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Abstract: The high temporal and spatial granularities rec-
ommended by the European regulation for the purpose
of environmental noise mapping leads to consider new
alternatives to simulations for reaching such informa-
tion. While more and more European cities deploy urban
environmental observatories, the ceaseless rising num-
ber of citizens equipped with both a geographical posi-
tioning system and environmental sensors through their
smartphones legitimates the design of outsourced systems
that promote citizen participatory sensing. In this con-
text, the OnoM@p system aims at offering a framework
for capitalizing on crowd noise data recorded by inexperi-
enced individuals by means of an especially designed mo-
bile phone application. The system fully rests upon open
source tools and interoperability standards defined by the
Open Geospatial Consortium. Moreover, the implementa-
tion of the Spatial Data Infrastructure principle enables
to break up as services the various business modules for
acquiring, analysing and mapping sound levels. The pro-
posed architecture rests on outsourced processes able to
filter outlier sensors and untrustworthy data, to cross- ref-
erence geolocalised noise measurements with both geo-
graphical and statistical data in order to provide higher-
level indicators, and to map the collected and processed
data based on web services.
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1 Introduction

Noise represents both societal and environmental con-
cerns, in particular for cities, which are subjected to a mul-
titude of noise sources and which count de facto numerous
exposed people. By the way, the Green Paper on Future
Noise Policy published by the European Commission re-
ports that the number of European people exposed to con-
tinuous daytime outdoor noise levels caused by transport
higher than 65 dB(A), represents between 17 and 22% of
the Union’s population (i.e. close to 80 million people) [1].
An additional 170 million citizens put up with noise levels
between 55 and 65 dB(A), which is the level at which peo-
ple become seriously annoyed during the daytime. Accord-
ing to the same report, road transport noise stands for the
dominant noise source and accounts for 90% of the pop-
ulation exposed to noise levels higher than the threshold
value of 65 dB(A). However, the

Environmental Protection UK! organization under-
lines that “noise can cause annoyance and fatigue, in-
terfere with communication and sleep, reduce efficiency
and damage hearing”. The World Health Organisation
(WHO) recommends in this respect guideline levels L,
of 30 dB(A) indoor and 50 dB(A) outdoor, for undisturbed
sleep and daytime sound levels respectively [2].

For facing these issues, the European Commission es-
tablished the European Noise Directive (END) 2002/49/EC
that aims at achieving a common approach in Europe to
avoid, to prevent or to reduce the harmful effects of envi-
ronmental noise exposure for health [3]. The END sets the
key priorities for the main agglomerations, as among oth-
ers making available information to the public concerning
their noise exposure and its health effects, and imposes
to elaborate noise maps. According to this directive, noise
mapping means “the presentation of data on an existing
or predicted noise situation in terms of a noise indicator,
indicating breaches of any relevant limit value in force, the

1 The Environmental Protection UK is a UK environmental Non-
Governmental Organization (NGO). Website: http://www.environmen
tal-protection.org.uk/.
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number of people affected in a certain area, or the number
of dwellings exposed to certain values of a noise indica-
tor in a certain area”. Such representations are commonly
issued from numerical simulations that enable the previ-
sion of noise levels with a fine spatial resolution, but that
cannot address the needs regarding the time variability of
noise (see section 2.1). This led to achieve noise measure-
ments through the creation of noise observatories (see sec-
tion 2.2) or by punctual (in time) measurements (see sec-
tion 2.3) at strategic noise black spots in order to improve
the time representativeness. However, such localised mea-
surements cannot deal with the requirements in terms
of spatial representativeness. Consequently, new alterna-
tives have to be proposed to respond to this space-time du-
ality. One can mention the assimilation of measurement
stations data into operational numerical models [4, 5]. Un-
fortunately, noise observatories represent a costly infras-
tructure in terms of both amount of deployed sensors and
maintenance. In this context, citizen sensing stands for
a great opportunity to get close to these requirements of
both temporal and spatial representativenesses. This ap-
proach rests upon the assessment of noise levels by vol-
untary individuals thanks to the microphone embedded in
their smartphone. The main advantage of this approach
is that all noise sources which compose the sound en-
vironment are considered, while traditional methods are
restrained to the modelled sources (i.e. excluding voices,
birds, human activities, wind, fountains, helicopters, etc.).
Participatory noise sensing results however in a serious
challenge for both the public authorities and research [6].
Firstly, the accuracy and relevance of the collected data
stand for both a key point and the main current limitation.
Secondly, the information fed back to the user is for now
mainly limited to an historic of the noise data measured,
which could be usefully enriched by indicators dedicated
to the understanding of the noise environment that sur-
rounds the user (e.g. Repartition of Noise Exposure (RNE),
Sound Exposure Level (SEL), etc.).

The present work is incorporated within the frame-
work of the European ENERGIC-OD project? (European
Network for Redistributing Geospatial Information to user
Communities — Open Data), which aims at addressing
the issues of both the interoperability and accessibility
to geospatial datasets by deploying a set of Virtual Hubs
that include INSPIRE-compliant systems and Coperni-
cus/GMES (Global Monitoring for Environment and Secu-
rity) services. In this paper, a system is described that con-
sists in enhancing citizens participatory sensing within

2 Website: http://www.energic-od.eu/.
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the context of noise exposure assessment. The originality
of the proposed approach stands in the full standard com-
pliant Spatial Data Infrastructure (SDI), named OnoM@p,
that embraces a specially developed smartphone applica-
tion based on android SDK. This application can report
back to the contributor useful noise exposure information
thanks to especially designed outsourced data treatments.
These latter processes control the accuracy of the provided
data and give access to a new set of indicators based on
both geographical and demographic data. The section 2
presents the pro and cons of the classical noise mapping
approaches. The section 3 highlights the possibilities of-
fered by participatory noise sensing alternatives, and re-
views the existing dedicated tools. The section 4 describes
the conceptual model behind the cloud system architec-
ture developed in the context of the ENERGIC-OD project.
The system includes the smartphone application, detailed
in section 5, that allows the user to collect and to share
noise data. Outsourced data treatments, presented in sec-
tion 6, gather and process the raw data sent by the smart-
phones and estimates a set of advanced indicators. Finally,
the section 7 concludes on the possible improvements and
further developments, as the production of noise maps.

2 Noise assessment background

2.1 Simulation-based noise maps

The European Noise Directive (END) 2002/49/EC recom-
mends the use of the French engineering model NMPB
2008 when considering road traffic noise [3]. The method
includes two methodological guides: the first guide book
deals with the calculation of sound emissions from road
traffic [7]; the second one describes the computation of
noise propagation [8]. For railway and aircraft noise,
the Netherlands national computation method published
in [9] and the Report on Standard Method of Computing
Noise Contours around Civil Airports [10, 11] are advised,
respectively. Besides, the standard method ISO 9613-2:1996
details how considering industrial noise [12].

