m), φk

n(x)) if x ∈ An−1,

Ik+1n (φk
n
(x)) if x = an−1,n

Ik+1n (φk
n(x)) if x = ap,n with 2 6 p 6 n− 2

and ap,n ∈ m,

⊗ otherwise,

with the convention Inn = I0n.
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We summarize the construction of the partial automaton P ∗
n on the fol-

lowing diagram.

P 0
n

P 1
n P 2

n

P k
n

P k+1
nPn−1

n

An−1

φn(An−1) φ2
n(An−1)

φk
n(An−1)

φk+1
n (An−1)φn−1

n (An−1)

T0

T1

TkTn−1

P ∗
n

ap,n
p 6=1

a1,n

An arrow labelled Tk represents the set of transitions µ∗
n((k, s,m), φk

n
(ap,n)).

Lemma 5.7. The partial automaton P ∗
n recognizes the language Π(R∗

n).

Proof. Let A∗ be the closure of P ∗
n and w be a non-empty An-word. There

exists a unique sequence (wb, ..., w1) of An−1-words such that wb 6= ε, w is
equal to

φb−1
n

(wb) · ... · φn(w2) · w1

and for all i, the word φi
n
(wi) is the maximal suffix of φb−1

n
(wb) · ... · φ

i
n
(wi)

belonging to φi
n
(A∗

n−1). By definition of I∗n, the word Π(w) is accepted by P ∗
n

only if w ends with a letter ap,n for some p.
We assume now that w is such a word. Thus the first integer j such that

wj is non-empty is 2 or 3. More precisely, we have j = 2 if p > 1 and
j = 3 if p = 1. In both cases, after reading the first letter of Π(w), the

automaton A∗ is in state s ∈ Sj
n. The automaton reaches a state outside of

Sj
n if it goes to the state ⊗ or if it reads a letter outside of φj−1

n (An−1), i.e.,

a letter of φj
n(Π(wj+1)). This is a general principle: after reading a letter

of φi−1
n (Π(wi)) the automaton A is in state (t, s,m) with t = i mod n. By

construction of P t
n, the word φi−1

n (Π(wi)) provides an accepted state if and
only if wi is a word of Rn−1.

At this point we have shown that Π(w) is accepted by A only if w is
empty or if w satisfies w# = ap,n together with Conditions (i), (ii) and (iii)
of Corollary 4.9. Let i be in [j, k − 1] and assume that A is in an acceptable
state (t, s,m) with t = i mod n after reading the word

Π(φi−1
n (wi) · ... · φn(w2) · w1).

We denote by x the letter w#

i+1. By construction of wi+1, the letter x does

not belong to φi−1
n (An−1) and so x = φi

n(ap,n) for some p. By definition of µ∗
n

we have µ∗
n((t, s,m), φi

n(ap,n)) 6= ⊗ if and only if p = n− 1 or if p ∈ [2, n − 2]
together with ap,n ∈ m. As, by construction of P t

n, we have ap,n ∈ m if and
only if wi contains an ap,n-barrier, Condition (iv) of Corollary 4.9 is satisfied.
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Eventually, by Corollary 4.9, the word Π(w) is accepted by A if and only
if w belongs to R∗

n. �
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a1,2 a2,4

0,1
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a1,4

a1,3

a1,2 a2,4

a2,3

a1,3

a3,4a2,4

a2,4

a3,4

a1,4

Figure 8. Partial automaton recognizing the language Π (R∗
4).

Assume that an automaton An−1 = (Sn−1 ∪ {⊗}, An−1, µn−1, Sn−1, i,⊗)
recognizing the language Π(Rn−1) for n > 4 is given. Plugging An−1 to the
partial automaton P ∗

n = (S∗
n ∪ {⊗}, An, µ

∗
n, S

∗
n, I

∗
n) we construct an automa-

ton An = (Sn ∪ {⊗}, An, µn, Sn, i,⊗) defined by Sn = Sn−1 ⊔ S∗
n and

µn(s, x) =







µn−1(s, x) if s ∈ Sn−1 and x ∈ An−1,

I∗n(x) if s ∈ Sn−1 and x ∈ An \ An−1,

µ∗
n(s, x) if s ∈ S∗

n.

