
HAL Id: hal-01337561
https://hal.science/hal-01337561

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced Digital Signature using RNS Digit Exponent
Representation

Thomas Plantard, Jean-Marc Robert

To cite this version:
Thomas Plantard, Jean-Marc Robert. Enhanced Digital Signature using RNS Digit Exponent Repre-
sentation. WAIFI: Workshop on the Arithmetic of Finite Fields, Department of Mathematics of Ghent
University, Jul 2016, Gand, Belgium. pp.177-192, �10.1007/978-3-319-55227-9_13�. �hal-01337561�

https://hal.science/hal-01337561
https://hal.archives-ouvertes.fr

Enhanced Digital Signature using
RNS Digit Exponent Representation

Thomas Plantard1, Jean-Marc Robert2,3

1 CCISR, SCIT, University of Wollongong, Australia
2 Team DALI, Université de Perpignan Via Domitia, France

3 LIRMM, UMR 5506, Université Montpellier and CNRS, France

Abstract. Digital Signature Algorithm (DSA) involves modular expo-
nentiation, of a public and known base by a random one-time exponent.
In order to speed-up this operation, well-known methods take advantage
of the memorization of base powers. However, due to the cost of the mem-
ory, to its small size and to the latency of access, previous research sought
for minimization of the storage. In this paper, taking into account the
modern processor features and the growing size of the cache memory, we
improve the storage/efficiency trade-off, by using a RNS Digit exponent
representation. We then propose algorithms for modular exponentiation.
The storage is lower for equivalent complexities for modular exponenti-
ation computation. The implementation performances show significant
memory saving, up to 3 times for the largest NIST standardized key sizes
compared to state of the art approaches.

Keywords: RNS, Digital Signature, Modular Exponentiation, Memory
Storage, Efficient Software Implementation.

1 Introduction

In the DSS (Digital Signature Standard), DSA (Digital Signature Algorithm)
is a popular authentication protocol. According to the NIST standard (see [3]),
the public parameters are p, q and g. The parameter g is a generator of the
multiplicative group Z/pZ of order q, which is a prime of size corresponding to
the required security level. Therefore, p is a prime chosen such that q divides p−1.
The recommended security levels in the standard are 80-256 bits, corresponding
to 160-512 bit sizes for the prime q. When a server needs to sign a batch of
documents or authentications, the main operations are modular exponentiations
gk mod p (one per signature), where k is a one time random parameter. Taking
advantage of the fixed public parameter g is a natural way to speed-up the
signature protocol, by storing well chosen powers of g. The main known methods
of the state of the art are the one presented by Gordon in [6], which stores the

gR
i

mod p values, and also the Fixed-base Comb, which is presented by Lim
and Lee in [10]. While improving the complexity, and therefore, lowering the
computation time, these methods require some storage. The trade-off between

2 Thomas Plantard, Jean-Marc Robert

the efficiency and the storage amount is the comparison criteria between these
different approaches.

All the protocols derived from the DSA can use these different approaches,
since they all need an exponentiation of a known base by a random exponent.
Blind signature and E-voting are examples of protocols using fixed-base modular
exponentiation ([11]). Moreover, El-Gamal encryption and signature also use a
public generator g to the power of a randomly chosen exponent (see [4]). However,
the decryption uses the result of this operation, and the idea does not apply in
this case.

On the arithmetic side, the Residue Number System (RNS), based on the
Chinese Remainder Theorem, is a classical way to speed-up and/or parallelize
arithmetic computations and was first presented by Svoboda in [14] and by
Garner in [5]. One can find a complete classical presentation of the RNS in
Knuth [9].

Contributions: In this paper, we propose to use the memorization of base
powers with numeration scales in radix R = m0 ·m1 and the RNS representa-
tion of each digit using the base B = {m0,m1}. We study the recoding algorithm
and apply it to the exponent in modular exponentiation. We propose a modular
exponentiation algorithm using this recoding of the exponent and memoriza-
tion. We called this algorithm the m0m1 exponentiation method. We studied
the corresponding complexities and storage amounts, and compared the results
with the Fixed-base Comb and Radix-R methods. We showed that our m0m1

exponentiation method has better storage/complexity trade-off that the afore-
mentioned methods, for the NIST recommended field sizes and a large range of
storage amount. We then made software implementations of our algorithms and
performed tests in order to validate the storage/timing trade-off. The speed-up
comparison shows the benefits. This approach provides also a fair flexibility in
terms of required storage amount: one can choose the storage amount according
to the device resources available and compatible to the global computation load
of the system.

This paper is organized as follows: Section 2, we review the main classical
fixed-base exponentiation algorithms, taking advantage of storage and give their
complexities and storage requirements; Section 3, we present our approach for
the m0m1 recoding; Section 4, we then show the application on modular expo-
nentiation; Section 5 shows the implementation strategies and results in terms
of performances we got in this work; finally Section 6, we give some concluding
remarks and perspectives.

2 State of the Art Review

In this Section, we review the state of the art classical approaches for fixed-
base modular exponentiation.