The generation of simulation-based noise maps
presents some limitations. Firstly, such calculations re-
quire high computational capabilities due to the hugeness
of the entailed data [13]. Secondly, simulations do not in-
clude all noise sources. Thirdly, the numerical methods
employed can not account for time fluctuations of the
sound levels (i.e. sound events), which leads to “frozen”
noise maps that badly reflect the real sound environment
(e.g. traffic dynamic, cultural or festive activities, road
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works or plannings, etc.). Fourthly, numerical simulations
at the environmental scale (e.g. at an agglomeration scale)
rest on engineering computational models that require
huge information concerning the investigated area (e.g.
the building, the topography, the nature of soils and of
the road pavements, the yearly probabilities of occurrence
of meteorological conditions, etc.) and noise sources (e.g.
road, railway and air traffics, noisy industries and activi-
ties, etc.). Unfortunately, some of this simulation input is
sometimes missing, incomplete or difficult to estimate. In
particular, the modelling of the main urban noise source,
namely the road traffic, necessitates many information
(e.g. traffic flow, light/heavy vehicles ratio and respective
speeds, etc.) over the entire road network [14-16]. Also,
the soil constitution stands for an important input data,
which is most of the time not available over the whole
surface of the land cover.

2.2 Localised noise measurements

The deployment of experimental facilities stands thus for
an interesting alternative strategy for noise monitoring.
In particular, in contrast with simulations, measurements
enable to capture the time variations of environmental
noise levels and provide consequently complementary in-
formation to calculation results. Traditionally, noise mea-
surements in urban areas are undertaken with a sound
level meter or an equivalent professional device and by
appointed officers that gather data in some locations un-
der investigation for successive analysis and storage. How-
ever this manual collection approach based on expensive
equipments is dedicated to noise collection at a limited
number of punctual places, and does not fit with the re-
quirements of the increasing demand for higher granular-
ity of noise measurements in both time and space [17]. Con-
sequently, some authors experienced noise levels assess-
ment based on a wireless sensor network [18, 19]. Addi-
tionally, since a few years, urban noise observatories ap-
pear in a few French3 and European* agglomerations [20].
Such monitoring setups must achieve several targets for
complying with the European practice guide [14], namely
completing noise mapping approaches, informing citizens

3 Dunkerque and Calais agglomeration community, Lille metropolis
agglomeration community, Tle-de-France region, Greater Lyons urban
community, Saint-Etienne metropolis, Grenoble agglomeration com-
munity, Nice Cote d’Azur agglomeration community, Aix-en-Provence
agglomeration community.

4 Dublin (IRL), Rotterdam (NL), Oss (NL), Gdansk (PL), Brussels (B),
Turin (I), Madrid (E), Barcelona (E).
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about their noise exposure, as well as capitalizing and
sharing knowledge concerning environmental noise [21].
In addition, some works aim at capitalizing on noise mon-
itoring networks by assimilating the collected experimen-
tal data for correcting simulated noise maps [4, 5]. The rise
of “smart cities” projects shows the interest of urban ag-
glomerations for acquiring environmental monitoring sta-
tions®.

2.3 Mobile noise measurements

A finer spatial granularity can be obtained experimen-
tally through mobile measurements [22]. In-transit mea-
surements consists in recording noise levels along a jour-
ney and involve two main devices: an acoustic sensor
(a sonometer usually) and a global positioning system
(GPS). The synchronization of both devices enables to get
geo-localized acoustic data (typically global and third oc-
tave bands A-weighted equivalent sound pressure levels
Leq,f..15)- The representativeness of the collected data is
ensured by performing several measurements at given lo-
cations and at various moments of the day, in order to
end up with satisfying temporal and spatial representa-
tivenesses. In practice, a journey is generally defined and
this path is discretised into a set of predefined “theoreti-
cal” points with a fixed spatial resolution (e.g. one point ev-
ery 5 m in [23]). The gathered experimental GPS positions
are then replaced with the nearest ones among the fixed
map “theoretical” locations. Thus, if the samples collected
at each point are of at least 10 s duration, a few relevant in-
dicators can be estimated for describing the noise dynam-
ics at short term (statistical indexes, time variations, etc.).

Mobile measurements require a soft transportation
mode, namely walking or cycling, in order to prevent
from the noise produced by the transportation mode itself.
Some experimental aspects of the walking measurements
are discussed in [24]. In particular, the impact of the mo-
bile transducer’s mounting location (shielding effect) is re-
ported to be in the order of 1.3 dB(A) to 1.5 dB(A) accord-
ing to the device mounting® (around the waist or upon the
shoulders). Carrying the sonometer over the shoulders [26]
is often the solution retained for avoiding the screen ef-
fect of the parked vehicles. Otherwise, cycling transporta-

5 Some smart sensor network solutions are already developed and
deployed, as the ASAsense technology (see http://www.asasense.
com/).

6 In [25], it is already shown that A-weighted sound level measure-
ments performed with a microphone on a person’s body can be af-
fected of -1 to +5 dB(A) according to its location.
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tion mode allows to cover more quickly a large area but
entails reducing the spatial resolution, and requires to
avoid or even to filter the mechanical noises of the bicy-
cleitself [27]. Another approach for mobile noise measure-
ments consists in placing a microphone on a pneumatic
mast mounted on the roof of a car (the microphone is thus
held at 4 m high above the ground) and in collecting data
at strategic places when the car is parked [24, 28].

The main advantages of mobile measurements for the
purpose of refining the spatial resolution of noise maps
are discussed in [22]. Compared to fixed stations coupled
with classical interpolation methods (e.g. Inverse Distance
Weighting (IDW) or Kriging), the mean errors are con-
siderably lowered. Indeed, the high spatial variations of
noise levels and the predominant contribution of the lo-
cal sources make delicate the assessment of the noise
level in a street by means of measurements in neighbour-
ing streets. Mobile measurements allow to get around this
problem as the whole network is crossed.

