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Automatic choice of the threshold of a grain filter via
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Romain Abraham, Maitine Bergounioux, Pierre Debs

Laboratoire MAPMO, CNRS, UMR 7349, Fédération Denis Poisson, FR 2964, Université
d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France

Abstract

The goal of this paper is the presentation of post-processing method allowing
to remove impulse noise in binary images, while preserving thin structures. We
use a grain filter as in [5]. We propose a method to automatically determine the
required threshold using Galton-Watson processes. We present numerical results
using X-tomography images of a granite block (2D and 3D) to illustrate how we
get rid of the noise while cracks are kept.
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1. Introduction

A challenging issue in imaging processing is the identification of thin struc-
tures. It may be blood vessels, leaf veins or streets in a satellite or aerial image.
From a mathematical point of view these structures have a zero Lebesgue mea-
sure and we have to use the Hausdorff measure instead. From a practical point of
view, these structures may be not viewed once the discretization has been done.
There are many methods to achieve this goal both from theoretical and numerical
points of view (as the morphological skeletonization for example). However, they
may be not very satisfactory since the images are very often corrupted with a
high level of noise that, in addition, may not be a Gaussian one.

The goal of this paper is not the presentation of an image processing model
that would identify the structures better than the existing ones but rather give a
post-processing method allowing to remove any residual noise effect. Therefore,
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we do not report on thin structures recovering techniques, and do not quote the
related works.

The example we have in mind is the recovering of cracks inside a granite block
(whose 2D slice is given by Figure 1.1) while removing the (impulse) noise. The
right hand side image is the result of a pre-processing method that we present in
Section 3, which allows to get rid of contours that are not cracks.

(a) Original Slice (b) Binarized Slice

Figure 1.1: Original and binarized 2D slice of a 3D granite sample

There are many filters to address this problem. However, we focus on a grain
filter [5]. Precisely, in what follows, we suppose that we have a binary image
containing features we want to extract (namely thin structures as cracks). The
image is corrupted by an impulse noise where every pixel is 1 with probability p
and 0 with probability 1−p independently of the others. One feature that allows
to distinguish cracks from the noise is that the cracks size is much larger than
the connected components (that we define in the sequel) the noise may create.
Therefore, a grain filter can be used in order to suppress the small connected
components and keep the ones whose size is greater than some threshold a0. The
aim of this paper is to give a method to compute the threshold of the grain filter
via a statistical hypothesis testing.

For that purpose, throughout the paper, we consider that the image contains
only an impulse noise with parameter p (hypothesis H0). Under H0, we denote
by C0 the connected component of the image that contains a given point, say the
origin (0, 0), and by ]C0 its cardinal. We then fix a level ε > 0 for the test and
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find a0 such that, under H0,

P(]C0 ≥ a0) ≤ ε.

Keeping the connected components of size greater than a0, we remove most
of those due to the noise. The goal of this paper is to get an upper bound for the
looked after probability, and hence to automatically compute the threshold a0,
by comparing the size of C0 with the total population size of a Galton-Watson
process.

We present the computation of the threshold in the next section and section
3 is devoted to the numerical realization (algorithms and numerical experimen-
tation).

2. Computation of the threshold

2.1. Notations

If k < ` are two integers, we denote by [[k, `]] the set {n ∈ Z, k ≤ n ≤ `}.
We work with the infinite norm on Z2 i.e. if x1 = (i1, j1), x2 = (i2, j2) are

two points of Z2, we set ‖x1 − x2‖ = max(|i1 − i2|, |j1 − j2|).
For x ∈ Z2, B̄(x) denotes the closed ball (with respect to the previous norm)

centered at x with radius 1 and B(x) is the pointed ball B̄(x)\{x}. The elements
of B(x) are called the neighbors of x.

For any finite subset A of Z2, we denote by ]A the cardinal of A.

Definition 2.1. A set A ⊂ Z2 is said to be connected if, for every x, y ∈ A, there
exists a finite sequence (x0, . . . , xn) such that

• x0 = x, xn = y;

• ∀i ∈ [[0, n]], xi ∈ A;

• ∀i ∈ [[1, n]], xi ∈ B(xi−1).