When a server needs to sign a document or a message, the computation
consists of several operations, the main one being a modular exponentiation

Enhanced Digital Signature using RNS Digit Exponent Representation 3

gk mod p, with k being a one-time random exponent. This computation can
use the classical Square-and-Multiply algorithm (see Algorithm 1). In terms of
complexity, given the exponent length t (that is, the size of the prime q), the
number of modular squaring is t− 1 and the number of modular multiplications
to be computed is t/2 on average, half of this length, for a randomly chosen
exponent. There is no storage in this case.

The method presented by Gordon in [6] first suggests to store the t successive

squarings of g (that is the sequence of g2i

). In terms of complexity, given the
exponent length t (again, the size of the prime q), one has now no squarings and
the number of modular multiplications to be computed is half of this length on
average as in the previous case, for a randomly chosen exponent. The storage
amount is t values in Z/pZ as mentioned above. Gordon in [6] mentions the
generalization of this idea into a radix R method, which consists of the memo-
rization of the values gi·R

j

, with i ∈ [1, ..., R − 1] and 0 ≤ j < ` where ` is the
radix R length of the exponent, which we denote by w = log2(R) (` = dt/we). In
this case, the complexity is `− 1 modular multiplications, for a storage amount
of ` ·(R−1) values in Z/pZ. In the sequel, we will call this approach the Radix-R
Exponentiation Method (see Algorithm 2).

Algorithm 1 Left-to-Right Square-and-Multiply Modular Exponentiation

Require: k = (kt−1, . . . , k0), the DSA modulus p, g a generator of Z/pZ of order q.
Ensure: X = gk mod p
1: X ← 1
2: for i from t− 1 downto 0 do
3: X ← X2 mod p
4: if ki = 1 then
5: X ← X · g mod p
6: end if
7: end for
8: return (X)

Algorithm 2 Radix-R Exponentiation Method

Require: k = (k`−1, . . . , k0)R, the DSA modulus p, g a generator of Z/pZ of order q.
Ensure: X = gk mod p

1: Precomputation. Store Gi,j ← gi·R
j

, with i ∈ [1, ..., R− 1] and 0 ≤ j < `.
2: X ← 1
3: for i from `− 1 downto 0 do
4: X ← X ·Gki,i mod p
5: end for
6: return (X)

4 Thomas Plantard, Jean-Marc Robert

Algorithm 3 Fixed-base Comb Exponentiation Method

Require: k = (kt−1, . . . , k1, k0)2, the DSA modulus p, g a generator of Z/pZ of order
q, window width w, d = dt/we.

Ensure: X = gk mod p
1: Precomputation. Compute and store g[aw−1,...,a0] mod p, ∀(aw−1, . . . , a0) ∈ Zw2 .
2: By padding k on the left by 0’s if necessary, write k = Kw−1‖ . . . ‖K1‖K0, where

each Kj is a bit string of length d. Let Kj
i denote the ith bit of Kj .

3: X ← 1
4: for i from d− 1 downto 0 do
5: X ← X2 mod p

6: X ← X · g[K
w−1
i ,...,K1

i ,K
0
i] mod p

7: end for
8: return (X)

Another classical method is the so called Fixed-base Comb method. In [8],
Hankerson et al. present this method proposed by Lim and Lee in [10]. The
window width w is the number of comb-teeth, and d = dt/we is the distance
in bits between two teeth. This method is shown in Algorithm 3, in which we
denote [aw−1, . . . , a1, a0] = aw−12(w−1)d+. . .+a222d+a12d+a0. The complexity
of this approach is d − 1 modular squarings and d mutiplications, for a storage
amount of 2w − 1 values in Z/pZ. One drawback of this method is the lack of
flexibility for the storage amount, which increases exponentially with respect to
the window width w.

Table 1, we give the complexities and the storage amounts of all these ap-
proaches.

Table 1. Complexities and storage amounts of state of the art methods, average case,
binary exponent length t. #MM denotes the number of modular multiplications, #MS
the number of modular squarings.

MM # MS storage (# values ∈ Z/pZ)

Square-and-multiply, Algo. 1 t/2 t− 1 -

Radix-R method, Algo. 2 dt/we - dt/we · (R− 1)

Fixed-base Comb, Algo 3 d = dt/we d− 1 2w − 1

3 m0m1 Recoding

In this section, we present our approach for the m0m1 recoding. Our goal is
to use this representation in a modular exponentiation computation. The RNS
digit representation with two moduli splits the digits in two parts. The first
part will be used to select the precomputed values and the second part for final
computation of the modular exponentiation, with the best possible trade-off.

Enhanced Digital Signature using RNS Digit Exponent Representation 5

3.1 Algorithm

We first remind the RNS representation with RNS base B = {m0,m1} of two
moduli. Let R = m0 ·m1 and x ∈ Z such that 0 ≤ x < R. Let us also assume
m0 is prime, since this allows us to invert all integers < m0 modulo m0, and we
choose m1 < m0. In the sequel, we denote |x|m = x mod m.