On the other hand, the temporal sampling stands
for one of the main difficulties concerning mobile mea-
surements because particular events occurring during the
short measurement time (e.g. roadwork, traffic jam, siren,
etc.) can be unrepresentative of the site. This variability
can be minimized by averaging the data piled during the
same minute at locations at less than 50 m from the near-
est pre-fixed point and, then, applying a spatial Gaus-
sian filter [22]. Another main limitation of mobile mea-
surements concerns the geolocalization of the collected
data due to the GPS data deviation occurring sometimes
in built-up area (e.g. satellite signal lost). According to [29],
such errors can be overpassed by filtering the incoherent
GPS points too far from the fixed discretised path through
an automatic process based on a Differential Global Posi-
tioning System (DGPS). However, some errors remain in-
evitably; for example, if the GPS point falls on the fixed
discretised path but at a wrong location. These errors can
be much more damaging than the errors on the noise levels
themselves, as they can allocate high noise levels to quiet
streets, and reciprocally. The use of geographical data, and
therefore of a spatial data infrastructure, enables to con-
trol the contextual validity of GPS positions and to discrim-
inate more efficiently erroneous coordinates (e.g. GPS po-
sitions that match with a building location).
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3 New crowd sensing alternatives

3.1 Participatory sensing: challenges and
opportunities

The emergence of embedded sensor technologies in the
everyday life of citizens could revolutionize the involve-
ment of the population in social, economical or else
environmental concerns through the self-assessment of
their neighborhood environment quality. The participa-
tory sensing concept rests on user-centric monitoring and
environmental sensing by means of smartphones [30].
This notion recently arose as a low-cost alternative to large-
scale and costly infrastructures sensing based on sensor
networks [31]. Thus, numerous approaches rely on citizen-
centric surveys [32, 33]. Each citizen can easily contribute
to data collection. Opportunities to volunteer to take part
in scientific research arise in many disciplines such as
health research [34] or environmental monitoring [35].

Participatory sensing places individuals back to
their environment and neighborhood community through
cloud services that collect and analyze systematic data.
The smartphones functionalities provide a convenient way
for collecting user feedback in addition to raw data col-
lected by the integrated sensors. Crowdsourcing stands
for a great mechanism that directly and naturally en-
gages citizens, in addition to providing huge volume of
data and valuable feedback over a wide territory coverage
area. Numerous crowdsourcing-based applications were
designed for the purpose of grasping problems and gath-
ering data [36-38].

In particular, environmental conditions can be moni-
tored via devoted smartphones applications. The aBluSen
application was thus designed as a Bluetooth-based tem-
perature and humidity acquisition system [39]. Air qual-
ity monitoring by means of smartphones was also inves-
tigated. Thus, the GasMobile architecture relies on both
an Android application and a hardware system which con-
sists in a low-cost ozone sensor directly connected to the
smartphone through USB host mode [40].

Focusing on acoustics studies, citizen sciences stand
for an interesting complement to simulation-based map-
ping and fixed monitoring stations. Indeed, a large amount
of crowdsourced data is required for the purpose of assess-
ing environmental noise (see section 2.1). Furthermore,
dedicated processes have to be defined in order to clean
up the gathered data, to release relevant noise indicators,
as well as to store and to map quality data.

In our knowledge, the first use of mobile phones for
the purpose of acoustic data collection relies in reality in
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three Bluetooth-enabled devices: a mobile phone, a GPS
receiver and a sensor datalogger [41]. Since this first work,
recent researches aim at extending the mobile measure-
ments principle to participatory or collaborative measure-
ments with smartphones. Indeed, these complex devices
are able to both capture the ambient sound levels and
geolocalize the data. Such works rely on the constantly
increasing number of citizens equipped (see section 1),
which allows to consider that the high number of mea-
surements performed with heterogeneous equipments can
compensate the lower quality (e.g. precision, directivity,
etc.) of the smartphones microphones in comparison with
professional devices. In addition, very large areas and time
scales would be covered.

The use of smartphones for the purpose of acoustic
measurements gives rise nonetheless to several metrologi-
cal questions. For example, the microphones contained in
smartphones present a directivity chosen in order to maxi-
mize the sound field with a normal incidence” and can lead
to considerable errors at oblique incidence. In addition,
studies pointed out the high variations observed accord-
ing to both the device and noise measurement applica-
tion [42]. However, the best couples smartphone/software
tested in laboratory give an error in the order of 1 dB.
The authors also highlight that most of the microphones
embedded in the current smartphones are MEMS micro-
phones able to capture sound pressure levels from 30 to at
least 120 dB. Besides, according to [43], an automatic cal-
ibration process can be applied if identical smartphones
and applications are used by all the participants. Nonethe-
less, other authors reported a variation of the calibra-
tion offset even with identical mobile phones and appli-
cation [44].

3.2 Existing tools devoted to noise
harnessing

Numerous smartphone applications are available for the
purpose of acoustic data acquisitions [45]. According to
the application, a few particular features are available.
One of the most advanced project to date is Noise-
Tubed which is a system composed of a mobile phone mul-
tiplatform (i.e. i0S, Android, Java ME and Windows 8) ap-
plication and a web portal. The application allows to ini-
tialize noise measurements, to upload the collected data to

7 The common use of a smartphone consists of a source (i.e. the
mouth) located face to face and very near from the microphone.
8 NoiseTube Website: http://www.noisetube.net/.
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the server and then to visualize on a map thanks to Google
Earth [46, 47]. Some contextual information (mainly se-
mantic information) can be provided by the user by means
of a tagging component [48, 49]. A calibration process, de-
tailed in [50], is implemented according to both the sound
pressure level and frequency. NoiseTube additionally pro-
vides users with a noise exposure dosimeter that informs
them of their daily “dose” of noise pollution. In addi-
tion, NoiseTube can record and collect both perceptive and
acoustic data since the volunteer can also respond to a per-
ceptive questionnaire [43, 51]. The latter publication con-
cerning this application, renamed NoiseTubePrime due to
new features, mentions the outsourcing of encrypted user
data to existing commercial cloud infrastructures in the
context of privacy- preserving participatory sensing [52].
Thus, high availability, scalability, ease of deployment and
privacy are ensured. NoiseTube contributed mainly to two
research projects: the Cart_ASUR project® (2012-2016) and
the I-SCOPE (“Interoperable Smart City services through
an Open Platform for urban Ecosystems™) project!© 2012-
2015). Similar features are proposed by the WideNoise!!
application (renamed as WideNoisePlus), available for An-
droid and iPhone [53-56], that enables to measure noise
levels and to send them to a server for mapping the mea-
surements. Additionally, WideNoise offers users to post
measurements on facebook or twitter to raise awareness.
The WideNoise application, was developed within the
framework of the 7" Framework programme EveryAware
(Enhance environmental Awareness through social infor-
mation technologies) project!? (2011-2014). Alternatively,
NoiseSpy, described as a “low cost data logger for mon-
itoring environmental noise” [57], allows to assess per-
sonal exposure level. However, the purpose of the study
reported in [57] was mainly to demonstrate that mobile
phone sensing can be done at a city level and that gen-
erated noise map could be provided while still maintain-
ing the user anonymity. The NoiseSpy application is part
of the MobSens project that also embraces three other mo-
bile phone applications dedicated to health, social and air
pollution sensing [58]. The NoizCrowd application, devel-
oped within the framework of the BioMPE (“Bio-inspired
Monitoring of Pervasive Environments”) project® (2010—
2013) [59], produces noise data in RDF (Resource Descrip-

9 Cart_ASUR (“Mapping of the urban soundscape quality: accept-
ability of maps”) project website: http://noisetube.net/cartasur/.

