Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics

Résumé

We analyze a stochastic optimal control problem, where the state process follows a McKean-Vlasov dynamics and the diffusion coefficient can be degenerate. We prove that its value function V admits a nonlinear Feynman-Kac representation in terms of a class of forward-backward stochastic differential equations, with an autonomous forward process. We exploit this probabilistic representation to rigorously prove the dynamic programming principle (DPP) for V. The Feynman-Kac representation we obtain has an important role beyond its intermediary role in obtaining our main result: in fact it would be useful in developing probabilistic numerical schemes for V. The DPP is important in obtaining a characterization of the value function as a solution of a non-linear partial differential equation (the so-called Hamilton-Jacobi-Belman equation), in this case on the Wasserstein space of measures. We should note that the usual way of solving these equations is through the Pontryagin maximum principle, which requires some convexity assumptions. There were attempts in using the dynamic programming approach before, but these works assumed a priori that the controls were of Markovian feedback type, which helps write the problem only in terms of the distribution of the state process (and the control problem becomes a deterministic problem). In this paper, we will consider open-loop controls and derive the dynamic programming principle in this most general case. In order to obtain the Feynman-Kac representation and the randomized dynamic programming principle, we implement the so-called randomization method, which consists in formulating a new McKean-Vlasov control problem, expressed in weak form taking the supremum over a family of equivalent probability measures. One of the main results of the paper is the proof that this latter control problem has the same value function V of the original control problem.
Fichier principal
Vignette du fichier
MKV-BCP.pdf (415.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01337515 , version 1 (27-06-2016)
hal-01337515 , version 2 (11-11-2016)

Identifiants

Citer

Erhan Bayraktar, Andrea Cosso, Huyên Pham. Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics. 2016. ⟨hal-01337515v1⟩
1179 Consultations
80 Téléchargements

Altmetric

Partager

More