One represents x with the residues{
x(0) = |x|m0

x(1) = |x|m1

and x can be retrieved using the Chinese Remainder Theorem as follows:

x =
∣∣∣x(0) ·m1 · |m−1

1 |m0 + x(1) ·m0 · |m−1
0 |m1

∣∣∣
R
.

We now present our recoding approach. Our idea here is to use an exponent
k recoding in radix R = m0 ·m1. We represent every radix-R digits in RNS with
RNS base B = {m0,m1}. Let ki be the digits of k in radix-R, and let us denote

(k
(0)
i , k

(1)
i) their RNS representations in base B. Thus, one has:

k =
∑`−1
i=0 kiR

i, with ` = dt/ log2(R)e,

and

{
k

(0)
i = |ki|m0

,

k
(1)
i = |ki|m1

.

Let us denote (when k
(1)
i 6= 0)

m′0 = m1 · |m−1
1 |m0

,
m′1 = m0 · |m−1

0 |m1
,

k′i = |k(0)
i · (k

(1)
i)−1|m0

.

One keeps κi ← (k′i, k
(1)
i) as a representation of ki and this leads to ki =∣∣∣k(1)

i |k′i ·m′0 +m′1|R
∣∣∣
R
. We handle the modular reduction modR as follows:

ki = k
(1)
i |k

′
i ·m′0 +m′1|R − bk

(1)
i · |k

′
i ·m′0 +m′1|R/Rc ·R.

Let us denote C = bk(1)
i · (k′i ·m′0 + m′1)/Rc. By noticing that 0 ≤ C < m1, we

now consider C as a carry that one can subtract to ki+1. We then compute

if ki+1 ≥ C then ki+1 ← ki+1 − C,C ← 0, else ki+1 ← ki+1 +R− C,C ← 1,

and one gets ki+1 ≥ 0.

When k
(1)
i = 0, we handle this by slightly rewriting κi as follows: κi =

(|k(0)
i + 1|m0 ·m′0 −m′0), thus keeping κi ← (|k(0)

i + 1|m0 , 0) as a representation
of ki in this case. In addition, one notices that the carry C is not modified here
(it is either 0 or 1 and has been previously settled).

The sequence of the κi ← (k′i, k
(1)
i) is the m0m1 recoding of k we can use to

compute a modular exponentiation.
One notices it might be necessary to process a last carry C, with a final

correction. The recoding algorithm is shown in Algorithm 4.

6 Thomas Plantard, Jean-Marc Robert

Algorithm 4 m0m1 Recoding

Require: {m0,m1} RNS base with R = m0 ·m1, k =
∑`−1
i=0 kiR

i.
Ensure: {κi, 0 ≤ i < `, (C)}, m0m1 recoding of scalar k.
1: C ← 0
2: for i from 0 to `− 1 do
3: ki ← ki − C,C ← 0
4: if ki < 0 then
5: ki ← ki +R, C ← 1
6: end if
7: k

(0)
i = |ki|m0 , k

(1)
i = |ki|m1 .

8: if k
(1)
i = 0 then

9: κi ← (|k(0)i + 1|m0 , 0)
10: else
11: k′i ← |k

(0)
i · (k

(1)
i)−1|m0

12: C ← C + bk(1)i · |k
′
i ·m′0 +m′1|R/Rc

13: κi ← (k′i, k
(1)
i)

14: end if
15: end for
16: return {κi, 0 ≤ i < `, (−C)}

3.2 Example

We present here an example of m0m1 recoding with an exponent size t of 20
bits (0 < k < 220), and B = {11, 8} (i.e. m0 = 11,m1 = 8). Thus, in this case,
one has the radix R = m0 ·m1 = 88, ` = d20/ log2(88)e = 4, and therefore

m′0 = 8 · |8−1|11 = 56,
m′1 = 11 · |11−1|8 = 33.

Let us take k = 93619210, the random exponent. By rewriting k in radix-R, one
has

k = 48 + 78 · 88 + 32 · 882 + 1 · 883.

We now use Algorithm 4, which consists of a for loop, steps 2 to 15.

– In the first iteration (i = 0), one has k0 = 48.
• One has C ← 0 and one skips the if-test steps 4 to 6 since k0 ≥ 0.
• Step 7, one computes the RNS representation in base B of k0 = 48:

k
(0)
0 = |k0|11 = 4, k

(1)
0 = |k0|8 = 0.

• Steps 6 and 7, since k
(1)
0 = 0, one sets

κ0 ← (|k(0)
0 + 1|11, 0) = (5, 0)

– In the second iteration (i = 1), one has k1 = 78.

Enhanced Digital Signature using RNS Digit Exponent Representation 7

• One has C ← 0 and one skips the if-test steps 4 to 6 since k1 ≥ 0.
• Step 7, one computes the RNS representation in base B of k1 = 78:

k
(0)
1 = |k1|11 = 1, k

(1)
1 = |k1|8 = 6.