10 I-SCOPE project website: http://www.iscopeproject.net/.

11 WideNoise website: http://www.widetag.com/widenoise/.

12 EveryAware project website: http://www.everyaware.eu/.

13 BioMPE project website: http://diuf.unifr.ch/pai/biompe/.
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Table 1: Compliance of the main smartphones applications with
criteria: (') compliant, () evoked with possible future improvement
and (==) unmentioned or clearly missing.

Context awareness
Unobtrusiveness
Energy awareness
Risk assessment
Open source
Standards/interoperability
Community exposure
Personal exposure
Calibration

CRITERIA

21 NowzCrowd
Z
=) NoisWatch
= EarPhone
=
~ | SoundOfTheCity
o
~ NoiseMap
= Laermometer
[-™
= NoiseDroid
o 2towr

tion Framework) format that enables to link the gener-
ated data with other datasets in the Linked Open Data
cloud* [60]. In addition, interpolation and noise propaga-
tion models are involved in order to generate missing data,
and the Google Map application is used to display extra
information at noise measurements locations. Otherwise,
the NoiseWatch application?® is integrated into a three-
level assessment structure whose topics are modelling,
measuring and citizen rating [61]. The application, imple-
mented by the European Environment Agency (EEA), adds
a new layer to the Eye on Earth'¢ online project that col-
lects and shares environmental data as information con-
cerning water, air, climate change, biodiversity and land
use. SoundOfTheCity'” rests on a continuous, context-
aware and unobtrusive participatory sensing approach for
measuring noise levels and for monitoring the community
exposure under the context of a healthy city [62]. By de-
fault, one-second noise measurements are performed ev-
ery 30 s. The anonymised measured data are sent to a cen-

14 Linked Data website: http://linkeddata.org/.

15 NoiseWatch website: http://discomap.eea.europa.eu/map/ Noise-
Watch/.

16 Eye On Earth website: http://www.eyeonearth.org/.

17 SoundOfTheCity website: http://citysound.itm.uni-luebeck.de/.
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tral server that aggregates and generates noise maps. This
Android application allows additionally city dwellers to
upload sound samples, to annotate the classification of the
recorded sound by cause and to provide each user with in-
formation on their personal noise exposure. NoiseMap'?
is an application built on similar principles as Noise-
Tube, but with the main distinguishing feature of allow-
ing users to check the collected data, to made them private
and to support real-time representation of user submitted
data [63]. Numerous other applications were designed for
the purpose of assessing noise levels (Laermometer [64],
UbiSound [65], NoiseMeter1 [66], 2Loud??® [45, 67], etc.).
More recently, a team of the French Institute for Research
in Computer Science and Automation (Inria) designed and
deployed the application SoundCity?°. The NoiseBattle
and NoiseQuest prototypes address the issue of moti-
vating citizens to collect noise data through gamification
techniques [68, 69]. Both gamified mobile applications use
the open source application NoiseDroid?! to collect data
but in a different way : in NoiseBattle, the “player” con-
quers areas of the city which is divided into cells, areas be-
ing won by providing more noise samples than other par-
ticipants; NoiseQuest consists in a single player approach
for which the correctness of the measurements are priori-
tized.

Besides, a few works aim at comparing smartphones
and/or applications in terms of functionalities, accu-
racy, context awareness, unobtrusiveness (i.e.) and energy
awareness [42, 70, 71]. A list of relevant criteria inspired
from [62] are pointed in Table 1 for the major smartphone
applications. Note that a few features are not necessarily
addressed in a similar way (e.g. the calibration approaches
proposed by the various applications vary, with different
levels of accuracy and practicability).

3.3 Scientific and technological bottlenecks

One main limitation of smartphone-based measurements
is that mobile phones agents would mainly measure their
daily sound exposure while the Directive 2002/49/EC fixed
at least two indicators that are much less covered [3]. The
control of the sensor faithfulness also constitutes a critical

18 NoiseMap application website: https://www.tk.informatik.tu-da
rmstadt.de/de/research/smart-urban-networks/noisemap/.

19 2Loud? website: http://www.2loud.net.au/.

20 SoundCity website: http://www.inria.fr/en/centre/paris-rocquen
court/news/launch-of-soundcity-mobile-application.

21 NoiseDroid website: https://wiki.52north.org/bin/view/SensorWe
b/OpenNoiseMap.
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issue that may be partly addressed by following the proce-
dure detailed in section 6.1.

Besides, the GPS sensors embedded in smartphones
present a typical precision of about 20 m to 50 m and a
maximum precision equal to 10 m. The geolocalization
stands for a major concern as GPS does not work indoors
and is energy-consuming. In addition, a location fix re-
quires a long period of time (on the order of 30 s, i.e. around
12 m). Another main source of geolocalization errors is due
to buildings that reflect/scatter and occlude satellite sig-
nals, leading to a reduced positioning precision in urban
environments. However, this issue can be partly alleviated
by automatically selecting the best-suited alternative loca-
tion provider (GPS, cell towers, wifi). In addition, collabo-
rative positioning based on the communication between
smartphones improves the positioning accuracy [72].

Participants themselves stand for a key point of col-
laborative measurements. In [50], the technical officers
were preselected and raised awareness among the acous-
tic measurement. The participants follow then a measure-
ment protocol defined by the research team. However, the
contributors to collaborative actions should be volunteers
who agree with frequently recording their sound environ-
ment with their mobile device, which leads to an “un-
limited” number of measurement participants?2. Conse-
quently, the volume of the data collection can be sub-
stantial. The constraints are also reduced for the opera-
tor as neither appointment nor particular location are de-
manded. The freedom granted to the participants carries
consequences on many aspects of the data acquisition.
The acquisition can be triggered at a time when the smart-
phone is buried in a pocket, held in the palm in appropri-
ate measurement configuration or, on the contrary, turned
to the inside of the hand for instance, or else worn by the
user in communication situation. To avoid these uncer-
tainties, some authors designed a set of modules based on
signal processing for the purpose of going back to mea-
surement configuration information [44]. Firstly, a call de-
tection module returns the state of the phone (in commu-
nication or not). If the phone is busy, the module checks
the phone status at regular time intervals until the phone
is ready to measure the environmental noise. Secondly,
a speech detection module based on spectral analysis en-
ables to classify speech from ambient noise and thus to
avoid the situation for which the smartphone carrier is not
calling but still speaking with somebody, or quite simply
the case of a passersby conversation. Thus the median am-

