
HAL Id: hal-01337579
https://hal.science/hal-01337579

Submitted on 29 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a hardware-assisted information flow tracking
ecosystem for ARM processors

Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume
Hiet, Vianney Lapotre, Guy Gogniat

To cite this version:
Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume Hiet, Vianney Lapotre, et
al.. Towards a hardware-assisted information flow tracking ecosystem for ARM processors. 26th Inter-
national Conference on Field-Programmable Logic and Applications (FPL 2016), Aug 2016, Lausanne,
Switzerland. �10.1109/fpl.2016.7577396�. �hal-01337579�

https://hal.science/hal-01337579
https://hal.archives-ouvertes.fr


Towards a hardware-assisted information flow

tracking ecosystem for ARM processors

Muhammad Abdul Wahabα, Pascal Cotretα, Mounir Nasr Allahβ , Guillaume Hietβ

Vianney Lapôtreγ, Guy Gogniatγ

α IETR / SCEE research group, firstname.lastname@centralesupelec.fr
β INRIA / CIDRE research group, firstname.lastname@centralesupelec.fr

γ Lab-STICC / University of South Brittany, firstname.lastname@univ-ubs.fr

Abstract—This work details a hardware-assisted approach for
information flow tracking implemented on reconfigurable chips.
Current solutions are either time-consuming or hardly portable
(modifications of both sofware/hardware layers). This work takes
benefits from debug components included in ARMv7 processors
to retrieve details on instructions committed by the CPU. First
results in terms of silicon area and time overheads are also given.

I. INTRODUCTION

Nowadays, high-technology systems are highly threatened

by security issues. In the context of software security, original

solutions such as DIFT (Dynamic Information Flow Tracking)

have been proposed since the 2000s. DIFT aims to ensure

the application control flow by adding metadata (also known

as tags) to information containers (e.g. registers, memory

addresses). These tags are checked at runtime. DIFT already

demonstrated a detection of a wide range of attacks such as

SQL injections and buffer overflow.

However, existing solutions are not widely used in mod-

ern SoCs due to hardware and software dependencies. This

work provides a clever DIFT implementation for recent SoCs

without compromising their security level. This manuscript

also describes the internal structure of a new hardware DIFT

coprocessor and its implementation results.

Section II presents the most relevant related works. Then,

Section III describes the main objectives of this work. Sec-

tion IV presents the internal mechanisms and implementation

results. Finally, Section V gives some conclusions and future

perspectives.

II. RELATED WORKS

First and foremost, DIFT implementations were primarily

performed in software (without any hardware extensions) as

done by Newsome et al. [1]. However, time overheads were

too high (from 300% up to 3700%). In order to decrease

processing times, several hardware extensions were proposed

providing lower penalties at the expense of flexibility ([2], [3],

[4]).

Kannan et al. [5] suggested to separate tags computation

from the main application flow: a dedicated coprocessor

handles tags, allowing the CPU to run faster. Furthermore, it

allows to run simultaneously multiple DIFT checking rules.

More recently, other solutions aimed to add features and

improve performances shown in [5]. For instance, Deng et

al. [6], [7] proposed a solution to implement DIFT and

other similar runtime monitoring techniques such as UMC

(Uninitialized Memory Check) or BC (Boundary Check).

Heo et al. [8] proposed a system-level approach to imple-

ment DIFT and other related techniques. Information required

by the coprocessor for tags computation is added to the

application source code through binary instrumentation. This

information is executed at runtime: it sends data from the CPU

to a FIFO queue read by the coprocessor. This approach, even

though more realistic and generic, presents some drawbacks:

1) information leakage at the interface between the CPU and

the coprocessor; 2) code injection attacks may not be detected

as the injected code is not instrumented; 3) added instructions

through binary instrumentation are architecture-dependent.

Table I is a qualitative comparison of some previous works.

[5], [6] implemented DIFT using a softcore processor. In both

cases, there are modifications of the CPU itself in order to

export information. In this work, the main constraint is that

the CPU is an ASIC: however, it will be easier to implement

on several SoC based on the same architecture.

TABLE I
BRIEF COMPARISON OF PREVIOUS WORKS

Approaches Kannan [5] Deng [6] Heo [8]

Hardcore portability No No Yes
Time Overhead + ++ +
Surface Overhead + - -
Main CPU Softcore Softcore Softcore

III. OBJECTIVES

Due to inflexibility and time overheads, DIFT is hardly

adopted in modern SoCs. The main goal of this work is to

provide a flexible approach for hardware-assisted DIFT based

on a standard OS and a heterogeneous architecture such as

Xilinx Zynq or Altera DE1-SoC. This work promotes DIFT

by proposing a solution with several features:

• Targeting unmodified processors. Previous works used

a softcore LEON3. Zynq devices contain an ARM pro-

cessor which cannot be modified.

mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@univ-ubs.fr


• Scalability. At first, this work focuses on single-core

CPUs. An extension to multicore architectures is planned

in the future.

• Efficiency and flexibility. It must be a low-area and fast

solution: the processor must not wait for the coprocessor

to complete DIFT tasks (at least, it may halt for the

shortest possible time).

• Secure tags computation. It is assumed that tags and

DIFT outputs must not be revealed to an unknown

authority.