• Steps 11 and 12, since k
(1)
1 6= 0, one has

|(k(1)
1)−1|11 ← 2

k′1 = |k(0)
1 · (k(1)

1)−1|11 ← 2

C ← b(k(1)
1 · |k′1 · 56 + 33|88)/88c ← 3

and finally
κ1 ← (2, 6)

– In the third iteration (i = 2), one has now k2 ← k2 − C = 29.

• The RNS representation in base B of k2 is k
(0)
2 = 7, k

(1)
2 = 5.

• The computation steps 11-12 gives C ← 2, and

κ2 ← (8, 5).

Without providing all the details, one finally gives the values returned by the
algorithm:

κ = ((5, 0), (2, 6), (8, 5), (3, 7)), and C = −2.

4 m0m1 Modular Exponentiation

4.1 Algorithm

We now present the use of our recoding in the modular exponentiation. One
wants to compute

gk mod p = g
∑`−1

i=0 ki·R
i

mod p

= g
∑`−1

i=0 κi·Ri · gC·R`

mod p

= gC·R
` ·
∏`−1
i=0 g

κi·Ri

mod p

with
gκi·Ri

mod p = gκ
(1)
1 ·R

i·|κ′i·m
′
0+m′1|R mod p, when κ

(1)
1 6= 0

and

gκi·Ri

mod p = gR
i·|κ′i·m

′
0+m′1|R · g−R

i·|m′0+m′1|R mod p, when κ
(1)
1 = 0.

In order to compute the fixed-base modular exponentiation gk mod p, with
p prime, one stores the following values:

Gi,j = gR
i·|j·m′0+m′1|R mod p, with 0 ≤ i ≤ `− 1, 0 ≤ j < m0

8 Thomas Plantard, Jean-Marc Robert

and G`,1 = gR
`·|m′0+m′1|R mod p.

The field inversion is very costly over Z/pZ, therefore, one also stores the fol-
lowing inverses:

Gi,−1 = g−|m
′
0+m′1|R·R

i

mod p avec 0 ≤ i ≤ `

One uses one value Kj per possible values of 1 ≤ κ
(1)
i < m1, that is m1

points. Thus, one now has

Kj =

 ∏
for all κ(1)

i =j

G
i,κ

(0)
i

× (G`,sign(C)1

)
|C|=j mod p

and
K0 =

∏
for all κ(1)

i =0

G
i,κ

(0)
i
×Gi,−1 mod p.

This leads to

gk mod p = K0 ×
m1∏
j=1

Kj
j .

Every single individual modular exponentiation Kj
j is performed with a

square-and-multiply approach, which is more efficient than performing j − 1
modular multiplications, even for small m1.

One may notice that the amount of storage is now (m0 + 1) × ` + 1 points.
This approach is depicted in Algorithm 5.

4.2 Example

We now go back to our previous example in Section 3.2 page 6. One considers
again the same values and parameters:

– an exponent size t of 20 bits (0 < k < 220), and B = {11, 8}
(i.e. m0 = 11,m1 = 8);

– radix R = m0 ·m1 = 88 (` = 4);
– one has k = 93619210;
– and we use the m0m1 recoding previously computed:

κ = ((5, 0), (2, 6), (8, 5), (3, 7)), and C = −2.

We present the computation of gk mod p using Algorithm 5. In terms of storage,
one computes the values

Gi,j = gR
i·|j·m′0+m′1|R mod p with 0 ≤ i ≤ `− 1.

One has the following values of |j ·m′0 +m′1|R for 0 ≤ j < 11:

{33, 1, 57, 25, 81, 49, 17, 73, 41, 9, 65}

Enhanced Digital Signature using RNS Digit Exponent Representation 9

Algorithm 5 Fixed-base m0m1 method modular exponentiation

Require: {m0,m1} RNS base with R = m0m1, k =
∑`−1
i=0 kiR

i and κ = {κi, 0 ≤ i <
`, (C)} the m0m1 recoding of k, p, the DSA modulus, g ∈ Z/pZ, public generator
of order q.

Ensure: X = gk mod p

1: Precomputation. Store Gi,j ← gR
i·|j·m′0+m′1|R with 0 ≤ i < ` − 1, 0 ≤ j <

m0, G`,1 ← gR
`·|m′0+m′1|R , Gi,−1 ← g−R

i·|m′0+m
′
1|R , 0 ≤ i ≤ `

2: A← 1,Kj ← 1 for 0 ≤ j < m1

3: for i from 0 to `− 1 do
4: if κ

(1)
i = 0 then

5: K0 ← K0 ×Gi,κ(0)
i

×Gi,−1

6: else
7: K

κ
(1)
i

← K
κ
(1)
i

×G
i,κ

(0)
i

8: end if
9: end for

10: K|C| ← K|C| ×G`,sign(C)1

11: W ← size of m1 in bits
12: for i from W downto 0 do
13: A← A2

14: for j from m1 − 1 downto 1 do
15: if bit i of j is non zero then
16: A← A×Kj

17: end if
18: end for
19: end for
20: return (A×K0)

In our case, with the chosen parameters, this brings us to store the following
values in Z/pZ:

Gi = {g88i·33, g88i

, g88i·57, g88i·25, g88i·81, g88i·49, g88i·17, g88i·73, g88i·41, g88i·9, g88i·65}.