22 Everyone downloading the noise measurement application on its
smartphone naturally become a participant and a contributor.
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plitude of the spectrogram is calculated for frequencies
lower than 4 kHz in order to detect whether a conversation
is in progress. Thirdly, the authors implemented a context
discovery module which checks how the smartphone is car-
ried. For this issue, the 3-axis accelerometer included in
the smartphone is exploited. In addition, mobile phones
use infrared-based proximity sensors to detect the pres-
ence of a human ear for the purposes of both reducing the
display power consumption (by turning off the LCD back-
light) and disabling the touch screen (in order to avoid in-
advertent touches by the cheek). These inner sensors can
so be employed to know how the mobile phone is worn
(i.e. in the hand, in a pocket, etc.). However, according
to [44], the proximity sensor is suitable to determine the
hand sensing context, but is not adapted for the bag and
pocket sensing contexts. A threshold is thus applied on the
proximity sensor data, which are only used in hand sens-
ing context. Finally, the context classification is performed
by using a k-nearest neighbour (kNN) algorithm and the
best classification accuracy obtained rises to 84%. Finally,
the collected samples heterogeneity stands for the final
bias of the methodology. Indeed, since measurements are
achieved completely freely, some regions of the city, and
some time periods, are covered with a very high statisti-
cal representativeness, while others only gather a few (or
none) measurements.

The amount of collected data from such heteroge-
neous sources (applications, sensors, individuals, en-
vironmental quantities), the data management require-
ments in terms of analysis, research and processing, and
the exploiting of the gathered and generated data, place
the information system issues at the heart of participatory
sensing projects. The geographic information community
defined standards for collecting (sensor standards), stor-
ing (Relational DataBase Management System, RDBMS),
processing (spatial languages) and sharing geodata (view
and discovery services). The European INSPIRE Directive
incidentally established an infrastructure for spatial infor-
mation in Europe to support Community environmental
policies [73]. The Open Geospatial Consortium?3 (OGC) de-
fined standards (e.g. WPS, WMS, SFS, etc. See section 4.3)
in order to formalise sensors data. Such standards promote
the merging of different scientific skills within the context
of territory observatories.

The tripartite organization of crowdsourced-based
projects based on the combination of the citizens per-
sonal observations and harnessing, the policymakers col-
lection of data, and the scientific researches and develop-

23 Website: http://www.opengeospatial.org/.
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Figure 1: Conceptual model of the OnoM@p system.

ment of dedicated tools, stands for a promising capitaliza-
tion framework. Environmental noise data can be recorded
by the citizens who have sometimes the opportunity to
brand their noise data with some associated perceptive
feedbacks. These information are a valuable resource for
both the scientists and public authorities since they pro-
vide a low-cost alternative solution to simulations or fixed
sensors network monitoring while keeping the citizen at
the heart of both the research and action plans.

4 System architecture: OnoM@p

4.1 Project position

The proposed system is under development within the
framework of the ENERGIC-OD project that aims at de-
ploying a set of Virtual Hubs (VH) based on a broker
approach to offer to both end-users (through geopor-
tals) and machines (web services, applications), unique
and mutually consistent access points to heterogeneous
data sources, including INSPIRE-compliant systems and
Copernicus/GMES services. In this context, the main
originality of our framework’s concept compared to ap-
proaches detailed in section 3.2 rests upon the proposed
system prototype, named OnoM@p (Open noise Map).
This system relies upon a smartphone application dedi-
cated to both novice and experts volunteers who are con-
cerned about their own noise exposure and who agree
to anonymously upload their geolocalised noise measure-
ments along walking journeys or at specific locations. The
OnoM@p infrastructure aims at capitalising on interop-
erable standards in terms of data formats, transfer proto-
cols, as well as web view and discovery services, for many
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purposes. First, the data harvested by voluntary citizens
are enhanced by means of dedicated automated processes
able to control the data faithfulness (see section 6.1), to in-
tersect the upgraded data with both geographical and pop-
ulation data to furnish value-added datasets (see section
6.2) and to redistribute the data to both the scientific com-
munity and urban collectivities for then valuating the data
through their reuse for other goals and the development of
new related-services?.

4.2 General overview

The Spatial Data Infrastructure (SDI) can be represented as
a five- component system such as depicted in Figure 1 that
summarizes the conceptual model behind the proposed
framework. With the dedicated smartphone application
installed on their smartphone (see section 5), each individ-
ual can estimate its own noise exposure and, by upload-
ing its geo-localised measurements, contribute to a com-
munity noise data collection. The output database is inter-
connected with OGC standards through services for broad-
casting and consulting the database (see section 4.3). Thus
more advanced noise-related indicators as statistical and
spatial indicators are evaluated (see section 6) by combin-
ing the collected noise data with OpenStreetMap and sta-
tistical data (e.g. demographic data) through the Energic-
OD Virtual Hub. Finally, the gathered data are published
though Web Services. Such an initiative is thus valuable
at once for the citizen (i.e. at the individual scale), for the
collectivities and for the environmental science commu-
nity (i.e. at the collective scale). For scientists, this project
stands for an opportunity to gather a large amount of noise
data over a wide area and to study the feasibility of im-
proving the representativeness of simulation-based noise
maps by integrating crowdsourced data information. Such
a database can be also useful for many other purposes, in
particular concerning the data qualification. Such infor-
mation is also interesting for local collectivities and main
agglomerations that can lean upon this collective effort to
grasp information regarding the local noise concerns and
to better inform the population about its noise exposure.

24 An example of service would be an accessibility help service to
quiet places.
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4.3 Tools, frameworks and standards

The smartphone application is implemented through the
Android Software Development Kit (SDK). The sound sig-
nal processing is developed entirely in Java programming
language and integrated into the Android implementation
(see section 5). The standards entailed for both the send-
ing of the data by the user and the return of enhanced in-
formation toward the smartphone are detailed in Figure 2.
The data uploaded by the volunteers from the application
feed the database which is managed by the open source
spatial database H2GIS?> that completely complies with
the OGC for Structured Query Language (SQL) standards
and built on the Java DataBase Connectivity (JDBC) com-
pliant H2 database. H2GIS is harnessed for both building
the noise measurements database directly issued from the
users contributions, and computing additional noise in-
dicators by compiling the noise data with both statistical
and geographical data. The Geographic Information Sys-
tem (GIS) is also employed to filter or alert to potentially
poorly localised data based on the geographical database.
The data collected along a journey (i.e. a track) and shared
by the volunteers with the application are forwarded to
the database in zipped files that contains 3 files: a Geo]-
SON file that stores all track coordinates, a txt file2¢ that
contains the noise indicators computed along the track
and another txt file that concatenates some metadata con-
cerning the smartphone, the calibration method, etc. This
compressed file is transferred to the server by means of a
Web Processing Service (WPS) handled by the open source
software GeoServer?” which is used to share information,
to manage the database and to render thematic maps.
The zipped files received on the server are thus unzipped
and the extracted files are integrated into the database by
a relational database management system (RDBMS) SQL
script. The cross-calibration process and the estimation of
the advanced noise indicators (see section 6) is also han-
dled by GeoServer and implemented through Simple Fea-
tures Specification (SFS) for SQL. Besides, the resulting
data gathered in the database are made available as Web
Map Service (WMS) layers that are displayed on the smart-
phone in a custom map browser thanks to the open-source
JavaScript library Leaflet?® based on HTLM5 canvas.