We fix a positive integer N and consider (for simplicity) the domain Ω =
[[−N,N ]]2. A binary image on Ω will be an application X : Ω 7−→ {0, 1}. In all
the paper, we always make the confusion between the binary image X and the set
X−1(1) = {x ∈ Ω, X(x) = 1}, which is the set of the black pixels . In particular,
we talk of the connected components of the image instead of the set X−1(1).

2.2. Galton-Watson process

A Galton-Watson process is a branching stochastic model introduced in 1873
by Francis Galton to describe population growth and is still the object of active
research. We refer to [2] for a comprehensive exposition on this topic. We first
give a formal definition of this process.
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Definition 2.2. A Galton-Watson process is a stochastic process (Zn)n∈N defined
as follows: consider a probability measure ν on the set of non-negative integers

(called the offspring distribution) and a family (ξ
(n)
i , n ≥ 0, i ≥ 1) of i.i.d. random

variables with distribution ν. Then the process (Zn)n∈N is defined recursively by
Z0 = 1,

Zn+1 =

Zn∑
i=1

ξ
(n)
i for n ≥ 0

with the convention that Zn+1 = 0 if Zn = 0.

To give an intuitive picture of that process (Zn)n∈N, let us describe it in-
formally as a population evolution model. We start with a single individual at

generation 0. This individual gives birth to a random number ξ
(0)
1 of offspring

with distribution ν which form generation 1. These offspring reproduce accord-
ing to the same distribution ν independently of each other and independently
of the past and so on. Hence, the variable Zn represents the population size at

generation n whereas the variable ξ
(n)
i represents the number of offspring of the

i-th individual of the n-th generation.
Of course, if the population dies out at some time n, then the population is

zero for all further time: 0 is called an absorbing state for the process (Zn)n∈N.
One of the initial questions raised by Francis Galton was the computation of

the probability that the population dies out in finite time. This probability is
called the extinction probability and is given by

P(∃n ∈ N, Zn = 0) = lim
n→+∞

P(Zn = 0).

To avoid trivialities, we suppose that ν(0) > 0 (if not, the extinction probability
is 0) and that ν(0) + ν(1) < 1 (if not, the extinction probability is clearly 1).
The answer to the question is given by the following result (see Chapter 1 Section
5 of [2])

Proposition 2.1. Let ξ be a random variable with distribution ν. We denote by

µ = E[ξ] =

+∞∑
k=0

kν(k)

the mean number of offspring, and by

F (s) = E[sξ] =

+∞∑
k=0

ν(k)sk for s ∈ [−1, 1],
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the generating function of ν.
Then, the extinction probability of the process (Zn)n≥0 is given by the smallest

non-negative root q of the equation s = F (s).
In particular, if µ ≤ 1, q = 1 (extinction arises almost surely) whereas if

µ > 1, then q < 1 (the population has a positive probability for living forever).

The offspring distribution ν and the Galton-Watson process (Zn)n≥0 are called
sub-critical (resp. critical, super-critical) if µ < 1 (resp. µ = 1, µ > 1).

2.3. Stochastic domination

Let m be the number of neighbors of one pixel. With our definition of B(x),
we have m = 8 but the method remains valid for a general neighborhood. Let
p ∈ (0, 1) and (Zn)n≥0 a Galton-Watson process with the binomial B(m, p) dis-
tribution as offspring distribution ν, that is, for 0 ≤ k ≤ m,

ν(k) =

(
m

k

)
pk(1− p)m−k.

According to Proposition 2.1, in order to obtain a sub-critical Galton-Watson
process, we assume that mp < 1. We denote by ]Z the total population size:

]Z =

+∞∑
n=0

Zn.

Theorem 2.3. Under H0, the size ]C0 of the connected component C0 (and thus
of any connected component) is stochastically dominated by ]Z, that is:

∀k ∈ N, P(]C0 ≥ k) ≤ P(]Z ≥ k).

Proof. The main ideas of the proof are taken from [8] where the size of a connected
component that arises in continuum percolation is compared to the size of a
Galton-Watson process with Poisson offspring distribution.

Let (X(i,j), (i, j) ∈ Z2) be a family of i.i.d. Bernoulli random variables with
parameter p. This models the noise of the image under H0. Remark that if the
stochastic domination is true for an infinite image, it is a fortiori true for an
image defined on [[−N,N ]]2. If A is a subset of Z2, we denote by

XA = {(i, j) ∈ A, X(i,j) = 1}.

