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The massive Feynman propagator

on asymptotically Minkowski spacetimes

Christian Gérard & Michał Wrochna

Abstract. We consider the massive Klein-Gordon equation on asymptoti-
cally Minkowski spacetimes, in the sense that the manifold is R1+d and the
metric approaches that of Minkowski space at infinity in a short-range way
(jointly in time and space variables). In this setup we define Feynman and
anti-Feynman scattering data and prove the Fredholm property of the Klein-
Gordon operator with the associated Atiyah-Patodi-Singer type boundary con-
ditions at infinite times. We then construct a parametrix (with compact re-
mainder terms) for the Fredholm problem and prove that it is also a Feynman
parametrix in the sense of Duistermaat and Hörmander.

1. Introduction & summary

1.1. Introduction. In the analysis of the free Klein-Gordon equation

(1.1) (∂2
t −∆x + m2)u(t, x) = 0 on Rt × R

d
x,

an essential elementary fact is that the Klein-Gordon operator Pfree = ∂2
t −∆x+m2

possesses four distinguished inverses, namely the operators that multiply the Fourier
transform of distributions by multiples of respectively

1

(τ ± i0)2 − (k2 + m2)
,

1

τ2 − (k2 + m2)± i0
,

and which are called the retarded/advanced, resp. Feynman/anti-Feynman prop-
agator (we use the notation ξ = (τ, k) for the covariables corresponding to x =
(t, x) ∈ R

1+d).
The retarded and advanced propagators are intimately linked to the Cauchy

problem for (1.1), and can also be equivalently defined as the unique operators that
solve the retarded/advanced problem

(1.2) Pfreeu = f, suppu ⊂ (suppf)± C+,

where C+ is the forward lightcone. The well-posedness of the advanced/retarded
problem (1.2) is a fact that generalizes to setups such as the Klein-Gordon operator

P ··= −2g + V

on a globally hyperbolic1 spacetime (M, g) and with potential V ∈ C∞(M ;R)
(see e.g. [BGP]), and in consequence, this provides a natural and unambiguous
definition of advanced and retarded propagators in a broad range of situations.

On the other hand, it is hardly obvious how the Feynman and anti-Feynman
propagators generalize. This is a problem central to Quantum Field Theory on
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on curved spacetimes, Atiyah-Patodi-Singer boundary conditions, Feynman propagators.
1Let us recall that (M, g) is globally hyperbolic if it admits a Cauchy surface, i.e., a smooth

hypersurface that is intersected by every inextensible, non-spacelike (i.e. causal) curve exactly
once.
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curved spacetimes in view of the role played by the Feynman propagator in inter-
acting QFTs on Minkowski space.

A groundbreaking advance in that respect was provided by the work of Duis-
termaat and Hörmander [DH], who proved the existence and uniqueness modulo
smooth terms of Feynman and anti-Feynman parametrices, i.e. inverses of P mod-
ulo smooth (but not necessarily compact) terms, distinguished by a specific struc-
ture of the singularities of the Schwartz kernel, as described by its wave front set.
For later reference, let us recall the precise formulation:

Definition 1.1. We say that GF is a Feynman parametrix if the operators 1−GFP
and 1− PGF have smooth Schwartz kernel and

(1.3) WF′(GF) = (diagT∗M ) ∪⋃
s≤0(Φs(diagT∗M ) ∩ π−1N ),

where Φs is the bicharacteristic flow acting on the left component of diagT∗M (i.e.,
the diagonal in (T ∗M × T ∗M) \o), and π : N × N → N is the projection to the
left component.

Above, WF′(GF) stands for the primed wave front set of GF, i.e. it is the image
of the wave front set of the Schwartz kernel of GF by the map (x, ξ, x′, ξ′) 7→
(x, ξ, x′,−ξ′). We refer to [Hö] for the definition and the basic properties of the
wave front set of a distribution. We recall that the bicharacteristic flow Φt is the
Hamilton flow of p(x, ξ) = ξ · g−1(x)ξ restricted to the characteristic set N =
p−1({0}) (understood as a subset of T ∗M \o, where o is the zero section of the
cotangent bundle), see [Hö].

Although not directly applicable in QFT, where actual inverses and bi-solutions
are needed rather than parametrices, the results of Duistermaat and Hörman-
der were successfully adapted by Radzikowski in the study of so-called Hadamard
states and of their two-point functions [Ra]. This has triggered important devel-
opments, culminating in rigorous treatments of perturbative interacting QFT on
curved spacetimes [BF1, HW1, HW2, Da], where the role of the Feynman propa-
gator is played by a ‘time-ordered expression’ obtained from Hadamard two-point
functions, see e.g. [HW3, KM] for recent reviews. Without going into details, let
us point out that this gives a notion of Feynman propagators that satisfy (1.3) and
which are inverses of P (in the sense that when composed with P acting on test
functions, they give the identity), and are constructed using methods that are local
or asymptotic in time2. However, these are non-unique even if possible asymptotic
symmetries of (M, g) are implemented. For instance, in a space-time that is as-
ymptotic to Minkowski space as t → +∞ and t → −∞, there are at least two such
Feynman propagators, one constructed from scattering data at t = +∞ and the
other one from t = −∞ data [GW4].

A dramatically different perspective was proposed recently by Gell-Redman,
Haber and Vasy [GHV] (basing on earlier developments including [BVW, HV1,
HV2, Va1, Va2], cf. [VW] for the proof of (1.3) in that setting), who showed in the
case of asymptotically Minkowski spacetimes (and assuming V = 0) that a Feyn-
man parametrix can be obtained as the solution of a global problem of the form
Pu = f , with u and f being in carefully chosen Hilbert spaces of distributions,
and u being the unknown. This problem can be solved modulo finite dimensional,
smooth terms (these can even be proved to vanish under extra assumptions), and
therefore this yields a Feynman parametrix in a much stronger sense that in the
work of Duistermaat & Hörmander, i.e. than in Def. 1.1, as it is the generalized

2A notable exception is a global construction that is shown to work for static and cosmological
space-times in [BF3] and which is based on an improvement of a simple argument from spectral
theory discussed e.g. in [FV1] (cf. [FMR] for the analogue in the case of the Dirac equation); its
outcome is however highly non-unique.
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inverse of a Fredholm operator3. Furthermore, it bears much more resemblance to
elliptic inverses than the retarded and advanced propagators do, due to its posi-
tivity properties [Va3]. One can also argue that its definition is a highly canonical
one (possibly modulo finite dimensional choices) as it relates directly to the bi-
characteristic flow.

Moreover, a recent work of Bär and Strohmaier that treats the Dirac operator
on compact globally hyperbolic spacetimes with space-like boundary [BS1] achieves
to set up a Fredholm problem that is in many ways similar to that of Gell-Redman,
Haber and Vasy. In Bär and Strohmaier’s setting, the problem is formulated by
imposing boundary conditions that are analogous to Atiyah-Patodi-Singer ones in
the Riemannian case. Interestingly, they prove a Lorentzian analogue of the Atiyah-
Patodi-Singer theorem [APS1, APS2] and relate the index to quantities of direct
physical interest (in particular the so-called chiral anomaly), explaining also the
relation to particle creation on curved space-times [BS2] (see also the works of
Gibbons [Gi1, Gi2] and Gibbons and Richer [GR] for earlier related developments).

In the present paper, our main aim is to set up a Fredholm problem on a class of
spacetimes similar to that considered in [GHV], but for the massive Klein-Gordon
equation instead of the wave equation (i.e. for V 6= 0). On the other hand, we
use an approach that is more closely related to the method of [BS1] and that in
fact can be thought of as its non-compact, infinite time generalization, at least if
one disregards distinct features of the Dirac and Klein-Gordon equations. In order
to understand better the relation of the so-obtained Feynman propagator with the
time-ordered expressions used usually in interacting QFT, we also construct a rather
explicit parametrix with remainder terms that are at both compact and smooth.

1.2. Main result. We are primarily interested in the class of asymptotically Min-
kowski spacetimes, in the sense that (M, g) is a Lorentzian manifold (without bound-
ary) with M = R1+d and such that:

(aM)

gµν(x) − ηµν ∈ S−δ
std(R

1+d), δ > 1,

(R1+d, g) is globally hyperbolic,

(R1+d, g) has a time function t̃ such that t̃− t ∈ S1−ǫ
std (R1+d), ǫ > 0,

where ηµν is the Minkowski metric and Sδ
std(R

1+d) stands for the class of smooth

functions f such that, denoting 〈x〉 = (1 + |x|) 1
2 ,

∂α
x f ∈ O(〈x〉δ−|α|), α ∈ N

1+d.

This way, g decays to the flat Minkowski metric simultaneously in time and in the
spatial directions in a short-range4 way. In a similar vein the potential is required
to satisfy V(y) − m2 ∈ S−δ

std(R
1+d), m > 0. Note that the definition (aM) covers a

similar class of spacetimes to those considered in [BVW, GHV] (the latter are also
called asymptotically Minkowski spacetimes therein), but strictly speaking they are
not exactly the same: in our setup for instance (M, g) is globally hyperbolic, which
is not clear from the outset in [BVW, GHV].