25 H2GIS website: http://www.h2gis.org/.

26 Geo]JSONisan open encoding format of simple geospatial datasets
using standard JavaScript Object Notation (JSON).

27 Geoserver website: http://geoserver.org/.

28 Leaflet website: http://leafletjs.com/.
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Figure 2: Standard formats and protocols involved in the communi-
cation of the smartphone application and the OnoM@p framework.

5 Smartphone application

5.1 Smartphone’s microphone calibration

A calibration step must be achieved beforehand any
measurement. Two calibrations are conceived within the
OnoM@p system, which can be used separately or com-
bined: an a priori standard individual calibration de-
scribed hereafter and an a posteriori cross-calibration de-
tailed in section 6.1.

A high dispersion can be observed in measurements if
different devices and noise measurement applications are
used. This dispersion can theoretically be reduced thanks
to an individual calibration process. Such calibration was
proposed in [43], restraining however measurements to
the case when identical smartphones and applications are
used by all the participants. The objective of the a pri-
oriindividual calibration included in the OnoM@p system
is to determine the offset values to apply to the raw data
furnished by each smartphone per frequency bands. This
individual calibration should be theoretically carried out
in lab by comparing the smartphone’s outputs with refer-
ence results delivered by an accurate and reliable micro-
phone, what would debase both the relevancy and oper-
ability of the proposed outsourced system expected to be a
self-sufficient tool. This solution is nonetheless proposed
by the application for individuals equipped with a refer-
ence microphone by confronting either A-weighted global
sound levels L g;0p4; 01 preferentially A-weighted third oc-
tave band sound level spectra Ly f .

Incidentally, an alternative practical solution is pro-
posed here that consists in standardising the smart-
phone’s microphone at the vicinity of a public termi-
nal (e.g. a fixed noise monitoring station in a street or a
sonometer in a concert hall during a musical event) that
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records simultaneously with the mobile device the back-
ground noise and relays the results to the server that up-
date the data linked to the user profile in the database with
the calibration offset values.

5.2 Audio stream process

The audio stream furnished by the smartphone’s micro-
phone is picked up with a sampling frequency Fs =
44.1 kHz and handled as successive one-second sam-
ples for extracting A-weighted third octave band levels
Lgeq,f.,15- The process is made up with three steps. First,
an A-weighting filter is applied to the one-second time sig-
nal s;5(t) based on a Transposed-Direct-Form II structure
(also called “canonical” form). The A-weighted sample
Sa,15(t) is then band- pass filtered per third octave bands
by means of cascaded series of second-order “biquadra-
tric” (or “biquad”) filters sections, this cascaded struc-
ture being less sensitive to coefficient quantization and
roundoff errors [74]. This second step results in Ny sam-
ples s4 f. 15 (t) that correspond to the A-weighted time sig-
nals with spectral components comprised within the fre-
quency range of each nominal frequency f.. Finally, the A-
weighted equivalent sound levels Lyq f, 15 are computed
for each third octave band of nominal frequency f; from
the output A-weighted third octave band signals s4 f. 15(t)
as:

N; )
> Safaslnd

-1
Lpeq,f.,1s = 1010g;q EMT ) o)
ref

with N¢ the number of samples within the one-second sig-
naland p,¢f = 207° pPa the reference sound pressure. The
A-weighted global sound level L sgj0pq1,15 is €valuated from
the third octave band sound levels L, . ;, as:
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Lagiobat,1s = 101ogy, EE 1008ars) | | ()
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5.3 Smartphone application prototyping

The application is dedicated to Android devices. The inter-
face is made up of several activities detailed hereinafter.
During the measurement (i.e. along a track), the appli-
cation computes each second the equivalent A-weighted
sound levels for each of the Ny = 20 third octave bands
comprised between the nominal frequencies 125 Hz and
10 kHz (see section 5.2). A third octave bands spectrum
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is displayed and refreshed at each computation. The min-
imum, the mean and the maximum global A- weighted
sound levels Lmin, Lamean and Lamax are also given and
are calculated from:

Lamin = {min (Lagiobat,ny,) IN1s € [1, Nis]}, (3a)

Nis
Lmean = 1010g, (Nll Z 10(0‘1XLAglabaI'n15)> , (3b)
s
1

nys=

and  Lamax = {maX (LAglobal,nls) Inis € [1, le]} , (30)

where L ggiopai,n,, cOrresponds to the Nys values L ggiopal,1s
registered since the beginning of the measurement.

The results correspond to both acoustical and statis-
tical indicators computed for the whole duration of the
measurement. The percentile levels?® L 419, Laso and Lygg
stand for the sound levels exceeded for 10%, 50% and 90%
of the measurement period respectively. Moreover, the av-
erage A-weighted sound levels per third octave bands L, f,
are printed and the global sound level L jg10p4; is displayed
through both a numeric value and a coloured circular
gauge. The Repartition of Noise Exposure (RNE) is also
shown in the form of a pie chart that represents a classi-
fication of sound levels within five levels ranges, as fol-
lows: < 45 dB(A), 45-55 dB(A), 55-65 dB(A), 65—75 dB(A)
and > 75 dB(A).

An history screen gathers all performed measure-
ments and proposes three possible actions: to remove se-
lected measurements from the smartphone, to show se-
lected measurements on a map or to show the results in
numeric values.

A calibration screen enables the user to calibrate
its measurement device. The calibration consists in con-
fronting the result(s) given by the application with the
one(s) either a priori-known or delivered by a sonometer,
for a reference noise excitation. The application proposes
two calibration procedures as detailed in section 5.1. Cal-
ibration data (i.e. correction values and used calibration
method) are stored and linked to the user profile.