Then, ]XA is distributed according to a binomial distribution with parameters p
and ]A. Moreover, if A and B are disjoint subsets of Z2, then XA and XB are
independent.

In order to label the points of some subset in a unique way, we define a total
order (denoted by ≤) on Z2. Let x1, x2 ∈ Z2. If ‖x1‖ < ‖x2‖ then we set x1 ≤ x2.
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To compare two points with the same norm, we label the 8n points of norm
n as on Figure 2.1.

1

234

5

6 7 8

Figure 2.1: Labeling of points of norm n

Then, if ‖x1‖ = ‖x2‖, we say that x1 ≤ x2 if the label of x1 is less than the
label of x2.

We first construct the connected component C0 recursively. We define a se-
quence (W̃n)n≥0 of subsets of Z2 such that C0 =

⋃
n≥0 W̃n in the following way:

• W̃0 = {(0, 0)}.

• Suppose that W̃0, . . . , W̃n are constructed with W̃n = {x1, . . . , xk} labeled
in increasing order. Then, we set

W̃n+1 =
k⋃
`=1

XC`

where

C` = B(x`) \

`−1⋃
j=1

B̄(xj)
n⋃
i=1

⋃
x∈W̃i

B̄(x)

 ,

with the convention

0⋃
j=1

B̄(xj) = ∅.

• If W̃n = ∅, then we set W̃k = ∅ for every k > n.
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Remark that, by construction, the C` are pairwise disjoint.

In a second step, we consider a branching random walk (Wn)n≥0 on Z2 (we
refer to [10] for more details on branching random walks). This process takes its
values in the set

⋃
n≥0(Z2)n of finite sequences of points of Z2 (with the convention

(Z2)0 = {∅}) and is also defined recursively as follows:

• W0 = (0, 0).

• Let us suppose that Wn is given and is non-empty, say Wn = (xn1 , . . . , x
n
kn

).
For every i ≤ kn, we consider the 8 neighbors of xni (ranked as on Figure
2.2) (y1, . . . , y8) and consider the sub-sequence W i

n+1 formed by taking each
yj with probability p, independently of the others (and independently of the
other points xnj , i 6= j). Then Wn+1 is the concatenation of all the sub-

sequences (W i
n+1, 1 ≤ i ≤ kn). Remark that a pixel may appear several

times in the sequence Wn+1.

1

234

5

6 7 8

Figure 2.2: Labeling of the neighbors of a point x

• If Wn = ∅, then Wn+1 = ∅.

The subsequence W i
n+1 may be seen as the offspring of the pixel xi and ]W i

n+1 is
distributed according to a binomial B(8, p) distribution. Therefore, the process
(]Wn+1)n≥0 is distributed as a Galton-Watson process starting from a single
individual and with offspring distribution B(8, p).

We now define a pruning procedure for the process (Wn)n≥0 which defines a
set-valued process (Ŵn)n≥0 as follows:

• Ŵ0 = {(0, 0)}.

• Suppose that we have constructed Ŵ0, Ŵ1, . . . , Ŵn where each set Ŵi is
composed of elements of Wi, with Ŵn = {x̂n1 , . . . , x̂nk} (ranked in increasing
order). To every x̂ni there corresponds a point xnji of Wn and we set

Ŵ i
n+1 = W ji

n+1 \

i−1⋃
`=1

B̄(x̂n` )

n⋃
r=1

⋃
x∈Ŵr

B̄(x)


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and then

Ŵn+1 =
k⋃
i=1

Ŵ i
n+1.

• If Ŵn = ∅, then Ŵn+1 = ∅.

It is clear by construction (pruning procedure) that ]Ŵn ≤ ]Wn for every n ≥ 0
and that the process (Ŵn)n≥0 is distributed as the process (W̃n)n≥0 (since the
recursive formulas are same), which ends the proof.