We now use κ in Algorithm 5.

– the first steps are a for loop (steps 3 to 9):

• in the first iteration, one has κ
(1)
0 = 0 (and κ

(0)
0 = 5), and this gives

K0 ← G
0,κ

(0)
0
×G0,−1 = g49 × g−1 = g48.

• in the second iteration, one has κ
(1)
1 = 6 (and κ

(0)
1 = 2), and this gives

K6 ← G
1,κ

(0)
1

= g88·57 = g5016.

• in the third iteration, one has κ
(1)
2 = 5 (and κ

(0)
2 = 8), and this gives

K5 ← G
1,κ

(0)
2

= g882·41 = g317504.

10 Thomas Plantard, Jean-Marc Robert

• in the fourth and last iteration, one has κ
(1)
2 = 7 (and κ

(0)
2 = 3), and this

gives

K7 ← G
1,κ

(0)
2

= g883·25 = g17036800.

– the last carry C = −2 is now processed (step 10):

K2 ← G4,−1 = g884·(−1) = g−59969536.

– the reconstruction in the second for loop (steps 12 to 16) provides the final
result by computing

gk mod p = K0 ×
∏m1

j=1K
j
j mod p

= g48+2·(−59969536)+5·317504+6·5016+7·17036800 mod p
= g936192 mod p,

which is the desired result.

4.3 Complexity

The complexity of Algorithm 5 is evaluated step by step in Table 2 for the
average case. The number of field multiplications (MM) is evaluated as follows:

– the MMs in step 5 are performed only in case of K0 6= 1, instead, it is only
an instantiation of K0;

– the MMs in step 7 are performed only in case of K
κ
(1)
i
6= 1, instead, it is only

an instantiation of K
κ
(1)
i

;

– the same applies for step 10;

This saves on average m1 MMs, and this is taken into account in the Total line
in Table 2 (it explains the −m1 term). The number of operations in the final
reconstruction is evaluated as follows:

– the modular squaring in step 13 is performed only in case of A 6= 1;
– the MMs in step 15 and 18 are performed only in case of Kj 6= 1;

For the sake of simplicity, we denote by H the sum of the j Hamming weights
for each j from m1 − 1 downto 1 (foreach loop step 14). The value of H is as
follows for the different values of m1 :

m1 2 3 4 5 6 7 8 9
H 1 2 4 5 7 9 12 13

We now discuss the complexity comparison of the considered methods (Fixed-
base Comb Algorithm 3, Radix-R Algorithm 2 and m0m1 Algorithm 3). Since the
parameters are very different between these three methods, a formal comparison
is difficult. Therefore, we present a comparison based on numerical application,
for NIST recommended sizes. In the sequel of this section, we then provide com-
plexity evaluations in terms of field multiplications MM, under the assumption

Enhanced Digital Signature using RNS Digit Exponent Representation 11

Table 2. m0m1 modular exponentiation complexity and storage, average case.

Complexity

Step Operation Complexity

`/m1× step 5 K0 ← K0 ×Gi,|κ(0)
i +1|m0

×Gi,−1 2 MM

`m1−1
m1
× step 7 K

κ
(1)
i

← K
κ
(1)
i

×G
i,κ

(0)
i

1 MM

1× step 10 K|C| ← K|C| ×Gsign(C)
`,1 1 MM

(W − 1)× step 13 A← A2 1 MS

(H− 1)× steps 15 A← A×Kj 1 MM

1× step 18 (A×K0) 1 MM

TOTAL (`m1+1
m1
−m1 +H) MM +(W − 1) MS

TOTAL STORAGE (m0 + 1)× `+m1 + 2 elements of Z/pZ

of squaring MS = 0.86 MM, which is the average value of our implementations
for the NIST DSA recommended field sizes.

Figure 1 gives the general behavior of the three algorithms in terms of storage
with respect to the complexity. One can see that the Fixed-base Comb method
is the best for small storage amount. Our m0m1 approach is better for larger
amount of storage, however, the Radix-R method is the best when the storage is
increasing. In the figure, the field size is the largest of the ones recommended in
the NIST standards (see [13]). Thus, the storage amount for such size is very big.
Nevertheless, the behavior is roughly the same for smaller sizes, although the
benefit of our approach is lower. The NIST provides recommended key sizes and
corresponding field size (respectively the size of the primes q and p, see NIST
SP800-57 [13]). This standardized sizes are as follows:

key size (bits) 160 224 256 384 512
field size (bits) 1024 2048 3072 7680 15360

For these sizes, Table 3 shows the complexity comparison between the Fixed-
base Comb Algorithm 3, the Radix-R Method Algorithm 2 and our m0m1-
Recoding approach Algorithm 5. For an equivalent number of MMs, we provide
the minimum amount of storage.

We now provide a few comments about this table.