The main idea in the formulation of the Fredholm problem is to consider ‘bound-
ary conditions’ that select asymptotic data which account for propagation of singu-
larities within only one of the two connected components N± of the characteristic
set N = N+ ∪N− of P . While in [BS1] there is indeed a boundary at finite times
(consisting of the union of two time slices), here we need to consider infinite times

3Let us recall that a bounded operator is called Fredholm if the dimension of its kernel and
cokernel are finite.

4This corresponds to the assumption δ > 1.



The massive Feynman propagator on asymptotically Minkowski spacetimes 4

instead, so boundary conditions are not to be understood literally as they are rather
specified at the level of scattering data.

Let us illustrate how one can separate solutions according to N±, starting with
the example of the free Klein-Gordon operator Pfree = ∂2

t − ∆x + m2. First, for
t, s ∈ R let us denote by Ufree(t, s) the Cauchy evolution propagator of Pfree, i.e.
the operator that maps Ufree(t, s) : Cauchy data at time s 7→ Cauchy data at time
t. Then Ufree(t, s) is generated by a Hamiltonian which is selfadjoint in the energy
space of Cauchy data, and its spectral projections to the half-lines R± are given by

(1.4) c±,vac
free

··=
1

2

(
1 ±

√
−∆x + m2

±
√
−∆x + m2 1

)
.

The two operators5 c±,vac
free project to Cauchy data of solutions propagating with

wave front set in N±; equivalently, this corresponds to splitting the Cauchy evolu-

tion in terms of the two groups e±it
√
∆+m2

. Now with our assumptions, P is close
to Pfree at infinity, and therefore it makes sense to use the splitting (1.4) on the
level of scattering data.

In order to define scattering data in the setting of asymptotically Minkowski
spaces we first make a change of variables by means of a diffeomorphism χ (see
Subsect. 4.3), which allows to put the metric in the form

χ∗g = −ĉ2(t, x)dt2 + ĥ(t, x)dx2,

where ĉ tends to 1 for large |x|, while ĥ tends to some asymptotic metrics ĥin/out
depending on the sign of t. In these coordinates, a convenient choice of Cauchy data
is ̺su ··= (u,−iĉ−1∂tu)↾t=s. On the other hand, the natural reference dynamics
in this problem (at both future and past infinity) is that of the free Klein-Gordon
operator Pfree. Let us fix t = 0 as our reference time. We define the Feynman and
anti-Feynman scattering data maps:

̺F ··= s− lim
t±→±∞

(
c+,vac
free Ufree(0, t+)̺t+ + c−,vac

free Ufree(0, t−)̺t−
)
,

̺F ··= s− lim
t±→±∞

(
c+,vac
free Ufree(0, t−)̺t− + c−,vac

free Ufree(0, t+)̺t+
)
,

as appropriate strong operator limits. We abbreviate the Sobolev spaces Hm(Rd)
by Hm and denote by U (t, s) the Cauchy evolution propagator of P . Our main
result can be stated as follows.

Theorem 1.2. Assume (aM) and let m ∈ R. Consider the Hilbert space

(1.5) Xm
F

··=
{
u ∈ (χ−1)∗

(
C0(R;Hm+1) ∩ C1(R;Hm)

)
: Pu ∈ Ym, ̺Fu = 0

}
,

where Ym ··= (χ−1)∗
(
〈t〉−γL2(R;Hm)

)
and 1

2 < γ < 1
2 + δ. Then P : Xm

F → Ym

is Fredholm of index

(1.6) indP |Xm
F →Ym = ind(c−,vac

free W−1
out + c+,vac

free W−1
in ),

where W−1
out/in = limt±→±∞ Ufree(0, t±)U (t±, 0). In particular the index is inde-

pendent on m. Furthermore, there exists a Feynman parametrix GF : Ym → Xm
F

such that 1− PGF and 1−GFP are compact operators.

Note that the space Xm
F is a closed subspace of the Hilbert space

Xm = {u ∈ (χ−1)∗
(
C0(R;Hm+1) ∩ C1(R;Hm)

)
: Pu ∈ Ym}

equipped with the norm ‖u‖2Xm = ‖̺0(χ−1)∗u‖Em + ‖Pu‖2Ym, where Em is the
energy space, see Def. 3.4.

5The operators c
±,vac

free
also have the interpretation of being the covariances (acting on Cauchy

data) of the Minkowski vacuum state, see e.g. the discussion in [GW4].
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As pointed out in [BS1], the condition ̺Fu = 0 can be seen as an analogue of the
Atiyah-Patodi-Singer boundary condition (even though this is less evident here as
we do not consider the Dirac equation). Furthermore, one could equally well con-
sider the anti-APS boundary condition ̺Fu = 0, which leads to an ‘anti-Feynman’
counterpart of Theorem 1.2 — interestingly, just as in [BS1], this differs from the
Riemannian case where one boundary condition is preferred over the other. On the
other hand, we also prove that the kernel (null space) of P : Xm

F → Ym consists of
smooth functions, and that GF satisfies a positivity condition i(GF−G∗

F) ≥ 0 remi-
niscent of the positivity of the spectral measure in the limiting absorption principle.
As pioneered in [BS1] and [BVW, Va3], this shows once again a striking similarity
to the elliptic case.

On the side note it is worth mentioning that our results can also be adapted to
asymptotically static space-times with compact Cauchy surface, for in that setting,
decay in the spatial directions becomes irrelevant and consequently one can use
directly the time decay estimates from [GW4] instead of the estimates considered
here.

Furthermore, a large part of the arguments of Bär and Strohmaier [BS2] can be
applied to our case, and thus allow one to interpret the index of P : Xm

F → Ym in
terms of particle creation.

1.3. Outline of proofs. An important step in our proof is a procedure derived in
detail in [GOW, GW4], which allows us to reduce the whole analysis to the case
when the Klein-Gordon operator is of the form

(1.7) P = ∂2
t + r(t)∂t + a(t, x, ∂x),

where r(t) is a multiplication operator and a(t, x, Dx) is a differential operator with

principal symbol k · h−1
t (x)k.

To account for the decay properties that follow from assumption (aM), we in-

troduce a pseudodifferential calculus Ψm,δ
std (R;Rd) (m, δ ∈ R) consisting of pseudo-

differential operators with time-depending symbols a(t, x, k) satisfying

∂γ
t ∂

α
x ∂

β
k a(t, x, k) ∈ O

(
(〈t〉+ 〈x〉)δ−γ−|α|〈k〉m−|β|), γ ∈ N, α, β ∈ N

d.

Thus, δ accounts for the asymptotic behaviour for large |x| and/or t. We also

introduce its time-independent counterpart, denoted by Ψm,δ
sd (Rd). We then find

that our hypothesis (aM) implies that one is reduced to the situation covered by
the following list of assumptions (keeping in mind that δ > 1 is as in (aM)):

(std)

r(t) ∈ Ψ0,−1−δ
std (R;Rd),

a(t, x, Dx)− aout/in(x, Dx) ∈ Ψ2,−δ
std (R;Rd) on R± × Rd where:

aout/in(x, Dx) ∈ Ψ2,0
sd (Rd) is elliptic (in the usual Ψ2(Rd) calculus),

aout/in(x, Dx) = aout/in(x, Dx)
∗ ≥ C∞ > 0.

In this setup, using standard arguments from Fredholm analysis and the well-
posedness of the inhomogeneous Cauchy problem

{
Pu = f, f ∈ Ym

̺tu = v, v ∈ Hm+1(Rd)⊕Hm(Rd),

we deduce that the Fredholm property of P acting on the spaces Xm
F , Ym (strictly

speaking their analogue in the reduced setting (std), so it is not necessary to use a
diffeomorphism χ in the definition) is equivalent to the Fredholm property of the
operator

WF ··= Woutc
+,vac
free +Winc

−,vac
free ∈ B(Hm+1(Rd)⊕Hm(Rd)).
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We actually prove the stronger statement that the operators

(1.8) W †
FWF − 1, WFW

†
F − 1

are smoothing and have decay properties that imply their compactness (here †

denotes the adjoint with respect to the canonical non-positive charge inner product

preserved by the evolution, so that W †
outWout = W †

inWin = 1). The proof is based
on the method of approximate diagonalization of the Cauchy evolution, developed
successively in the works [Ju, JS, GW1, GW2, GOW] and improved in the present
paper to yield estimates on the decay (in both time and spatial directions) of various
terms that account for the relation between the full dynamics and its asymptotic
counterparts. The role of this approximate diagonalization, beside providing the
basis for the construction of a parametrix, is to split the Cauchy evolution in two
parts corresponding to propagation within N+ and N−, and then our estimates
allow us to relate this splitting to the canonical one for the asymptotic dynamics.

The construction of the Feynman parametrix GF is based on a formula that
is a time-ordered expression6, but involving only the ‘diagonalizable’ part of the
evolution. The evolution being in fact diagonalizable in the sense considered here
modulo terms that are smoothing and decaying, this produces a parametrix indeed,
and the proof of the wave front set condition follows by standard arguments, detailed
previously in [GOW].