2.4. Computation of the threshold

Let (Zn)n≥0 be a a sub-critical Galton-Watson process with offspring distribu-
tion a binomial B(m, p). For this offspring distribution to be sub-critical, recall
that we must suppose that

mp < 1. (2.1)

We need an upper bound for the probability P(]Z ≥ k). For this purpose, we
use Dwass formula that relates the total population size of any sub-critical (or
critical) Galton-Watson process to the associated Lukasiewicz random walk, see
[6]:

Proposition 2.2. Let (Zn)n≥0 be a critical or sub-critical Galton-Watson process
with offspring distribution ν. Let (Xn)n≥1 be a sequence of i.i.d. random variables
with distribution ν. We set for every n ≥ 1

Sn =

n∑
i=1

Xi.

Then we have

P(]Z = n) =
1

n
P(Sn = n− 1).

Recall that ν is the binomial B(m, p) distribution; then for every n ≥ 1, Sn
is distributed according to a binomial B(mn, p) distribution (as the sum of i.i.d
B(m, p) random variables). Therefore

P(]Z = n) =
1

n

(
mn

n− 1

)
pn−1(1− p)mn−n+1. (2.2)

This exact formula allows us to compute the looked after threshold:

Proposition 2.3. We set

q =
mmp(1− p)m−1

(m− 1)m−1
, and C =

√(
m

m− 1

)
e(1− p)
pK2

1

1− q
(2.3)
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with K = e
3
2
(1−ln 3

2
). Then, for every ε > 0, the threshold is given by

a0 =
ln ε

C

ln q
(2.4)

that is for every a ≥ a0, we have

P(]Z ≥ a) ≤ ε.

Proof. By Proposition 2.2 and Equation (2.2), we get for every a > 0

P(]Z ≥ a) ≤
∑
n≥a

(
mn

n

)
pn−1(1− p)mn−n+1.

We now use the following bounds for the factorial function whose proof is post-
poned to the end of this section:

Lemma 2.4. For every positive integer n, we have

Knn+
1
2 e−n ≤ n! ≤ nn+

1
2 e−ne (2.5)

with K = exp
(
3
2

(
1− ln 3

2

))
.

Using these bounds in the binomial coefficient, we get

P(]Z ≥ a) ≤
∑
n≥a

(mn)mn+
1
2 e−mne

K2nn+
1
2 e−n(mn− n)mn−n+

1
2 e−mn+n

pn−1(1− p)mn−n+1

≤
(

m

m− 1

) 1
2 e(1− p)

pK2

∑
n≥a

(
mmp(1− p)m−1

(m− 1)m−1

)n
n−

1
2

≤
(

m

m− 1

) 1
2 e(1− p)

pK2

∑
n≥a

qn.

Let us remark that the function x 7−→ x(1− x)m−1 reaches its maximum on
the interval [0, 1] at x = 1

m . As we supposed that p < 1
m , then

q <
mm 1

m

(
1− 1

m

)m−1
(m− 1)m−1

= 1.

The previous sum is then finite and

P(]Z ≥ a) ≤
(

m

m− 1

) 1
2 e(1− p)

pK2

qa

1− q
:= Cqa.
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Therefore (recall that q < 1 which gives ln q < 0),

a ≥
ln ε

C

ln q
⇒ Cqa ≤ ε⇒ P(]Z ≥ a) ≤ ε.

Proof of Lemma 2.4. By the trapezoidal rule, as the logarithm function is con-
cave, we have for every positive integer k

ln(k + 1) + ln k

2
≤
∫ k+1

k
ln t dt.

This implies

n−1∑
k=1

ln(k + 1) + ln k

2
≤
∫ n

1
ln t dt ⇔ lnn!− lnn

2
≤ n lnn− n+ 1

⇔ lnn! ≤
(
n+

1

2

)
lnn− n+ 1

⇔ n! ≤ nn+
1
2 e−ne

which gives the upper bound.
Still using the concavity of the logarithm function, its graph is always below

its tangent which is is given at point k by the equation

y =
1

k
x− 1 + ln k.

This yields∫ k+1/2

k−1/2
ln t dt ≤ ln k + 1/2k + ln k − 1/2k

2
= ln k

⇒
∫ n+1/2

3/2
ln tdt ≤

n∑
k=2

ln k = lnn!

⇒ (n+ 1/2) ln(n+ 1/2)− n− 3

2
ln

3

2
+ 1 ≤ lnn!

⇒ (n+ 1/2) lnn+ (n+ 1/2) ln(1 + 1/2n)− n− 3

2
ln

3

2
+ 1 ≤ lnn!