A help screen gives the user an advice concerning the
acoustic measurement in order to improve the measure-
ments quality and consequently the reliability of uploaded
data. Thus the user is kept apprised of some practical
notions regarding environmental noise measurement, e.g.
the importance of orienting the microphone in the main

29 L,10 represents the peak noise, L4550 the mean value of the noise
levels and L9 the mean value of the background noise.
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direction of the major sound sources and at a minimum
distance of his body, etc. Besides, a full documentation of
the application and some presentation videos will also be
provided on the OnoM@p website.

In writing the paper, the smartphone application is
largely operational, but a few of its sections still need
improvements or further developments. For instance, the
data transmission from the smartphone to the server
database has to be pursued and the implementation of the
third octave band filtering explained in section 5.2 must be
optimised.

In addition, the graphical user interface will propose
two modes of use: a novice mode and an expert mode. The
second mode, dedicated to experienced users, shall pro-
pose additional functionalities and include specific fea-
tures (e.g. the sound spectrum, some additional noise ex-
posure indicators, calibration options, etc.) and upgraded
information (e.g. acoustical time series, etc.)

5.4 Database structure

The database is populated with the three files contained in
each zip file send by a smartphone. Six tables are used to
collect all data in the database:

¢ appli_track contains the data referring to noise indi-
cators along the GPS tracks;

e appli_user aggregates information about the con-
tributors;

e appli_point is made up with measurement points
data with supplementary information concerning
the device state;

¢ appli_calibrate gathers the calibration values for the
GPS tracks for each nominal frequency;

e appli_freq gives the sound levels per nominal fre-
quencies for each measurement point;

¢ freq lists the nominal frequencies.

6 Outsourced data treatment

The collected raw noise data on the server are stored and
processed in order to describe and to evaluate the sound
environments, based on two steps. The first step concerns
the cross-calibration of the raw noise data for the purpose
of both detecting the outliers and improving the accuracy
of the geo-referenced noise measurements (section 6.1).
The second step consists in calculating advanced indica-
tors by combining the cross-calibrated noise data with ge-
ographical and statistical data (section 6.2).
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6.1 Cross-calibration

Even if an a priori standard individual calibration is
achieved (see section 5.4), what is not necessarily the
case, both some deviation and some dispersion remain
in the noise measurements, which can be associated with
the sensor or with the operator. Moreover, the individual
calibration is an expensive and time consuming process,
which loses in efficiency if the apparatus deviates with
time or with atmospheric conditions (i.e. air temperature,
ambient pressure, hygrometry).

Thus, an a posteriori cross-calibration is proposed
within the OnoM@p system, which is able to deal with a
heterogeneous mobile sensors network with not necessar-
ily previously calibrated devices. The objective of this out-
sourced cross-calibration is to rely on the mobile sensors
network for correcting the errors in the raw data furnished
by each individual sensor. This cross- calibration method,
which is described in detail in [75], is made of three succes-
sive steps: an outlier detection process, an individual sen-
sor correction based on the mobile sensors network and
a standardisation procedure involving fixed high-quality
noise monitoring stations.

The outlier detection stage aims at detecting the sen-
sors that provide inappropriate data, namely a high dis-
persion in the measurement errors of an individual sen-
sor. This dispersion can have several potential causes: a
careless user during the acquisition, a lack of quality of the
sensor, etc. Inversely, the sensors that provide high devia-
tions but low dispersions can easily converge towards low
errors, with the help of the mobile measurements network,
and are thus not pointed as inappropriate. Consequently,
a sensor with, for example, a systematic error equal to
+10 dB(A) compared to the mobile sensors network should
not be flagged as defective, whereas a sensor leading half
of the time to an error of -5 dB(A) and the rest of the time
to an error of +5 dB(A) compared to the mobile sensors net-
work should be highlighted as defective. The procedure
followed to determine if a given smartphone is valid or
defective consists in, first, calculating the differences be-
tween the sound levels measured by the smartphone with
the average of the sound levels issued from the whole sen-
sors network during the same periods of the day (not nec-
essarily the same day) and at close locations (i.e. within
a maximum radius of 20 m or at least in the same street).
Then, the dispersion in these differences is estimated and
the investigated sensor is flagged as defective if a given
threshold is exceeded. This estimate can however be bi-
ased by the high variability of the measured L4, 15 in
both time and space. As a result, a large dispersion can be
due to a high instability of the couple sensor/operator, but
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also be the consequence of sound events occurring during
the measurements. Thus, a balance has to be found be-
tween eliminating the apparently untrustworthy sensors,
and keeping a sufficiently large number of sensors for as-
sessing sound level variations. These threshold values are
discussed in [75].

The second step of the cross-calibration process con-
sists in estimating each smartphone bias according to the
smartphones network. This bias is evaluated as the aver-
age of the differences between the sound levels measured
by the smartphone and the average of the sound levels val-
ues returned by the mobile sensors network for the same
conditions as for the outlier detection stage (i.e. same pe-
riods of the day and close location). The underlying idea
is that, if a smartphone provides accidentally one mea-
sure that deviates from the other smartphones, it may be
due to the real variation of the noise level; but if it de-
viates systematically, this deviation can no longer be re-
garded as random but reveals instead a bias of the appa-
ratus. As a result of this second step, each sensor is associ-
ated with an estimated bias, which is stored and serves to
correct subsequently the raw data furnished by the corre-
sponding smartphone. However, the correction achieved
at this stage makes the assumption that the smartphones
network has a zero average bias, what is not necessarily
the case.

The last step relies on the estimate of the average
bias of the smartphones network through a comparison
with a fixed high- quality sensors network, if available.
This average bias is evaluated by calculating the difference
between the noise levels measured by the whole smart-
phones when they pass in the vicinity of a fixed trustwor-
thy sensor. The bias estimated by means of each fixed sen-
sor is averaged over the fixed sensors network. This as-
sumes however that the sound levels provided by the fixed
sensor and the ones given by a perfect mobile sensor pass-
ing by in front of it are equal, what cannot occur as the
locations of both sensors cannot be rigorously the same.
Further studies are required to design transfer functions
between the fixed sensor position and the smartphone lo-
cation for reducing this bias. Note finally that the average
bias of the smartphones network remains probably similar
from one city to another. Consequently, the estimated bias
could be imported from a city equipped with a high-quality
sensors network, hence limiting the installation and mon-
itoring costs.

The cross-calibrated data make up a set of geo-
referenced L. f, 15 Values that can be considered as reli-
able and are stocked in the database. These data are then
used to estimate the basic and advanced indicators pre-
sented hereafter.
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In writing the paper, this protocol was experienced
with a Matlab® algorithm and has to be transposed into
SQL programming language.