It is worth mentioning that compactness of the remainder term in (1.8) was al-
ready studied in an analogous problem for the Dirac operator on Minkowski space
with external potentials [Ma1, Ma2, BH], where index formulas have also been de-
rived and the interpretation of the index in terms of particle creation was discussed
(see also [BS1, BS2]). An interesting topic of further research would thus be to find
a short-hand index formula in our setting.

1.4. Plan of the paper. The paper is organized as follows.
In Sect. 2 we introduce the time-dependent pseudodifferential operator classes

Ψm,δ
std and state some of their properties. We recall the method of approximate

diagonalization of the Cauchy evolution from [GOW, GW4], and we then give a
refinement in the setup of assumption (std) by showing decay of various remainder
terms.

In Sect. 3 we set up a Fredholm problem for the Klein-Gordon operator, assum-
ing hypothesis (std), and then we construct a Feynman parametrix and prove that
the remainder terms are compact operators. An important role is played by the
approximate diagonalization and the estimates from Sect. 2.

Finally, in Sect. 4 we consider asymptotically Minkowski spacetimes (aM). We
show that in this case, using the procedure from [GOW, GW4] one is reduced to
assumption (std). This allows us to adapt the results from Sect. 3 and to prove
Thm. 1.2. As an aside, we show that the retarded and advanced propagators can
be obtained as inverses of a bounded operator acting on Hilbert spaces; this gives
another analogy to the setting of [GHV].

Several auxiliary proofs are collected in Appendix A.

2. Model Klein-Gordon operator

2.1. Notation. The space of differential operators on Rk of order m is denoted
by Diffm(Rk). The space of smooth functions with compact support is denoted
C∞

c (Rk).

6We mean specifically that its integral kernel is of the form θ(t−t′)Λ+(x, x′)+θ(t′−t)Λ−(x, x′)
with Λ± ≥ 0.
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From now on, the operator of multiplication by a function f will be denoted
by f , while the operators of partial differentiation will be denoted by ∂i, so that
[∂i, f ] = ∂if .

2.2. Klein-Gordon operator. In what follows we use the notation x = (t, x) for
points in R1+d, d ≥ 1.

Before considering the Klein-Gordon equation on actual asymptotically Minkowski
spacetimes, we first work with a simpler set of assumptions that allow us to write
the Klein-Gordon operator in the form

(2.9) P = ∂
2

t + r(t, x)∂t + a(t, x, ∂x) ∈ Diff2(R1+d),

where r(t, x) ∈ C∞(R1+d), and a(t, x, ∂x) ∈ Diff2(Rd) depends smoothly on t.
Specifically, if h(t) is a smooth family of smooth Riemannian metrics on Rd and
V ∈ C∞(R1+d) is real-valued, we consider the metric

g = −dt2 + hij(t, x)dx
idxj

on R1+d. Then, the Klein-Gordon operator P̃ ··= −2g + V equals

(2.10) P = |h|− 1
2 ∂t|h|

1
2 ∂t − |h|− 1

2 ∂ih
ij |h| 12 ∂j + V,

which is indeed of the form (2.9) with

a(t, x, ∂x) = −|h|− 1
2 ∂ih

ij |h| 12 ∂j + V(t, x)

and
r(t, x) = |h|− 1

2 ∂t(|h|
1
2 )(t, x).

In the sense of formal adjoints, the Klein-Gordon operator satisfies P ∗ = P with re-

spect to the L2(R1,d, |h| 12 dtdx) scalar product, and similarly a(t, x, ∂x)
∗ = a(t, x, ∂x)

with respect to the t-dependent L2(Rd, |h| 12 dx) scalar product.
We will often abbreviate a(t, x, ∂x) by a(t) or simply by a.
In what follows we introduce the terminology needed to formulate additional

assumptions on a and r. These will correspond to a scattering situation, i.e. to the
case of a metric g (resp. potential V) converging to some asymptotic static metrics
gout/in = −dt2 + hout/in,ij(x)dx

idxj (resp. to some time-independent potentials

Vout/in) as t → ±∞.

2.3. Scattering pseudodifferential calculus. We start by introducing a time-
dependent pseudodifferential calculus on Rd that allows to control both Sobolev
regularity in the usual sense and decay at space-time infinity, and which is therefore
the natural calculus on asymptotically Minkowski spacetimes.

For m, δ ∈ R we denote by Sm,δ
std (R;T ∗

R
d) the space of smooth functions a(t, x, k)

such that

∂γ
t ∂

α
x ∂

β
k a(t, x, k) ∈ O((〈t〉 + 〈x〉)δ−γ−|α|〈k〉m−|β|), γ ∈ N, α, β ∈ N

d.

The subscript std refers to the space-time decay properties of the symbols in (t, x).
The subspace of symbols which are poly-homogeneous in k will be denoted by

Sm,δ
std,ph(R;T

∗Rd). We denote by W−∞
std (R;Rd) the space of operator-valued func-

tions a(t) such that

‖(D2
x + x2 + 1)m∂n

t a(t)(D
2
x + x2 + 1)m‖B(L2(Rd)) ∈ O(〈t〉−p), ∀m,n, p ∈ N.

These will play the role of error terms in the calculus. Correspondingly, we set:

Ψm,δ
std (R;Rd) ··= Opw(Sm,δ

std,ph(R;T
∗
R

d)) +W−∞
std (R;Rd),

where Opw is the well-known Weyl quantization, defined by

Opw(a)u(x) = (2π)−d

ˆ

R2d

ei(x−y)·ka
(
t, x+y

2 , k
)
u(y)dydk.
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It is easy to see that

Sm,δ
std,ph(R;T

∗Rd) = (〈x〉 + 〈t〉)δSm,0
std,ph(R;T

∗Rd),

Ψm,δ
std (R;Rd) = (〈x〉+ 〈t〉)δΨm,0

std (R;Rd),

which allows us to reduce ourselves to the case δ = 0.
Omitting the variable t in the above definitions, we also obtain classes of (time-

independent) symbols and pseudodifferential operators on Rd, which will be denoted

respectively by Sm,δ
sd (T ∗Rd), Ψm,δ

sd (Rd) and W−∞
sd (Rd), where the subscript sd refers

to space decay properties of the symbols or operators.

The classes Ψm,δ
sd (Rd) are the well-known ‘scattering pseudodifferential opera-

tors’, see e.g. [Co, Pa, Sh1]. The error terms W−∞
sd (Rd) can be described as

(2.11) W−∞
sd (Rd) =

⋂
m∈R

B
(
〈x〉mH−m(Rd), 〈x〉−mHm(Rd)

)
,

where Hm(Rd) is the standard Sobolev space of order m. Using (2.11) we equip
W−∞

sd (Rd) with its canonical Fréchet space topology; this is needed to define in the

obvious way spaces such as C∞(R2;W−∞
sd (Rd)). We will also occasionally need the

broader class of smoothing operators W−∞(Rd), defined as in (2.11) but with the
〈x〉±m weights ommitted.

We will need an appropriate notion of ellipticity and principal symbol for the
Ψm,0

sd (Rd) and Ψm,0
std (R;Rd) classes. For our purposes, elliptic operators in Ψm,0

sd (Rd)

will be simply those which are elliptic in the usual sense7 in Ψm(Rd), i.e. a ∈
Ψm(Rd) is elliptic if there exists C > 0 such that

(2.12) |σpr(a)| ≥ C|k|m, |k| ≥ 1,

where σpr(a) is the principal symbol of a defined in the usual way, see e.g. [Sh2].

Furthermore, a ∈ Ψm,δ
std (R;Rd) is said to be elliptic if a(t) is elliptic for all t ∈ R

and the constant C in (2.12) is uniform in t.

Let us remark that the Ψm,δ
std (R;Rd) pseudodifferential calculus has structural

properties very analogous to the Ψm,δ
td (R;Rd) calculus introduced in [GW4], which

is defined by omitting 〈x〉 in the relevant definitions (so that only decay in time is
taken into account). As a consequence, many results from [GW4] can be adapted
to the present setup. In particular, a variant of Seeley’s theorem is valid for the
Ψm,0

std (R;Rd) classes; it is proved in complete analogy to [GW4, Thm. 3.7] by
reduction to the general framework of [ALNV], see also the arguments in [GOW,
Subsect. 5.3].

Theorem 2.1. Let a ∈ Ψm,0
std (R;Rd) be elliptic, selfadjoint with a(t) ≥ c01 for

some c0 > 0. Then for any α ∈ R, aα ∈ Ψαm,0
std (R;Rd) and σpr(a

α)(t) = σpr(a(t))
α.

Proof. We will simply outline the main steps of the proof, which consists in veri-
fying the abstract conditions in [ALNV]. We use the notations in [GOW, Subsect.
5.3].

We choose as Hilbert space H = L2(Rt × R
d
x). As injective operator on H

belonging to Wstd(R;R
d) we choose R = e−(D2

x+x2+t2+1). It is easy to see that

if a ∈ Sm,0
std,ph(R;T

∗Rd) and Op(a) ∈ W−∞
std (R;Rd) then a ∈ S−∞,0

std,ph(R;T
∗Rd).