To get the lower bound, it suffices to check that

(n+ 1/2) ln(1 + 1/2n) ≥ 1/2

which comes immediately from the inequality

∀x ≥ 0, ln(1 + x) ≥ x− x2

2
·
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3. Application

3.1. Methodology

As already mentioned, the application we have in mind is the identification
of the cracks that appear in granite samples. More precisely, the sample has
been imaged1 via X-tomography process and we have to deal with a 3D image
which size is 1287 x 1287 x 99. For more details on the geological context one
can refer to [7, 9]. We present the analysis on a 2D slice for sake of simplicity
(see Figure1.1 (a)).
We first briefly present the preprocessing method:

1. Images are pre-processed with the method of [3, 4]. More precisely, we
use a variational model that allows to split the image in three components
denoted v, u and w:

• the v component is a smooth (continuous) function which distribu-
tional derivative is of bounded variation: it represents the image dy-
namic;

• the u component is a bounded variation function and ideally, should
be piecewise constant. It is called a cartoon component: the image
contours are given by the jump set of u;

• the w component is a L2 function that represents the details and/or
the noise.

The main inconvenient of variational methods is their dependence to some
parameters. The result of the above decomposition depends on the choice of
such parameters. We refer to [4] to get tuning rules for the two parameters
λ and µ to be used in this context. From a practical point of view we choose
µ ' 1.2λ.
The preprocessing method is robust enough with respect to the choice of
parameters and we can get rid of most noise (involved in the w component).
So we focus on the cartoon component u that involves all the contours.
However, some noise still remains. The challenge is to distinguish the cracks
that are thin structures from the noise (which is unstructured). However,
it will be still quite difficult to recover micro-cracks.

2. Next, the u component has to be binarized. This is a delicate step since
the threshold parameter is not easy to find. We decided to classical choose
s = m(u) − σ(u) where m and σ are the mean value and the standard
deviation respectively of u.

1We thank Olivier Rozenbaum , ISTO, Université d’Orléans, CNRS, BRGM
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3. Last, we use the thresholded (binary) image to implement the method. We
look for the connected components of the image and keep those which size
is less than the value a given by (2.3) and (2.4). We assume that m (the
number of neighbors in the chosen neighborhood) and ε (the test level)
are given. A typical choice of ε is the inverse of the number of connected
components as, by independence, the mean number of false positives would
be 1 in this case. However, we decided to choose a smaller value of ε which
improves the accuracy of the method, namely the inverse of the image size.

(a) Original (2D) image (b) u component

(c) v component (d) w component

Figure 3.1: Image decomposition with λ = 5 and µ = 7
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(a) u component (b) Thresholded u component

Figure 3.2: Threshold with s = m(u) − σ(u)

3.2. Algorithms

The generic algorithm writes:

Algorithme 1

Given data: cartoon image u (function of bounded variation) given by the
preprocessing decomposition, ε ' 1/M where M = (2N + 1)2 is the size of u ,
m = 32 − 1 = 8 for 2D images and m = 39 − 1 = 26 or 3D images (using 3 x 3
x 3 neighborhoods.)
1. Binarization of u: s = m(u)− σ(u) where m(u) is the mean value of u and
σ(u) the standard deviation. Define the binarized image ū by:

ū =

{
0 if u > s
1 otherwise

Compute

p ' Size (ū = 1)

M
.

Compute the threshold value a with (2.3) and (2.4). Verify that m < 1/p
otherwise set m = min(1/p, 8) (2D case) or min(1/p, 26) (3D case)
2. Find the connected components of ū (and their size)
3. Suppress the connected components of ū whose size is less than a to get the
significant contours ū∗

13



The probability p estimate is an important issue (that also determines the
m value). We first estimate it using the number of black pixels of the binary
image divided by its total size. This rough method gives an upper bound for p
that is too large an estimate. Indeed, the number of black pixels includes both
the noise and the cracks, whereas we only want to count the noisy pixels. So we
adopt a multi-scale like strategy to perform successive updates of p once we have
performed a more accurate selection of cracks pixels.

Algorithme 2 Algorithm with iterative update of p

Given data: cartoon image u (function of bounded variation) given by the
preprocessing decomposition - ε ' 1/M where M is the size of u.
Binarization of u to get ū.
Find the connected components of ū (and their size)
0. Initialization: k = 0, ū0 = 0.
1. Iteration k
Compute ū− ūk and

pk '
Size ((ū− ūk) = 1)

M
.