– For all sizes, we do not provide the results for small amount of storage (values
of w < 8). For such storage, the Fixed-base Comb method is the best. One
may notice that the Radix-R approach needs the greatest storage at this
complexity level.

– For intermediate values of complexity, our proposed m0m1 approach shows
the best storage/complexity trade-off. However, the benefits are greater for
the larger key sizes.
• t = 224, the best gain of our m0m1 approach is for #MM ≈ 24, with a

storage 5 to 8 times smaller than the storage required for the Fixed-base

12 Thomas Plantard, Jean-Marc Robert

Fig. 1. Complexity comparison, Fixed base modular exponentiation NIST DSA, key
size 512 bits (field size 15360 bits).

 100

 1000

 10000

 100000

 1e+06

 1e+07

 20 40 60 80 100 120 140

T
o
ta

l
a
v
a
ila

b
le

 s
to

ra
g

e
 #

kB
y
te

s

number of field multiplications #MM

Complexity Comparison m0m1/FixedBaseComb Best of Average Case

FixedBaseComb
radix R

m0m1 best case

Comb method, respectively for #MM = 30 and #MM = 24, and 35%
less than the one of the Radix-R method. However, below #MM ≈ 24,
the Radix-R approach is better.

• t = 256, the best gain of our m0m1 approach is for #MM ≈ 32, with a
storage about 6 times smaller than the storage required for the Fixed-base
Comb method, and 44% less than the one of the Radix-R method. Again,
with decreasing values of #MM (below 26), the Radix-R approach is
better.

• t = 384, the best gain of our m0m1 approach is for #MM ≈ 35, with a
storage about 15 times smaller than the storage required for the Fixed-
base Comb method, and 19% less than the one of the Radix-R method.
Again, with decreasing values of #MM (below 33), the Radix-R ap-
proach is better.

• t = 512, the best gain of our m0m1 approach is for #MM ≈ 41, with a
storage about 22 times smaller than the storage required for the Fixed-
base Comb method, and 27% less than the one of the Radix-R method.
Again, with decreasing values of #MM (below 38), the Radix-R ap-
proach is better.

However, one may notice that the bigger memory storage sizes exceed the
common values of Random Access Memory, and also the maximum allowed for
the malloc function of the standard C library for memory allocation. Neverthe-

Enhanced Digital Signature using RNS Digit Exponent Representation 13

Table 3. Storage amount comparison, Fixed-base Comb method and m0m1 modular
exponentiation fixed-base, average case, NIST recommended exponent sizes.

Key size t = 224 bits Key size t = 256 bits
#MM Fixed-base C. Radix-R m0m1

45
127.5 kB 345 kB 108 kB
w = 9 R = 31 m0 = 11;m1 = 9

37
511.5 kB 594 kB 242 kB
w = 11 R = 61 31; 7

30
4095.5 kB 1386 kB 770 kB
w = 14 R = 179 127; 7

24
32767.5 kB 4230 kB 4173 kB
w = 17 R = 677 877; 7

19
524287.5 kB 27084 kB 50409 kB
w = 21 R = 5417 13441; 5

#MM Fixed-base C. Radix-R m0m1

46
383 kB 845 kB 241 kB
w = 10 R = 47 m0 = 17;m1 = 11

39
1535 kB 1454 kB 579 kB
w = 12 R = 97 47; 7

32
12287 kB 3179 kB 2070 kB
w = 15 R = 257 211; 6

26
98303 kB 9486 kB 9642 kB
w = 18 R = 937 1223; 6

20
1572863 kB 66676 kB 225482 kB
w = 22 R = 8467 37579; 5

Key size t = 384 bits Key size t = 512 bits
#MM Fixed-base C. Radix-R m0m1

63
1918 kB 4081 kB 969 kB
w = 11 R = 67 m0 = 19;m1 = 11

50
15358 kB 10087 kB 3742 kB
w = 14 R = 191 101; 11

41
122878 kB 26655 kB 17284 kB
w = 17 R = 677 541; 6

35
983038 kB 80357 kB 64768 kB
w = 20 R = 2381 2381; 6

30
7864318 kB 246070 kB 315053 kB
w = 23 R = 8467 13441; 5

26
62914558 kB 951217 kB 3256278 kB
w = 26 R = 37579 165397; 5

24
503316478 kB 1750756 kB - kB

w = 29 R = 74699 −

#MM Fixed-base C. Radix-R m0m1

86
3836 kB 9841 kB 1940 kB
w = 11 R = 59 m0 = 13;m1 = 11

73
15356 kB 17855 kB 4747 kB
w = 13 R = 127 41; 10

60
122876 kB 46775 kB 16224 kB
w = 16 R = 409 179; 11

52
491516 kB 93110 kB 54680 kB
w = 18 R = 937 677; 7

48
983036 kB 156091 kB 106185 kB
w = 19 R = 1699 1489; 10

41
7864316 kB 489112 kB 355573 kB
w = 22 R = 6211 5417; 7

35
62914556 kB 2048419 kB 2113890 kB
w = 25 R = 30347 37579; 7

less, the storage savings proposed by our method and the Radix-R ones allow to
keep the level under the limit for lower complexities.