IV. CURRENT STATUS AND PRELIMINARY RESULTS

The overall architecture used in this work is shown in Figure

1. Information required by the coprocessor for tags computa-

tion is partially recovered using existing debug components

available in ARM processors (also known as Coresight com-

ponents). Remaining information is obtained through software

analysis.

Fig. 1. Overview of the hardware-assisted DIFT architecture implemented on
a Zynq device

A. Global approach

Fig. 2. Coresight Components on Zedboard [9]

Coresight components (Figure 2) can be used to debug

(or trace) in an efficient manner multicore processors. A

PTM (Program Trace Macrocell) is assigned to each CPU

core: PTMs generate traces (e.g. partial inputs for DIFT

computations). Traces only provide runtime information on

instructions modifying the program counter (e.g. branches).

Traces are transmitted through the funnel and replicator and

then pushed in trace sinks (ETB and TPIU). ETB (Embedded

Trace Buffer) is able to store traces in an 4KB on-chip RAM

while TPIU (Trace Port Interface Unit) can send it to the

programmable logic through the EMIO (Extended Multiplexed

I/O) pins.

On the PL side, traces are decoded by the PFT decoder

(Program Flow Trace, see Figure 1) and given in a format

readable by the DIFT coprocessor. Tag dependencies block

contains information obtained through software analysis and

rules to handle tags. DIFT coprocessor reads traces given by

the PFT decoder and finds which information containers must

be propagated. Then, it looks for related tags in TRF (Tag Reg-

ister File) or MR (Memory tags): TRF contains tags of each

CPU register while MR contains tags for memory locations.

The granularity of tags is a user-defined parameter. Finally,

the DIFT coprocessor looks for security policy violations and

eventually raises an exception.

B. Results

1) Traces generation: The approach described in this work

is at least compatible with SoCs combining an ARM Cortex-

A9 processor with a FPGA: Xilinx ZedBoard is the experiment

platform in this work. All synthesis were done in Vivado

2014.4. Xilinx Standalone OS was first used to develop Core-

sight components drivers in order to understand the features

offered by such modules and to verify trace contents.

Coresight drivers for standard Linux are currently being

studied and compiled in a Yocto recipe. Traces have been

successfully recovered in ETB; however, parasite traces are

generated due to context switches.

2) Implementation results: For MiBench programs, the

overhead introduced by Coresight components is negligible.

As tracing components are in hardware and separated from

CPU core, almost no overhead is observed. However, the worst

case scenario is not evaluated yet and further testing with

other benchmarks needs to be done before pronouncing on

the efficiency of Coresight components.

Area results of TRF and PFT Decoder IPs are shown in

Table II. Percentages are shown relatively to a Microblaze

softcore with minimum area configuration (without caches nor

BRAMs).

TABLE II
IP SIZE FOR ZEDBOARD (ZYNQ Z7020)

IP Name Slice LUTs Slice Registers Slice

Microblaze 824 530 300

PFT Decoder 308 (37%) 222 (42%) 110(37%)
TRF 49 (6%) 64 (12%) 13 (4%)



V. CONCLUSION AND FUTURE WORK

A first prototype is currently being developped to demon-

strate the feasibility of the approach proposed in this work.

Next steps are to build a full-featured system including a

secure DIFT coprocessor. Then, DIFT on both Cortex-A9

cores will be implemented by duplicating DIFT coprocessor

and other IPs. Dynamic partial reconfiguration will be studied

to address energy consumption issues. The proposed approach

is not specific to ARM hardcores and may well be adapted to

Intel cores using Intel Processor Trace components.

REFERENCES

[1] J. Newsome and D. Song, “Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software,” 2005.

[2] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information
flow architecture for software security,” SIGARCH Comput. Archit. News,
vol. 35, pp. 482–493, June 2007.

[3] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program exe-
cution via dynamic information flow tracking,” in Acm Sigplan Notices,
vol. 39, pp. 85–96, ACM, 2004.

[4] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexitaint:
A programmable accelerator for dynamic taint propagation,” in High

Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th

International Symposium on, pp. 173–184, IEEE, 2008.
[5] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic informa-

tion flow tracking with a dedicated coprocessor,” in Dependable Systems

& Networks, 2009. DSN’09. IEEE/IFIP International Conference on,
pp. 105–114, IEEE, 2009.

[6] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible
and efficient instruction-grained run-time monitoring using on-chip re-
configurable fabric,” in Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 137–148, IEEE Com-
puter Society, 2010.

[7] D. Y. Deng and G. E. Suh, “High-performance parallel accelerator for
flexible and efficient run-time monitoring,” in Dependable Systems and

Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference

on, pp. 1–12, IEEE, 2012.
[8] I. Heo, M. Kim, Y. Lee, C. Choi, J. Lee, B. B. Kang, and Y. Paek, “Im-

plementing an application-specific instruction-set processor for system-
level dynamic program analysis engines,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 20, no. 4, p. 53, 2015.
[9] “Zynq technical reference manual.” www.xilinx.com/support/documentation/user guides/ug585-Zynq-7000-TRM.pdf.

www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

	Introduction
	Related works
	Objectives
	Current status and preliminary results
	Global approach
	Results
	Traces generation
	Implementation results


	Conclusion and future work
	References