It remains to check the spectral invariance property of W−∞
std (R;Rd), ie to prove

that if R ∈ W−∞
std (R;Rd) and 1 − R is boundedly invertible on H, then (1 −

R)−1 ∈ 1+W−∞
std (R;Rd). We write H as L2(Rt;L

2(Rd)) and R =
´ ⊕
R

R(t)dt, hence

7Thus, we do not consider here ellipticity in the sense of the scattering pseudodifferential
calculus [Co, Pa, Sh1].
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(1 − R)−1 =
´ ⊕
R
(1 − R(t))−1dt. As in [GOW, Lem. 5.5], 1 − R(t) is boundedly

invertible on L2(Rd) for all t ∈ R and we have

(1−R(t))−1 = 1+R(t) +R(t)(1−R(t))−1R(t) ··= 1+R1(t).

Using that ∂t(1 − R(t))−1 = (1 − R(t))−1∂tR(t)(1 − R(t))−1 and Leibniz rule we
obtain that R1(t) ∈ Wstd(R;R

d). 2

Later on we will need the following auxiliary result on fractional powers of elliptic
operators, the proof of which is deferred to Subsect. A.1.

Proposition 2.2. Let ai ∈ Ψ2,0
std(R;R

d) (i = 1, 2) be elliptic, with ai = a∗i and

ai(t) ≥ c01 for some c0 > 0. Suppose that a1−a2 ∈ Ψ2,−δ
std (R;Rd) with δ > 0. Then

for each α ∈ R one has:

aα1 − aα2 ∈ Ψ2α,−δ
std (R;Rd).

Let us now consider the ressummation of symbols. We denote

Ψ−∞,−δ
std (R;Rd) ··=

⋂
m∈R

Ψm,−δ
std (R;Rd),

which is a subclass of (but is not equal to) W−∞
std (R;Rd). The lemma below is

obtained by exactly the same arguments as in [GW4, Lem. 3.11].

Lemma 2.3. Let δ ∈ R and let (mj) be a real sequence decreasing to −∞. Then if

aj ∈ Ψ
mj ,−δ
std (R;Rd) there exists a ∈ Ψm0,−δ

std (R;Rd), unique modulo Ψ−∞,−δ
std (R;Rd),

such that

a ∼
∞∑

j=0

aj , i.e. ∀N ∈ N, a−
N∑

j=0

aj ∈ Ψ
mN+1,−δ
std (R;Rd).

Thus when performing the ressumation of (aj) we have control of the decay of

the error terms (as they belong to Ψ−∞,−δ
std (R;Rd)).

2.4. Assumptions of the model. We are now ready to state the precise assump-
tions on the model Klein-Gordon operator

P = ∂
2

t + r(t, x)∂t + a(t, x, ∂x).

Namely, we assume that there exist δ > 0, aout/in(x, Dx) ∈ Ψ2,0
sd (Rd) and a constant

C∞ such that:

(std)

a(t, x, Dx) = aout/in(x, Dx) + Ψ2,−δ
std (R;Rd) on R± × Rd,

r(t) ∈ Ψ0,−1−δ
std (R;Rd),

aout/in(x, Dx) ∈ Ψ2,0
sd (Rd) is elliptic,

aout/in(x, Dx) = aout/in(x, Dx)
∗ ≥ C∞ > 0.

Note that this gives a setup which is a particular case of that considered recently
in [GW4]. Here we assume decay of various terms both in time and in the spatial
variables, while in [GW4] only time decay is required (and more general manifolds
are allowed in the place of Rd).

2.5. Approximate diagonalization of the Cauchy evolution. For t ∈ R let
us denote by ̺t the Cauchy data map

̺t : C
∞(R;D ′(Rd)) → D

′(Rd)⊕ D
′(Rd)

u 7→ (u(t), i−1∂tu(t)).
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Furthermore, for t, s ∈ R let us denote by U (t, s) the Cauchy evolution propagator
for P , i.e., U (t, s)v is by definition the Cauchy data ̺tu of the unique solution of
the Cauchy problem {

Pu = 0,

̺su = v.

The main ingredient in our approach is a refined version of the approximate diago-
nalization of U (t, s) developed in [GOW, GW4] in the context of Hadamard states.
In what follows we recall its outcome and discuss how it can be improved in the
setup of assumption (std).

The first step consists in performing an approximate factorization of the Klein-

Gordon operator P = ∂
2

t + r∂t + a. This means specifically that one constructs a
family of elliptic pseudodifferential operators b+(t), smoothly depending on t, and
such that

(2.1) P = (∂t + ib+(t) + r(t)) ◦ (∂t − ib+(t)) + r+∞(t),

where r+∞(t) is a smoothing error. Once this is done, one actually gets immediately
a second solution to this problem by setting

(2.2) b− = −(b+)∗, r−∞ = (r+∞)∗.

Indeed, by taking the adjoint of both sides of (2.1) with respect to the t-dependent

inner product L2(Rd, |h| 12 dx), and using that

(∂tb
+)∗ = ∂t((b

+)∗) + r(b+)∗ − (b+)∗r

= −∂tb
− − rb− + b−r,

one obtains that

P = (∂t + ib−(t) + r(t)) ◦ (∂t − ib−(t)) + r−∞(t).

The pair of identities

(2.3) P = (∂t + ib±(t) + r(t)) ◦ (∂t − ib±(t)) + r±∞(t).

is then used to re-express the Cauchy evolution of P in terms of the Cauchy evolu-
tion of ∂t − ib+(t) and ∂t − ib−(t).

In Prop. 2.4 below, we state our result on the existence of b±(t) as above and
satisfying in addition decay estimates that are crucial for the proofs in the rest of

the paper. To simplify notation we write b1(t) = b2(t)+Ψm,δ
std (R±;Rd) if b1(t), b2(t)

are two t-dependent operators such that b1(t) − b2(t) ∈ Ψm,δ
std (R;Rd) on R± × Rd.

By an argument from [GW4] there exists ϕ ∈ C∞
c (R) such that a(t) + ϕ(a(t)) > 0

and a(t) + ϕ(a(t)) ∼ aout/in on R± in the sense that

∃ c > 0 s.t. c−1aout/in ≤ a(t) + ϕ(a(t)) ≤ c aout/in on R
±.

Moreover, ϕ(a(t)) ∈ C∞
c (R;W−∞

std (Rd)). We then set ǫ(t) ··=
(
a(t) + ϕ(a(t))

) 1
2 and

ǫout/in ··= a
1
2

out/in.

Proposition 2.4. There exist b±(t) = ±ǫ(t)+Ψ0,−1−δ
std (R;Rd) that solve (2.2) and

(2.3) with r±−∞ ∈ Ψ−∞,−1−δ
std (R;Rd), and that satisfy

(2.4) b±(t) = ±ǫout/in +Ψ1,−δ
std (R±;Rd).

Moreover, b±(t) can be chosen in such way that

(2.5) (b+(t)− b−(t))−1 ≥ C(t)ǫ(t)−1

holds for some C(t) > 0.
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The proof is completely analogous to [GW4], using Prop. 2.2 instead of [GW4,
Prop. 3.10].

The approximate diagonalization of {U (t, s)}t,s∈R proceeds now as follows. We
set

(2.6)

T (t) ··= i−1

(
1 −1

b+ −b−

)
(b+ − b−)−

1
2 ,

T−1(t) = i(b+ − b−)−
1
2

(
−b− 1

−b+ 1

)
,

which is well defined by (2.5). We then define a new evolution group {U ad(t, s)}t,s∈R

by

(2.7) U (t, s) =·· T (t)U ad(t, s)T (s)−1.

We denote by H(t) the generator of {U (t, s)}t,s∈R, defined by

(2.8)
∂

∂t
U (t, s) =·· iH(t)U (t, s),

and similarly we define Had(t), the generator of {U ad(t, s)}t,s∈R. Explicitly, the
former equals

H(t) =

(
0 1

a(t) ir(t)

)
.

By a direct computation one finds that the latter is of the form

(2.9) Had(t) = Hd(t)− V ad
−∞(t),

where Hd(t) is a diagonal matrix of pseudodifferential operators (smoothly depend-
ing on t) and V ad

−∞(t) is a smoothing, decaying remainder. More precisely,

(2.10) Hd(t) =

(
ǫ+ 0
0 ǫ−

)
,

where the components ǫ±(t) are

(2.11)
ǫ± = −b∓ + ir + [(b+ − b−)−

1
2 , b∓]− i∂t(b

+ − b−)−
1
2 (b+ − b−)

1
2

− (b+ − b−)−
1
2 r∓−∞(b+ − b−)−

1
2 ,

and furthermore,

(2.12)
V ad
−∞(t) = (b+ − b−)−

1
2

(
r−−∞ −r−−∞
r+−∞ −r+−∞

)
(b+ − b−)−

1
2

∈ Ψ−∞,−1−δ
std (R;Rd)⊗B(C2),

where r±−∞ ∈ Ψ−∞,−1−δ
std (R;Rd) are the remainder terms from (2.3). This way,

the evolution U d(t, s) generated by Hd(t) is diagonal, and moreover, as shown in
[GOW]:

(2.13)
U (t, s) = T (t)U ad(t, s)T (s)−1

= T (t)U d(t, s)T (s)−1 + C∞(R2;W−∞(Rd)).