6.2 Indicators calculation
6.2.1 Basic indicators

The common indicators are calculated by aggregating the
cross-calibrated data gathered within a buffer area whose
radius (equal to at least 20 m) depends on the amount of
collected data. The estimated basic noise indicators are
the day-evening-night equivalent sound level L 4., and the
Daily Average Noise Patterns (DANP), which are the aver-
age Lyeq,11 value per 1 h-period of the day, evaluated as
in [76]. The L 4., value (Eq. (4b)) is deduced from the DANP
values (Eq. (4a)), by introducing the following evening and
night penalties:

Ni
DANP[hi;hM] = 1010g10 (1\:; Z 10(0.1><LAglobal,n,»)> , (4a)
i
ni

Lo = 1010830 3 % 100077 4 % 100002

8 0.1¢(Lnieni+10

v x 1003 »), (4b)
where [h;; hi,1] as subscript in the DANP indicator refers
to the time slot of the day (e.g. [17h;18h]) and N; is the num-
ber of L jg10p41 Values reported in the buffer area during this
period.

In writing the paper, the publishing of the noise map
with GeoServer remains under development.

6.2.2 Advanced indicators

Beyond these basic energetic indicators, advanced indi-
cators can be calculated to improve the description of
sound environments, which must be selected among the
large variety of sound indicators proposed in the litera-
ture [77]. This high diversity stands for the specificity of
the urban noise pollution characterized by both high spa-
tial and temporal variations and rich spectral components,
due to the plethora variety of sources. This wide number
of indicators also results from their different uses and tar-
gets as each implies different prerequisites: evaluation of
sound mitigation measures, communication with the cit-
izens, decision making, etc. Within the framework of the
ENERGIC- OD project, the sound indicators produced aim,
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on one hand, at intelligibly informing the users about their
noise exposure and, one the other hand, at helping them
to reduce this exposure through accessibility indicators.
Consequently, the indicators are selected based on both
their enforceability and transparency. Their calculation,
outsourced to the cloud server, takes profit of the power-
fulness of spatial SQL language features available through
the H2GIS engine (see section 4.3).

Exposure indicators are dedicated at characterizing
either the user own exposure or to the population ex-
posure. At an individual level, the personal exposure is
assessed by estimating and displaying within the smart-
phone application results screen both the Ly g,54 and
RNE values related to a measure (see section 5.4). At a pop-
ulation scale, the L 4., and DANP maps are combined with
occupation rates data (if available) in order to determine
the number of persons exposed to a L4, level higher than
a given threshold value or comprised within a range of
values. In addition to these spatial indicators sought at a
street scale or within selected buffered areas, the building
facade exposures are investigated by extracting from the
database the coordinates of the facades subjected to L 4en
levels over a fixed threshold value or between predefined
noise levels ranges.

6.3 Data enhancement

The data forwarded by the application users are made
more valuable at both an individual and public scales.
For the user, a valuable targeted feedback related
to its own needs through devoted services which har-
vest the noise database (i.e. benefiting from the whole
users’ contributions) stands for an added-value informa-
tion for the contributor. This shall moreover enable to
motivate the participant to continue contributing to the
crowd noise database by uploading geo-localized mea-
surements. The proposed fully-interoperable infrastruc-
ture is also designed to encourage new development ini-
tiatives that reuse the built database for the purpose of
user-centric services. For example, a few accessibility in-
dicators can be designed that aim at offering tools ded-
icated to reducing its personal noise exposure. First, the
participant’s exposure is represented along its measure-
ment track, as proposed in [23], through the Sound Expo-
sure Level (SEL). This indicator corresponds to the sum of
La,eq values registered along the contributor trip that is
deduced from the map of L., 15 values assuming a con-
figurable walking speed of 1.4 m.s™1. Spatial SQL features
can be used to estimate accessibility indicators by select-
ing the zones within a selected area that are exposed to
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a L,., value within a given range, the quiet zones within
a selected area with L., values below a given threshold,
or the quietest zone within a selected area. Finally, a tool
can be proposed to the user in order to help at reducing his
noise exposure over a defined route. This service should
rely on the Dijkstra shortest path algorithm that selects the
route that reduces the SEL, as proposed in [23].

At a collective scale, the proposed system gives a free
access for local authorities to view and discovery ser-
vices that enable to generate the strategic noise maps de-
manded by the European union (see section 1). The reg-
ulation necessitates to provide noise maps for each type
of source. Thus, future works will consist in developing
outsourced processing methods to discriminate a poste-
riori the noise sources. Nevertheless, the present experi-
mental approach also offers complementary information
to simulation- based noise mapping that cannot account
for all noise sources. Besides, accessibility to data shall
act as an incentive for the collectivities to regularly up-
date their noise maps and to easily analyse the impacts
of achieved urban plannings. The built noise database
and related services shall also initiate business actions.
For example, the crossing of the noise data with building
databases that contain information on the age of the build-
ings and from which the information concerning the noise
insulation of the building can be deduced, can facilitate
the commercial canvassing by the building professionals
as as it allows to adequately target residents living in a pri-
ori poorly insulated houses.

7 Conclusion

In this paper, a Spatial Data Infrastructure is presented
that relies on participatory smartphone-based noise mea-
surements. The proposed architecture aims at handling a
set of operations related to the characterization of sound
environments. The first objective is to respond to the Envi-
ronmental Noise Directive by elaborating noise maps that
accurately account for all noise sources with a high spatial
resolution. In addition, outsourced processes are designed
and implemented for estimating advanced noise indica-
tors, thus improving the characterization of sound envi-
ronments. In return, valuable feedback information is of-
fered to the user concerning its exposure and a few person-
alised solutions are proposed to the participant in order to
reduce the noise exposure.

The novelty of the approach, in comparison with the
existing participatory noise mapping tools, stands in three
points. Firstly, specific outsourced treatments of the col-
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lected raw data are designed for both eliminating outliers
and correcting the smartphones’s microphone response
through an a posteriori cross-calibration procedure, thus
improving the confidence in the produced noise maps.
Secondly, upgraded information are furnished to the con-
tributor, what stands for an interesting feedback for the
user. Thirdly, the described outsourced infrastructure is
fully based on open source tools and programming lan-
guages that perfectly comply with geographical standards
and facilitates data exchanges toward a global centered
hub.

The next step of the project will concern the deploy-
ment of smartphones, in order to experience the pro-
posed set of dedicated treatments outsourced on the server
through real case conditions. The critical concern and
challenge of engaging participants and stakeholders will
be addressed by organising some “noise mapping parties”
with the help of the open data services of a few cities in or-
der to manage the user communities. Further studies will
also investigate the reliability of the present noise map-
ping solution in comparison with simulation-based noise
maps.
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