Proposition 5.8. If An−1 recognizes Π(Rn−1), the automaton An recognizes
the language Π(Rn).

Proof. Let w be an An-word, w1 be the maximal suffix of w which is an An−1-
word and w′ be the corresponding prefix. By Corollary 4.9, the word w is
rotating if and only if w1 and w′ are. By construction, the automaton An

is in acceptable state after reading Π(w1) if and only if w1 is an (n− 1)-
rotating word. Hence w is accepted only if w1 is rotating. Assume this is
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Figure 9. Automaton A4 for the language Π(R4).

the case. By Lemma 5.7 the automaton An is in an acceptable state after
reading Π(w′) if and only if the word w′ is rotating. Eventually the word
Π(w) is accepted by A if and only if w1 and w′ are both rotating, which is
equivalent to w is rotating. �

By Proposition 5.8, the language Π(Rn) is regular and so we obtain:

Theorem 5.9. The language of n-rotating words Rn is regular.
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6. Application to σ-definite representative

It it well known since [6] that Artin’s braid groups are orderable, by
an ordering that enjoys many remarkable properties [9]. The existence of
this ordering rests on the property that every non-trivial braid admits a
σ-definite representative, i.e., a braid word w in standard Artin generator
σ1, σ2, ... in which the generator σi with highest index i occurs only posi-
tively (no σ−1

i ), in which case w is called σi-positive, or only negatively (no
σi), in which case w is called σi-negative. Thanks to the word homomor-
phism defined by ap,q 7→ σp ... σq−1 σq σ

−1
q−1 ... σ

−1
p , the notions of σ-definite,

σi-positive and σi-negative words extend naturally to A±
n -words. In [13] a

particular σ-definite representative is obtained for every non-trivial braid
from its rotating normal form.

We say that a braid has index k > 2 if it belongs to Bk and not to Bk−1

with the convention B1 = {1}. Each representative, in standard Artin
generator, of a braid of index k > 2 must contain a letter σk−1 or a letter
σ−1
k−1. Hence such a braid is either σk−1-positive or σk−1-negative.
First we recall how uniquely express a braid as a quotient.

Proposition 6.1 (Proposition 6.1 of [13]). Assume n > 3. Each braid β
of Bn admits a unique expression δ−t

n w where t is a non-negative integer,
w is an n-rotating normal word, and the braid w is not left-divisible by δn
unless t is zero.

A direct adaptation to dual braid context of Proposition 4.4 of [14] gives:

Proposition 6.2. Assume n > 3 and β is a braid of B+∗
n . Let t be a

positive integer and (wb, ..., w1) the φn-splitting of β. If t > b− 1 holds then
the quotient δ−t

n β is represented by the σn−1-negative A±
n -word

δ−t+b+1
n wb δ

−1
n wb−1 δ

−1
n ... w2 δ

−1
n w1, (13)

where δn is written as the word a1,2 a2,3 ... an−1,n. Moreover if t < b− 1 then
the quotient δ−t

n β is not σn−1-negative.

Proposition 6.2 gives specific σ-definite representative to each σn−1-negative
braid of Bn. Unfortunately this representative word is not unique.

Definition 6.3. We denote by Rσ−1

n the words of the form (13) such that
the braid φb−1

n
(wb) · ... · φn(w2) · w1 is not left-divisible by δn.

Assume (wb, ..., w1) is a sequence of An−1-words satisfying Conditions (i)–
(iv) of Corollary 4.9. In section 5 we have explicitly constructed by induction
a finite-state automaton recognizing the mirror of the word φb−1

n (wb) · · · w1.
This construction rests on verification of conditions of Corollary 4.9 and on
the detection of transition between words φi−1

n (wi) and φi
n(wi+1). Thus, if we

add a letter $ to the alphabet An we can construct a finite-state automaton
recognizing the mirrors of words wb$wb−1$...$w2$w1.

Since An contains no negative letters, the word δ−1
n can play the role of the

letter $. Hence their exists a finite-state automaton recognizing the reverse
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of the word

wb δ
−1
n wb−1 δ

−1
n ... w2 δ

−1
n w1.

We then obtain that mirror of words of (13) constitute a regular language.