Proposition 2.5. Assume (std) and let ǫ±(t) be as defined in (2.11). Then

(2.14)
ǫ±(t) + b∓(t) ∈ Ψ0,−1−δ

std (R;Rd),

ǫ±(t)∓ ǫ(t) ∈ Ψ0,−1−δ
std (R;Rd),

and consequently,

(2.15) Had(t) =

(
ǫ(t) 0
0 −ǫ(t)

)
+Ψ0,−1−δ

std (R;Rd)⊗B(C2).
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Proof. From the definition of ǫ± and the fact that r±−∞ ∈ Ψ−∞,−1−δ
std (R;Rd) one

obtains that ǫ± = −b∓ + r∓b , where

r±b = ir + [(b+ − b−)−
1
2 , b±]− i∂t(b

+ − b−)−
1
2 (b+ − b−)

1
2 .

Thus, to get the first part of (2.14) it suffices to prove that r±b ∈ Ψ0,−1−δ
std (R;Rd).

This can be performed in exact analogy to [GW4] using Seeley’s theorem and

composition properties of the Ψm,δ
std (R;Rd) calculus.

The second part of (2.14) then follows using Prop. 2.4. The last statement is a
direct consequence of (2.14) and (2.9)–(2.11).2

2.6. Symplectic properties of the approximate diagonalization. It is well
known that there is a symplectic form preserved by the Cauchy evolution of P . In
our setup this can be written as the identity

(2.16) U (t, s)∗qU (t, s) = q, where q ··=
(
0 1

1 0

)
,

for all t, s ∈ R. The operators T (t) are defined in such way that

T ∗(t)qT (t) = qad, where qad ··=
(
1 0
0 −1

)
,

and consequently we have for the approximately diagonalized evolution an analogue
of (2.16), namely

(2.17) U
ad(t, s)∗qadU ad(t, s) = qad.

On the level of the respective generators, this translates to

(2.18) H(t)∗q = qH(t), Had(t)∗qad = qadHad(t).

Using the latter we can deduce that Hd(t) = Hd∗(t), and hence ǫ±(t)∗ = ǫ±(t).
It is convenient to denote by A† the adjoint with respect to the inner product

defined by either q or qad whenever it is clear from the context which of the two
is meant. For instance, this way (2.18) can be rewritten as H(t)† = H(t) and
Had(t)† = Had(t), though one has to keep in mind that the former refers to q and
the latter to qad.

3. Feynman inverses from scattering data in the model case

3.1. Setup. In this section we consider again the model Klein-Gordon operator
studied in Subsect. 2.5:

(3.1) P = ∂
2

t + r(t, x)∂t + a(t, x, ∂x),

and denote by Pout/in the asymptotic Klein-Gordon operators

Pout/in ··= ∂
2

t + aout/in(x, ∂x).

We will assume conditions (std) with δ > 1, which corresponds to a short-range
situation.

By a parametrix for P we will mean an operator GI such that PGI − 1 and
GIP − 1 have smooth Schwartz kernel. Duistermaat and Hörmander proved the
existence of a Feynman parametrix GF, or parametrix with Feynman type wave
front set, i.e.

WF′(GF) = (diagT∗M ) ∪⋃
s≤0(Φs(diagT∗M ) ∩ π−1N ).

This means that up to singularities on the full diagonal diagT∗M of T ∗M × T ∗M ,
WF′(GF) is contained in the backward flowout of diagT∗M by the bicharacteristic
flow (here acting on the left component of T ∗M × T ∗M , accordingly π is the
projection to that component).



The massive Feynman propagator on asymptotically Minkowski spacetimes 13

Our primary goal will be to prove that for suitably chosen Hilbert spaces of
distributions Xm

I ,Ym, the operator P : Xm
I → Ym is Fredholm, i.e. its kernel and

cokernel are of finite dimension. This guarantees the existence of pseudo-inverses,
i.e. operators GI : Ym → Xm

I such that PGI − 1 and GIP − 1 are compact.
We will be interested in constructing a pseudo-inverse that is at the same time

a Feynman parametrix. This will be based on the reduction to the almost diago-
nalized dynamics U ad(t, s) introduced in Subsect. 2.5.

3.2. Notation. First, we introduce some further notation needed to relate in an
efficient way various objects related to the different dynamics. As a rule, all objects
related to the almost diagonalized situation are decorated with a superscript ad.
We recall that L2(R1+d) is equipped with the scalar product

(u|v) ··=
ˆ

uv|ht|
1
2 dtdx.

3.2.1. Operators. Let us recall that the operators H(t), Had(t), T (t) are defined
respectively in (2.8), (2.9), (2.6).

- We set for u ∈ C∞(R;D ′(Rd)), uad ∈ C∞(R;D ′(Rd)⊕ D ′(Rd)):

̺tu = (u(t), i−1∂tu(t)), ̺adt uad ··= uad(t),

(Tuad)(t) ··= T (t)uad(t), (̺u)(t) ··= ̺tu(t).

Setting also πi(u0, u1) = ui and using the standard notation Dt = i−1∂t, we have:

(3.2) P = −π1(Dt −H(t))̺.

- We set:

P ad ··= Dt −Had(t),

and an easy computation shows that:

(3.3) TP adT−1 = Dt −H(t), hence P = −π1TP
adT−1̺.

- We denote by Hout/in, H
ad
out/in, Tout/in, the analogues of H(t), Had(t), T (t) with

a(t), r(t) replaced by aout/in, 0.

- The Cauchy evolutions generated by H(t), Hout/in, H
ad(t), Had

out/in are denoted

by U (t, s), Uout/in(t, s), U ad(t, s), U ad
out/in(t, s). We recall that:

(3.4) U (t, s) = T (t)U ad(t, s)T−1(s), Uout/in(t, s) = Tout/inU
ad
out/in(t, s)T

−1
out/in.

We also recall that U
(ad)
(out/in)(t, s), U

(ad)
(out/in)(t, s) are symplectic for q(ad).

- Operators of the form a⊗ 1C2 will often be abbreviated by a for simplicity.

3.2.2. Function spaces. We will abbreviate by Hm the Sobolev spaces Hm(Rd).

- Furthermore, we set:

Em ··= Hm+1 ⊕Hm, Hm ··= Hm ⊕Hm, m ∈ R.

As usual we define E∞ ··=
⋂

m∈R
Em, E−∞ ··=

⋃
m∈R

Em and similarly for H∞,

H−∞, equipped with their canonical topologies.

- If E is a Banach space, k ∈ N, we denote by Ck(R; E) the Banach space of
E−valued functions with norm

‖u‖Ck(R;E) =
∑

0≤l≤k

sup
t∈R

‖∂l
tu(t)‖E .
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We will frequently use the fact that T (t) : Hm+ 1
2 → Em is boundedly invertible

with ‖T (t)‖, ‖T−1(t)‖ uniformly bounded in t. From [GW4, Prop. 5.6] we know
that:

(3.5) sup
t,s∈R

‖U ad(t, s)‖B(Hm) < ∞, sup
t,s∈R

‖U (t, s)‖B(Em) < ∞.

3.3. Møller (wave) operators. We now introduce the relevant objects from scat-
tering theory. We will consider t = 0 as our fixed reference time. It is a standard
fact, derived using (2.15), (2.14) and the so-called Cook argument (see e.g. [DG1]),
that the Møller operators

(3.6) W ad
out/in

··= lim
t→±∞

U
ad(0, t)U ad

out/in(t, 0) ∈ B(Hm)

exist and are invertible with inverses given by

(3.7) (W ad
out/in)

−1 = (W ad
out/in)

† = lim
t→±∞

U
ad
out/in(0, t)U

ad(t, 0) ∈ B(Hm).

Using then (3.4) and the fact that T−1(t)Tout/in − 1 tends to 0 in B(Hm) when
t → ±∞, we obtain the existence of

(3.8) Wout/in ··= lim
t→±∞

U (0, t)Uout/in(t, 0) ∈ B(Em),

with inverses

(3.9) (Wout/in)
−1 = (Wout/in)

† = lim
t→±∞

Uout/in(0, t)U (t, 0) ∈ B(Em),

and satisfying the identities

(3.10) Wout/in = T (0)W ad
out/inT

−1
out/in.

Remark 3.1. Strictly speaking W
(ad)
out/in acting on Em or Hm should be denoted

by, e.g., W
(ad),m
out/in to indicate its dependence on m. However since W

(ad),m
out/in is the

closure of W
(ad),m′

out/in for any m′ > m, we will often dispense with the exponent m in

the sequel. The same remark applies to (W
(ad)
out/in)

−1.

3.4. Compactness properties of W ad
out/in. Let us denote by π± the projections

(3.11) π+ =

(
1 0
0 0

)
, π− =

(
0 0
0 1

)
.

The decay properties implied by assumption (std) have the following important
consequence.