As a conclusion, our m0m1 approach shows lower storage amount for inter-
mediate values of storage, whatever the standardized key size.

5 Implementation results

5.1 Implementation strategies

We review hereafter the main implementation strategies and test process.
This applies for the three considered exponentiation algorithms. The algorithms
were coded in C, compiled with gcc 4.8.3 and run on the same platform.

Multiprecision Multiplication and Squaring: we used the low level functions per-
forming multi-precision multiplication and squaring of the GMP library as building
blocks of our codes (GMP 6.0.0, see GMP library [1]). According to the GMP
documentation, the classical schoolbook algorithm is used for small sizes, and
Karatsuba and Toom-Cook sub quadratic methods for size ≥ 2048 bits.

Modular Reduction: this operation implements the Montgomery representation
and modular reduction method, which avoid multi-precision division in the com-
putation of the modular reduction. This approach has been presented by Mont-

14 Thomas Plantard, Jean-Marc Robert

gomery in [12]. More specifically, we used the block Montgomery algorithm sug-
gested by Bosselaers et al. in [2]. In this algorithm, the multi-precision operations
combine full size operand with one word operand and are also available in the
GMP library [1]. Although the complexity is the same, the implementation is
more computer friendly.

m0m1 Recoding: the conversion in radix-R needs multi-precision divisions. These
operations are implemented using the GMP library [1]. The size of these oper-
ations is decreasing along the algorithm, and this is managed through GMP.
The other operations are classical long integer operations. Steps 9 and 21 in

Algorithm 4, an inversion modulo m0 is required (|(k(1)
i)−1|m0). This operation

is performed using the Extended Euclidean Algorithm, over long integer data.
For the considered exponent sizes, the cost of the recoding is negligible. This is
explained by the small size of the exponent in comparison with the size of the
data processed during the modular exponentiation (see the key sizes given page
11). The timings given in the next Section include this recoding.

Test processing : the tests involve a few hundred dataset, which consists of ran-
dom exponent inputs and an exponentiation base with the precomputed val-
ues stored. We compute 2000 times the corresponding exponentiation for each
dataset and keep the minimum number of clock cycles. This avoids the cold-cache
effect and system issues. The timings are obtained by averaging the timings of
all dataset.

5.2 Tests results and comparison

The three considered exponentiation algorithms were coded in C, compiled
with gcc 4.8.3 and run on the following platform: the CPU is an Intel XEONr

E5-2650 (Ivy bridge), and the operating system is CENTOS 7.0.1406. On this
platform, the Random Access Memory is 12.6 GBytes. One notices that the
performance results include the recoding in the radix-R and m0,m1 cases. The
implementation results confirm the complexity evaluation, for key sizes of 224,
256, 384, and 512 bits. However, the better results are for 384 and 512 bits.

In Table 4, we provide the most significant results. The gains shown are
roughly in the same order of magnitude as the one of the complexity evaluation.
In particular, for the largest key size (512 bits), the storage of our m0,m1 ap-
proach is nearly ten times less than the one required with the Fixed-base Comb
method, and nearly 14 % less than the one required for the Radix-R method,
for the same computation timing, about 12.5× 106#CC.

6 Conclusion and future work

In this paper, we have presented a new method for fixed-base exponentia-
tion using a radix-R conversion with RNS representation of every radix-R digits,
using an RNS base with two moduli B = {m0,m1}. We have designed a recod-
ing algorithm, which computes our m0m1 representation of the exponent, and

Enhanced Digital Signature using RNS Digit Exponent Representation 15

Table 4. Synthesis of implementation results, clock cycles and storage (kB). Test
performed on an Intel XEON E5-2650 (Ivy bridge), gcc 4.8.3, CENTOS 7.0.1406.

Modular Exponentiation
State of the Art methods

Fixed-base Comb radix R m0,m1 rec. ratio

#CC #CC #CC m0,m1

Storage Storage Storage /Best S.o.A.

key size 224 bits, field size 2048 bits (level of security: 112 bits)
221108 227838 219864 ×0.994

1023.5 kB (w = 12) 829 kB (R = 91) 580 kB (m0 = 89,m1 = 6) ×0.700
210074 206888 207072 ×0.985

2047.5 kB (w = 13) 1324 kB (R = 163) 766 kB (m0 = 127,m1 = 7) ×0.579
149690 147877 146156 ×0.988

65535 kB (w = 18) 7289kB (R = 1223) 21599 kB (m0 = 5417,m1 = 6) ×2.96

key size 256 bits, field size 3072 bits (level of security: 128 bits)
524539 502981 501466 ×0.997

1535 kB (w = 12) 1411 kB (R = 91) 897 kB (m0 = 79,m1 = 6) ×0.636
449397 445871 446444 ×1.001

6143 kB (w = 14) 2251 kB (R = 163) 2056 kB (m0 = 211,m1 = 6) ×0.913
356892 354640 354071 ×0.998