Proposition 6.4. For n > 2, the language Rσ−1

n is regular.

Proof. The result is immediate for n = 2. Assume n > 3. We denote by
Wn the set of words as in (13). As explained previously the language Wn is
regular. Let Bn be a finite-state automaton recognizing Wn and let w be a
word as in (13). Following Section 9.2 of [11] we can modify Bn such that it
memorize the maximal simple element head(w) of B+∗

n that left-divides the
dual braid φb−1

n
(wb) · ... ·φn(w2) ·w1. Accepting only words such that head(w)

is different from δn we obtain an finite-sate automaton which recognize the

language Rσ−1

n . �

Since the inverse of σn−1-positive braid is a σn−1-negative braid, each

braid of index n admits a representative either in Rσ−1

n or in its inverse

Rσ+

n = {w−1 |w ∈ Rσ−1

n }. As Rσ−1

n is regular the language Rσ+

n is also

regular. Defining two regular languages Rσ−1

2 = {ak1,2 | k < 0} and Rσ+

2 =

{ak1,2 | k > 0} we immediately obtain:

Proposition 6.5. Assume n > 2. Then each braid of Bn admits a unique
σ-definite representative lying in

Sn = {ε} ⊔

n⊔

k=2

(

Rσ−1

k ⊔ Rσ+

k

)

. (14)

Since the union of regular languages is also regular, we obtain:

Theorem 6.6. For n > 2 the language Sn of σ-definite representative of
braids of Bn is regular.

7. Automaticity

Using syntactical characterization of rotating words we have proved that
the language of n-rotating words is regular. For W a finite-state automaton,
we denote by L(W ) the language recognized by W .

From [5] and [11] we introduce the following definition:

Definition 7.1. Let M be a monoid. A right automatic structure, resp.
left automatic structure, on M consists of a set A of generators of M , a
finite-state automaton W over A, and finite-state automata Mx over (A,A),
for x ∈ A ∪ {ε}, satisfying the following conditions:

(i) the map π : L(W ) → M is surjective,
(ii) for x ∈ A ∪ {ε}, we have (u, v) ∈ L(Mx) if and only if ux = y, resp.

xu = y, and both u and v are elements of L(W ).
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A consequence of Theorem 2.3.5 of [11] is that automaticity for groups
is equivalent to fellow traveller property. As pointed in [5] the situation is
more complicated for monoids. But with Definition 3.11 of [5] for fellow
traveller property on monoids we have, Proposition 3.12 of [5], that right
(resp. left) automaticity of monoids implies right (resp. left) fellow traveller
property of monoids.

As pointed by the anonymous referee the rotating normal form is not
right automatic (or even asynchronously right automatic) for n > 4. For all
integers k > 0, we define two words

w = (a2,3a1,2a1,3)
k a3k1,2, and w′ = (a1,3a2,3a1,2)

ka1,4a
3k
2,3.

The φ4-splitting of w is (w) and w is 3-rotating by Proposition 5.1 and so 4-
rotating. The φ4-splitting of w′ is (a2,3, ..., a2,3

︸ ︷︷ ︸

3k+1

, 1, a3k2,3). Using Corollary 4.9

we have that w′ is 4-rotating.
We observe that a2,3a1,2a1,3a

3
1,2 ≡ a1,3a2,3a1,2a

3
2,3 = δ33 . Since by [3] the

braid δ33 is in the center of B+∗

3 we have w ≡ δ3k3 and

w′ ≡ (a1,3a2,3a1,2)
kak2,3a1,4 ≡ δ3k3 a1,4 ≡ wa1,4.

Finally, w and w′ end with 3k copies of two different letters of A4, hence
the (asynchronous) fellow traveller property is falsified. As a consequence
we obtain that the n-rotating normal form is not automatic for n = 4 (and
for n > 4 as well).

At this time we don’t know if the rotating normal form is left automatic.
We think that contrary to the previous example, if w is an n-rotating word
and x is an An-letter then the existence of barrier in x prevents migration
to far on the right of x during the computation of rotating normal form of
the braid represented by xw.

Acknowledgments. The author wishes to thank the anonymous referee
for his/her very sharp and constructive comments.
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