Proposition 3.2. Assume condition (std) with δ > 1 and let α < δ/2. Then

W ad
out/inπ

+(W ad
out/in)

−1 − π+ ∈ 〈x〉−αW−∞(Rd)〈x〉−α ⊗B(C2).

It follows that [W ad
out/in, π

+] is a compact operator on Hm for m ∈ R.

To prove Prop. 3.2, we will need the following lemma, the proof of which is given
in Appendix A.2.

Lemma 3.3. Assume conditions (std) for δ > 0. Then for all m, k ∈ R
+:

sup
t≥0

‖〈Dx〉m〈x〉kU
ad(0, t)(〈x〉+ 〈t〉)−k〈Dx〉−m‖B(H0) < ∞.
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Proof of Prop. 3.2. Let us set W ad
out/in(t) = U ad(0, t)U ad

out/in(t, 0). We have for

m ∈ N, α > 0:

(3.12)

〈Dx〉m〈x〉α∂t(W ad
out/in(t)π

+W ad
out/in(t)

−1)〈x〉α〈Dx〉m

= 〈Dx〉m〈x〉αU ad(0, t)[R−∞(t), π+]U ad(t, 0)〈x〉α〈Dx〉m

= 〈Dx〉m〈x〉αU ad(0, t)(〈x〉+ 〈t〉)−α〈Dx〉−m

× 〈Dx〉m(〈x〉+ 〈t〉)α[R−∞(t), π+](〈x〉 + 〈t〉)α〈Dx〉m

× 〈Dx〉−m(〈x〉+ 〈t〉)−αU ad(t, 0)〈x〉α〈Dx〉m

=·· Rm,α(t)×Mm,α(t)×Rm,α(t)
†.

Since R−∞(t) ∈ Ψ−∞,−1−δ
std (R;Rd)⊗B(C2) we know that

‖Mm,α(t)‖B(H0) ∈ O(〈t〉−1−δ+2α).

From Lemma 3.3 we know that ‖Rm,α(t)‖B(H0) ∈ O(1), which implies the same

bound for Rm,α(t)
†. Thus from (3.12) we obtain that

〈Dx〉m〈x〉α∂t(W ad
out/in(t)π

+W ad
out/in(t)

−1)〈x〉α〈Dx〉m ∈ O(〈t〉−1−δ+2α)

in B(H0). This is integrable for α < δ/2. By integrating from t = 0 to t = ±∞,
since m is arbitrary this implies that:

lim
t→±∞

W ad
out/in(t)π

+W ad
out/in(t)

−1 − π+ ∈ 〈x〉−αW−∞(Rd)〈x〉−α.

Since W ad
out/in = limt→±∞ W ad

out/in(t) this proves the proposition. 2

3.5. Inhomogeneous Cauchy problem. Fixing γ with 1
2 < γ < 1

2 + δ, we set:

Ym ··= 〈t〉−γL2(R;Hm), Yad,m ··= 〈t〉−γL2(R;Hm).

The exponent γ is chosen so that Ym ⊂ L1(R;Hm), Yad,m ⊂ L1(R;Hm). The
benefit of working with Y (ad),m rather than with L1 spaces is that the former are
Hilbert spaces; this will be needed in Subsect. 4.5.

Definition 3.4. We denote by Xm the space of u ∈ C1(R;Hm+1) ∩ C0(R;Hm)
such that Pu ∈ Ym, and similarly by X ad,m the space of uad ∈ C0(R;Hm) such
that P aduad ∈ Yad,m. We equip X (ad),m with the Hilbert norms:

(3.13)
‖uad‖2m ··= ‖̺ad0 uad‖2Hm + ‖P aduad‖2Yad,m ,

‖u‖2m ··= ‖̺0u‖2Em + ‖Pu‖2Ym .

The existence and uniqueness of the inhomogeneous Cauchy problem for P and
P ad implies that X (ad),m are Hilbert spaces, as stated implicitly in the following
lemma.

Lemma 3.5. The map

(3.14)
̺0 ⊕ P : Xm → Em ⊕ Ym

u 7→ (̺0u, Pu)

is boundedly invertible with inverse given by:

(3.15) (̺0 ⊕ P )−1(v, f) = π0U (t, 0)v − iπ0

ˆ t

0

U (t, s)π∗
1f(s)ds.

Similarly, the map

(3.16)
̺ad0 ⊕ P ad : X ad,m → Hm ⊕ Yad,m

uad 7→ (̺ad0 uad, P aduad)
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is boundedly invertible with inverse given by:

(3.17) (̺ad0 ⊕ P ad)−1(vad, fad) = U
ad(t, 0)vad + i

ˆ t

0

U
ad(t, s)fad(s)ds.

It follows that

(3.18)
Xm →֒ Ck(R;Hm+1−k),

X ad,m →֒ Ck(R;Hm−k),

continuously for m ∈ R, k ∈ N.

The following facts are the result of easy computations that make use of (3.3):

(3.19)
T−1̺ ∈ B(Xm,X ad,m+ 1

2 ), −T−1π∗
1 ∈ B(Ym,Yad,m+ 1

2 ),

π0T ∈ B(X ad,m+ 1
2 ,Xm), −π1T ∈ B(Yad,m+ 1

2 ,Ym).

In the sequel we will also need the auxiliary identities

(3.20)

RanT−1̺ = Ker(̺π0 − 1)T,

(T−1̺)−1 = π0T on RanT−1̺,

RanT−1π∗
1 = Kerπ0T,

(T−1π∗
1)

−1 = π1T on RanT−1π∗
1 .

3.6. Retarded and advanced propagators. The retarded/advanced propaga-
tors for P ad are defined as follows:
(3.21)

(Gad
+ fad)(t) ··= i

ˆ t

−∞
U

ad(t, s)fad(s)ds, (Gad
− f)(t) ··= −i

ˆ +∞

t

U
ad(t, s)fad(s)ds,

for fad ∈ L1(R;Hm). Using (3.5) one obtains:

Gad
± ∈ B(L1(R;Hm), C0(R;Hm)),

(Gad
± )† = Gad

∓ on L1(R;Hm), P adGad
± = 1 on L1(R;Hm).

The analogous propagators for P are:
(3.22)

(G+f)(t) = −iπ0

ˆ t

−∞
U (t, s)π∗

1fds, (G−f)(t) = iπ0

ˆ +∞

t

U (t, s)π∗
1f(s)ds,

for f ∈ L1(R;Hm). One has:

G± ∈ B(L1(R;Hm), C0(R;Hm+1) ∩ C1(R;Hm)),

G∗
± = G∓ on L1(R;Hm), PG± = 1 on L1(R;Hm).

Using (3.4) the relation between the propagators for P and P ad is:

(3.23) G± = −π0TG
ad
± T−1π∗

1 .

3.7. Fredholm problems from scattering data. We now want to define the
maps that assign to an element of X (ad),m its scattering data in the standard sense,
as well as its Feynman and anti-Feynman data. By Feynman data we mean positive-
frequency data of a solution at +∞ and negative-frequency data at −∞, and by
anti-Feynman the reverse.

Proposition 3.6. The strong operator limits

s− lim
t→±∞

U
ad
out/in(0, t)̺

ad
t , resp. s− lim

t→±∞
Uout/in(0, t)̺t,

exist in B(X ad,m,Hm), resp. in B(Xm, Em), and equal (W ad
out/in)

−1 on KerP ad|X ad,m ,

resp. (Wout/in)
−1 on KerP |Xm.
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Proof. Let uad ∈ X ad,m. By Lemma 3.5 we have

U
ad
out(0, t)̺

ad
t uad = U

ad
out(0, t)U

ad(t, 0)vad

+ i

ˆ t

0

U
ad
out(0, t)U

ad(t, 0)U ad(0, s)fad(s)ds,

which by dominated convergence tends to (W ad
out)

−1(vad − ̺ad0 Gad
− fad) as t → +∞.

Similarly we obtain that U ad
in (0, t)̺adt uad converges to (W ad

in )−1(vad − ̺ad0 Gad
+ fad)

as t → −∞. The proof in the scalar case is similar. 2

We can now introduce four scattering data maps ̺
(ad)
I : X (ad),m → Hm. Note

the presence of the operators T−1
out/in below; this simplifies some considerations later

on.

Definition 3.7. We set:

̺adout/in ··= s− limt→±∞ U ad
out/in(0, t)̺

ad
t ,

̺out/in ··= s− limt→±∞ T−1
out/inUout/in(0, t)̺t,

̺
(ad)
F

··= π+̺
(ad)
out + π−̺(ad)in ,

̺
(ad)

F
··= π−̺(ad)out + π+̺

(ad)
in .

Lemma 3.8. For I ∈ {in, out,F,F} we have:

(3.24) ̺I = ̺adI T−1̺,

(3.25)
̺adI = W ad†

I ◦ ̺ad0 on KerP ad|X ad,m ,

̺I = W ad†
I T−1(0)̺0 on KerP |Xm ,

for I ∈ {in, out,F,F}, where

(3.26) W ad†
F

··= π+W ad†
out + π−W ad†

in , W ad†
F

··= π−W ad†
out + π+W ad†

in .