Compute the threshold value ak with (2.3) and (2.4).
Suppress the connected components of ū which size are less than ak: we get
ūk+1

2. Stopping criterion. Stop for instance when the sequence (pk) becomes
stationary.

3.3. 2D numerical experimentation

3.3.1. 2D results for λ = 5 and µ = 7

The cartoon component has been binarized using m(u)−σ(u) as a threshold-
ing parameter (see Figure 3.2). We present in Figure 3.3 the result of the first
iteration of Algorithm 2:

14



(a) Binarized u component (b) First iteration result

Figure 3.3: Results for iteration 1 (Algorithm 1): ε = 10−4 and m = 8. The probability estimate
is p = 0.0514.

We report in Table 3.1 the evolution of p estimate. We see that the iterative
process becomes stationary very quickly (5 iterations).

Iteration 1 2 3 4 5 6

pk 0.0514 0.0304 0.0246 0.0224 0.0217 0.0217

ak 39.27 18.16 14.70 13.51 13.18 13.18

Table 3.1: pk and ak values - m = 8, ε = 10−4

Next figure shows the evolution of cracks identification:
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 3.4: Iterations

3.3.2. Sensitivity to the preprocessing parameters λ and µ

We mentioned before that the preprocessing was robust with respect to the
choice of λ and µ parameters. These parameters should allow to put much noise
as possible in the component w. They have to be large enough, but not to much
to avoid the storage of too many contours in w. Though it is not our concern
here, we briefly report on the influence of the pre-processing using another pair
of parameters (λ, µ). For more details, one can refer to[3, 4]. A test has been
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done with λ = 1, µ = 2 and λ = 5, µ = 7 (we used the last pair for numerical
tests). Table 3.2 gives the evolution of p estimate with respect of the different
parameters.

Iteration k 1 2 3 4 5

pk for λ = 5, µ = 7 0.0514 0.0304 0.0246 0.0224 0.0217

pk for λ = 1, µ = 2 0.0936 0.0847 0.0820 0.0812 0.0812

Table 3.2: pk values - m = 8, ε = 10−4

(a) Iteration 1 (b) Iteration 4

Figure 3.5: Difference of solutions for the two different preprocessing parameter pairs.

We observe that it is preferable to choose large parameters so that we get
rid of much noise as possible. However, the difference of solutions gives a good
snapshot of the micro cracks so that a suitable strategy may be the use of different
preprocessing (with different parameters) to achieve a complete recovering of the
cracks.
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(a) u component for λ = 5, µ = 7 (b) u component for λ = 1, µ = 2

(c) Binarized u component for λ = 5,
µ = 7

(d) Binarized u component for λ = 1,
µ = 2

(e) Solution for λ = 5, µ = 7 (f) Solution for λ = 1, µ = 2

Figure 3.6: Comparison of solutions for two different preprocessing parameter pairs - ε = 10−4

and m = 8. 18



3.4. 3D - results

Though, we have presented the method with 2D images (whose domains are
J−N,NK2) we may extend the result to 3D stacks. Recall that we consider a 3D
stack which size is 1287 x 1287 x 99. Next figure shows the solution

Figure 3.7: Solution

4. Conclusion

The automatic threshold we propose seems to be performing and we are able
to recover a lot of information from the binary images. Though, we have presented
the method on a 2D material image, it can be applied to any binary images arising
from appropriate pre-processings. One may think on as angiography images for
example.

However, we could say that the size of the connected components is rather
a crude criterion for distinguishing cracks for noise and some other geometric
characteristic (such as the diameter of the sets or the ratio between the diameter
and “the width” whatever this means) would better discriminate our features.
The key point is that we also want to get an upper bound for the tail probability
P(]Z ≥ k) that we indeed could have for the total population size but which is
not obvious in general (see for instance [1] for recent works in this direction).

Another point that we did not really focus on is the estimation of the param-
eter p as it was not the central point of this work. Our method (especially after
iterations) seems rather satisfactory but always overestimates this probability.
Some more sophisticated methods have been developed in the literature any may
be used to improve the results.
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