98303 kB (w = 18) 6414 kB (R = 571) 12843 kB (m0 = 1721,m1 = 7) ×2.002

key size 384 bits, field size 7680 bits (level of security: 192 bits)
4442590 4492191 4409584 ×0.993

1918 kB (w = 11) 3430 kB (R = 53) 1134 kB (m0 = 23,m1 = 10) ×0.467
3554339 3524896 3551437 ×1.008

15358 kB (w = 14) 8290 kB (R = 163) 4164 kB (m0 = 113,m1 = 10) ×0.502
2736341 2543480 2743399 ×1.079

245758 kB (w = 18) 45221 kB (R = 1223) 29961 kB (m0 = 1031,m1 = 7) ×0.662

key size 512 bits, field size 15360 bits (level of security: 256 bits)
18632429 19260731 18550238 ×0.996

15536 kB (w = 13) 13765 kB (R = 91) 4745 kB (m0 = 41,m1 = 10) ×0.345
14848261 15401002 14813453 ×0.998

122876 kB (w = 16) 34418 kB (R = 163) 22109 kB (m0 = 257,m1 = 11) ×0.642
12477816 12193232 12499600 ×1.025

983036 kB (w = 19) 119061 kB (R = 1223) 102820 kB (m0 = 1381,m1 = 7) ×0.863

we have used it in a modular exponentiation algorithm which provides memory
storage savings or improve the performance in terms of clock cycles per modular
exponentiation, while offering a total flexibility in terms of storage amount. We
have provided a complexity evaluation, which shows that our approach improves
significantly the complexity/storage trade-off. We have then implemented this
approach in order to check the performance benefits. We have compared our
approach with two other classical approaches, the Fixed-base Comb and the
Radix-R, and have confirmed the complexity results, showing the better stor-
age/performance trade-off of our approach.

Two issues remain opened:

– Side-channel analysis is also a major threat, even in case of software im-
plementation. For example, Gueron in [7] mentions the cache attack. In the
present paper, we did not take this threat into account in the memorization
process. However, by using a storage pattern spreading the data in memory,
we could ensure the resistance against cache-attacks in the same way as the

16 Thomas Plantard, Jean-Marc Robert

one used by Gueron without penalty. This needs to be implemented in all
algorithms for fair comparison.

– Our approach can be applied to Elliptic Curve Cryptography, particularly
to the ECDSA signature protocol. In this case, one needs to compute El-
liptic Curve Scalar Multiplication. However, the relatively cheap doubling
of point operation in comparison with point addition for the NIST recom-
mended curves makes the benefits of our approach not as good as the one in
the modular exponentiation case. Therefore, this approach needs to be im-
plemented in relevant curves. For example, the twisted Edwards curve is an
example of curve with relatively equivalent doubling and addition in terms
of complexity.

References

1. The GNU Multiple Precision Arithmetic Library (GMP). http://gmplib.org/.
2. Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of three

modular reduction functions. In Advances in Cryptology - CRYPTO ’93, Proceed-
ings, pages 175–186, 1993.

3. Acting Secretary Cameron Kerry and USST/Director Patrick Gallagher. Digital
Signature Standard (DSS). In Federal Information Processing Standards Publica-
tions, volume FIPS PUB 186-4. NIST, 2013.

4. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, Proceedings of CRYPTO ’84, pages
10–18, 1984.

5. Harvey L. Garner. The residue number system. In Proceedings of the Western
Joint Computer Conference, pages 146–153, 1959.

6. Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms,
27(1):129–146, 1998.

7. Shay Gueron. Efficient software implementations of modular exponentiation. J.
Cryptographic Engineering, 2(1):31–43, 2012.

8. Darrel Hankerson, Julio López Hernandez, and Alfred Menezes. Software Imple-
mentation of Elliptic Curve Cryptography over Binary Fields. In Cryptographic
Hardware and Embedded Systems - CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 1–24. Springer, 2000.

9. Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 3rd Edition. Addison-Wesley, 1998.

10. Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precompu-
tation. In Advances in Cryptology - Crypto ’94, volume 839 of Lecture Notes in
Computer Science, pages 95–107. Springer, 1994.

11. Lourdes López-Garćıa, Luis J. Dominguez Perez, and Francisco Rodŕıguez-
Henŕıquez. A pairing-based blind signature e-voting scheme. Comput. J.,
57(10):1460–1471, 2014.

12. Peter Montgomery. Modular Multiplication Without Trial Division. Mathematics
of Computation, 44(170):519–521, 1985.

13. U.S.D.C. Rebecca Blank and USST/Director Patrick Gallagher. Recommendation
for Key Management. In Computer Security, volume Part 1, Rev 3. of NIST Special
Publication 800-57, pages 62–64. NIST, 2012.

14. Antonin Svoboda. The numerical system of residual classes in mathematical ma-
chines. In IFIP Congress, pages 419–421, 1959.

http://gmplib.org/

	Enhanced Digital Signature using RNS Digit Exponent Representation