Proof. To prove (3.24) we write:

̺out/in = T−1
out/inUout/in(0, t)̺t + o(1) = U

ad
out/in(0, t)T

−1
out/in̺t + o(1)

= U
ad
out/in(0, t)T

−1(t)̺t + o(1) = U
ad
out/in(0, t)̺

ad
t T−1̺+ o(1).

This implies (3.24) for I = out/in and then for I = F/F. The first statement of

(3.25) follows then from the fact that ̺adout/in = W ad†
out/in on KerP ad, the second from

(3.24) and the fact that T−1̺ : KerP → KerP ad. 2

Lemma 3.9. Let I ∈ {F,F}. Then W ad
I W ad†

I − 1 and W ad†
I W ad

I − 1 are compact

on Hm and hence W ad
I , W ad†

I are Fredholm. Moreover:

KerW
ad(†)
I |Hm = KerW

ad(†)
I |Ead,∞ , coKerW

ad(†)
I |Hm = coKerW

ad(†)
I |Ead,−∞ ,

and hence ind(W
ad(†)
I )|Hm is independent on m.

Proof. We consider only the F case. We have

W ad
F W ad†

F = 1+K1, K1 = W ad
outπ

+(W ad
out)

−1 − π+ +W ad
in π−(W ad

in )−1 − π−,

W ad†
F W ad

F = 1+K2, K2 = π+(W ad
out)

−1W ad
in π− + π−(W ad

in )−1W ad
outπ

+.

By Prop. 3.2 we see that K1, K2 are compact on Hm and moreover map Hm to

H∞. Therefore KerW ad†
F |Hm ⊂ Ker(1 + K1)|Hm ⊂ H∞ hence KerW ad†

F |Hm =

KerW ad†
F |H∞ . Similarly, identifying (Hm)∗ with H−m and coKerA with KerA∗

we have coKerW ad†
F |Hm ⊂ Ker(1 + K∗

2 )|Hm ⊂ H∞, hence coKerW ad†
F |Hm =

coKerW ad†
F |H−∞ . 2
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We will need the following lemma, see [BB, Prop. A.1] for its proof. The next
few results are obtained as simple applications of it, following the strategy in [BS1]
(originally applied to the case of the Dirac equation on compact space-times with
space-like boundary).

Lemma 3.10. Let K be a Hilbert space and E , F Banach spaces. Let K : K → E ,
Q : K → F be bounded and assume that Q is surjective. Then K : KerQ → E is
Fredholm (of index l) iff K ⊕Q : K → E ⊕ F is Fredholm (of index l).

Lemma 3.11. For I ∈ {in, out,F,F}, the operator

̺
(ad)
I : {u(ad) ∈ X (ad),m : P (ad)u(ad) = 0} → Hm

is Fredholm of index equal indW ad†
I and is invertible for I ∈ {in, out}.

Proof. We apply (3.25) and the fact that ̺ad0 : KerP ad|X ad,m → Hm and T−1(0)̺0 :

KerP |Xm → Hm+ 1
2 are bijections, by Lemma 3.5. 2

Lemma 3.12. The maps

̺adI ⊕ P ad : X ad,m → Hm ⊕ Yad,m,

̺I ⊕ P : Xm → Hm+ 1
2 ⊕ Ym,

are Fredholm of index indW ad†
I .

Proof. We use Lemma 3.10 with K = X ad,m resp. Xm, E = Hm resp. Hm+ 1
2 ,

F = Yad,m resp. Ym, K = ̺adI resp. ̺I , Q = P ad resp. P . The assumptions
of Lemma 3.10 are satisfied in view of Lemma 3.11 and Lemma 3.5 which gives
surjectivity of P ad resp. P . 2

Let us introduce the following notation: if I = in/out then Ic ··= out/in and if
I = F/F then Ic ··= F/F.

Theorem 3.13. Assume (std) with δ > 1. Let

X (ad),m
I

··= {u ∈ X (ad),m : ̺
(ad)
Ic u = 0},

equipped with the topology of X (ad),m. Then

P ad : X ad,m
I → Yad,m,

P : Xm
I → Ym

are Fredholm of index indW ad†
Ic .

Proof. It suffices to check the assumptions of Lemma 3.10 for K = X ad,m resp.

Xm, E = Yad,m resp. Ym, F = Hm resp. Hm+ 1
2 , K = P ad resp. P , and Q = ̺adIc

resp. ̺Ic . The Fredholm property of K⊕Q follows from Lemma 3.12, so it remains

to check that ̺adIc : X ad,m → Hm and ̺Ic : Xm → Hm+ 1
2 are surjective. This is

obvious if I = out/in using (3.25) and Lemma 3.5. Let us now consider the case
I = F.

Let ηout/in ∈ C∞(R) with ηin(t) + ηout(t) = 1 and ηout/in(t) = 1 for large ±t.
Then

̺
(ad)
out/in ◦ ηout/in = ̺

(ad)
out/in, ̺

(ad)
in/out ◦ ηout/in = 0.

Furthermore ηout/in KerP (ad)|X (ad),m ⊂ X (ad),m. It follows that

̺adF X ad,m ⊃ ̺adF (ηin KerP ad|X ad,m + ηout KerP ad|X ad,m)

= (π+̺adout + π−̺adin )(ηin KerP ad|X ad,m + ηout KerP ad|X ad,m)

= π+̺adoutKerP ad|X ad,m + π−̺adin KerP ad|X ad,m

= π+Hm + π−Hm = Hm.
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This proves ̺adF : X ad,m → Hm is surjective. The same argument shows that

̺F : Xm → Hm+ 1
2 is surjective. In the analogous way we obtain surjectivity of ̺ad

F
and ̺F. 2

3.8. Retarded/advanced propagators. We now show that as anticipated, the

retarded/advanced propagators Gad
± are the inverses of P ad : X ad,m

out/in → Yad,m, and

a similar statement holds true in the scalar case.

Proposition 3.14. P (ad) : X (ad),m
out/in → Y (ad),m are boundedly invertible with inverse

equal to G
(ad)
± .

Proof. We only treat the case of G
(ad)
+ , the other one being analogous. We have

seen in Subsect. 3.6 that

Gad
+ ∈ B(L1(R;Hm), C0(R;Hm))

and P adGad
+ = 1 on L1(R;Hm), hence Gad

+ ∈ B(Yad,m,X ad,m) and P adGad
+ = 1 on

Yad,m. Since limt→−∞ ̺adt Gad
+ fad = 0, we have Gad

+ Yad,m ⊂ X ad,m
out . It remains to

show that Gad
+ P ad = 1 on X ad,m

out . If uad ∈ X ad,m
out we have:

(Gad
+ P aduad)(t) =

ˆ t

−∞
U

ad(t, s)(∂s − iHad(s))uadds

= lim
t+→−∞

ˆ t

−∞
U

ad(t, s)(∂s − iHad(s))uadds

= lim
t+→−∞

[
U

ad(t, s)u(s)
]t
t+

− lim
t+→−∞

ˆ t

t+

(−∂s + iHad(s))U ad(t, s)uad(s)ds

= uad(t),

since limt+→−∞ uad(t+) = 0 in view of uad ∈ X ad,m
out . In the scalar case we obtain

from (3.3) that (Dt −H(t))TGad
+ T−1 = 1 hence (̺π0 − 1)TGad

+ T−1π∗
1 = 0 which

implies that PG+ = 1 on Ym. Conversely, by (3.19), (3.24) we know that T−1̺ :

Xm
out → X ad,m+ 1

2
out . Since Gad

+ P ad = 1 on X ad,m+ 1
2 this yields

TGad
+ T−1(Dt −H(t))̺ = TGad

+ P adT−1̺ = ̺ on Xm
out,

hence G+P = 1 on Xm
out using (Dt −H(t))̺ = π∗

1π1(Dt −H(t)). This completes
the proof. 2

3.9. The Fredholm inverses for P (ad) on X (ad),m
F . From Thm. 3.13 we know

that P (ad) : X (ad),m
F → Y (ad),m are Fredholm. We will now construct explicit

approximate inverses G
(ad)
F of P (ad) : X (ad),m

F → Ym, which requires some special

care because of the requirement ̺
(ad)

F
◦G(ad)

F = 0 that follows from the definition of

X (ad),m
F (in fact, for instance the time-ordered Feynman propagators associated to

the in or out state, see [Is, GW4], fail in general to satisfy this condition). We will
then show that GF has the required wave front set.
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3.9.1. Auxiliary diagonal Hamiltonian. Recall that

(3.27) Had(t) = Hd(t)− V ad
−∞(t),

Where V ad
−∞(t) ∈ Ψ−∞,−1−δ

std (R;Rd) ⊗ C2 and Hd(t) is the diagonal matrix with
on-diagonal components ǫ±(t).

Let U d(t, s) be the evolution generated by Hd(t). Using (3.27) we see that
U d(t, s) is well defined and moreover,

sup
t,s∈R

‖U d(t, s)‖B(Hm) < ∞,

using the same argument as for U (t, s), see [GW4]. Since Hd(t) = Hd†(t) we also
have

(3.28) U
d(t, s)† = U

d(s, t).

We set correspondingly

P d ··= Dt −Hd(t) = P ad − V ad
−∞(t).

Note that since ‖V ad
−∞(t)‖B(Hm) = O(〈t〉−1−δ) and we have assumed that γ < 1

2 +δ,

we see that for u ∈ C0(R;Hm) we have P adu ∈ Yad,m if and only if P du ∈ Yad,m

and the two norms in (3.13) on X ad,m defined with P ad and P d are equivalent.

3.9.2. Fredholm inverse for P ad on X ad,m
F .

Definition 3.15. We set for fad ∈ Yad,m:

Gad
F fad(t) ··= i

ˆ t

−∞
U

d(t, 0)π+
U

d(0, s)fad(s)ds

− i

ˆ +∞

t

U
d(t, 0)π−

U
d(0, s)fad(s)ds.

Using the ‘time-kernel notation’ A(t, s) ··= ̺adt ◦A ◦ (̺ads )∗ we can write:

Gad
F (t, s) = iθ(t− s)U d(t, 0)π+

U
d(0, s)− iθ(s− t)U d(t, 0)π−

U
d(0, s)

= iU d(t, 0)π+
U

d(0, s)− iθ(s− t)U d(t, s),

where θ is the Heaviside step function. Let us also observe that since [U d(t, s), π+] =
0, we have

(3.29) Gad
F = Gd

+π
+ +Gd

−π
−,

where Gd
± are the retarded/advanced propagators for Hd(t), defined in analogy to

Gad
± .

Theorem 3.16. Let m ∈ R. We have:

i) Gad
F ∈ B(Yad,m,X ad,m

F ), P adGad
F = 1Yad,m +KYad,m ,

where KYad,m is compact on Yad,m

ii) Gad
F P ad = 1X ad,m

F
+KX ad,m

F
,where KX ad,m

F
is compact on X ad,m

F ,

iii) i−1qad(Gad
F − (Gad

F )†) ≥ 0 on Yad,m, for m ≥ 0.

To prove Thm. 3.16 we will need the following lemma.

Lemma 3.17. V ad
−∞ : X ad,m → Yad,m is compact.
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Proof. From (3.18) we first obtain that the injection X ad,m →֒ Ck+1(R;Hm−k−1)
is bounded for any k ∈ N, m ∈ R. We pick ε > 0 such that γ < 1

2 +δ−2ε and write

V ad
−∞(t) as 〈t〉−1−δ+ε〈x〉−εY ad(t), where Y ad(t) ∈ C∞(R;W−∞(Rd) ⊗ B(C2)). It

follows that Y ad : Ck(R;Hm) → Ck(R;Hm′

) is bounded for any m,m′, hence

V ad
−∞ : Xm → 〈t〉−1−δ+εCk+1(R; 〈x〉−εHm′+1) is bounded for any k ∈ N, m,m′ ∈ R.

This implies that
(3.30)

V ad
−∞ : Xm → 〈t〉−1−δ+2εCk(R;Hm′

) is compact for any k ∈ N, m,m′ ∈ R.

We use (3.30) for k = 0,m′ = m, and the fact that the injection 〈t〉−1−δ+2εC0(R;Hm) →֒
〈t〉−γL2(R;Hm) = Yad,m is bounded since γ < 1

2 + δ − 2ε. It follows that

V ad
−∞ : X ad,m → Yad,m is compact. 2

Proof of Thm. 3.16. Proof of i): note first that Gad
F = Gd

+π
+ + Gd

−π
− ∈

B(Yad,m,X ad,m) since Gd
± ∈ B(Yad,m,X ad,m). We then have:

P adGad
F = P dGad

F + V ad
−∞Gad

F

= P dGd
+π

+ + P dGd
−π

− + V ad
−∞Gad

F

= 1Yad,m + V ad
−∞Gad

F ,

by Prop. 3.14 applied to P d. By Lemma 3.17, V ad
−∞Gad

F is compact on Yad,m.

It remains to check that Gad
F : Yad,m → X ad,m

F , i.e. π+̺adin G
ad
F = π−̺adoutG

ad
F = 0.

We have:

π+̺adin G
ad
F = ̺adin π

+(Gd
+π

+ +Gd
−π

−) = ̺adinG
d
+π

+ = 0,

since [Gd
±, π

±] = 0 and ̺adin G
d
+ = 0. Similarly we obtain that π−̺adoutG

ad
F = 0, which

completes the proof of i).
Proof of ii): we have by (3.29):

Gad
F P ad = Gad

F P d +Gad
F V ad

−∞ = Gd
+P

dπ+ +Gd
−P

dπ− +Gad
F V ad

−∞.

If u ∈ X ad,m
F we have π+̺adin u = ̺adin π

+u = 0 and π−̺adoutu = ̺adoutπ
−u = 0. By

Prop. 3.14 applied to P d we have Gd
+P

dπ+u = π+u, Gd
−P

dπ−u = π−u, hence

Gad
F P ad = 1X ad,m

F
+Gad

F V ad
−∞.

Again, by Lemma 3.17 Gad
F V ad

−∞ is compact on X ad,m.
Proof of iii): using the time-kernel notation we have by (3.28)

(Gad
F )†(t, s) = Gad

F (s, t)†

= iθ(t− s)U d(t, 0)π−
U

d(0, s)− iθ(s− t)U d(t, 0)π+
U

d(0, s).

Hence, defining U d ∈ B(Hm,X ad,m) by

(3.31) U
dvad(t) ··= U

d(t, 0)vad, vad ∈ Hm,

we have

i−1(Gad
F − (Gad

F )†)(t, s) = U
d(t, 0)(π+ − π−)U d(0, s) = U

d(t, 0)qadU d(0, s).

It follows that

i−1(fad|qad(Gad
F − (Gad

F )†)fad)H0 = ((U d)†fad|(qad)2(U d)†fad)H0 ≥ 0,

hence i−1qad(Gad
F − (Gad

F )†) ≥ 0 on H0 hence on Hm for m ≥ 0. 2
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3.9.3. Fredholm inverse for P on Xm
F .

Theorem 3.18. Assume (std) with δ > 1. Let

(3.32) GF ··= −π0TG
ad
F T−1π∗

1 .

We have:

i) GF ∈ B(Ym,Xm
F ), PGF = 1Ym +KYm ,where KYm is compact on Ym,

ii) GFP = 1Xm
F

+KXm
F
,where KXm

F
is compact on Xm

F ,

iii) i(GF −G∗
F) ≥ 0 on Ym, for m ≥ 0,

iv) PGF − 1, GFP − 1 are smoothing operators,

v) WF(GF)
′ = (diagT∗M ) ∪⋃

t≤0(Φt(diagT∗M ) ∩ π−1N ).

In particular GF is a Feynman parametrix of P in the sense of Def. 1.1.

Proof. Proof of i): from (3.19) and Thm. 3.16 we see that GF ∈ B(Ym,Xm). Let
us show that GF maps Ym into Xm

F . For V ad
−∞ the operator introduced in (3.27)

we have:

P adGad
F = 1+ V ad

−∞Gad
F ⇒ TP adT−1TGad

F T−1 = 1+ TV ad
−∞Gad

F T−1.

Using (3.3) this implies that:

(3.33) (Dt −H(t))TGad
F T−1π∗

1 = π∗
1 + TV ad

−∞Gad
F T−1π∗

1 =·· π∗
1 +R1,

where R1 ∈ B(Ym, 〈t〉−1−δC0(R; Em)), using that V ad
−∞ ∈ Ψ−∞,−1−δ

std (R;Rd) ⊗
B(C2). This implies that

̺π0TG
ad
F T−1π∗

1 = TGad
F T−1π∗

1 +R2,

where R2 ∈ B(Ym, 〈t〉−1−δC0(R; Em)). We now have:

Uout/in(0, t)̺tGFf = −Uout/in(0, t)̺tπ0TG
ad
F T−1π∗

1f

= −Uout/in(0, t)T (t)̺
ad
t Gad

F T−1π∗
1f + o(1)

= −Tout/inU
ad
out/in(0, t)T

−1
out/inT (t)̺

ad
t Gad

F T−1π∗
1f + o(1)

= −Tout/inU
ad
out/in(0, t)̺

ad
t Gad

F T−1π∗
1f + o(1)

= −Tout/in̺
ad
out/inG

ad
F T−1π∗

1f + o(1),

hence

(3.34) ̺out/inGF = −̺adout/inG
ad
F T−1π∗

1 .

By Thm. 3.16 we have ̺ad
F
Gad

F = 0, i.e. π−̺adoutG
ad
F = π+̺adin G

ad
F = 0, which by

(3.34) gives ̺FGF = 0. It follows that GF maps Ym to Xm
F as claimed.

From (3.33), we obtain by an easy computation:

(3.35) PGF = 1− π1R1 −Dtπ0R1 + irπ0R1.

Using (3.30) we obtain that R1 : Ym → 〈t〉−1−δ+2εCk(R; Em′

) is compact for any
m,m′, k, hence PGF − 1 is compact on Ym.

Proof of ii): by Thm. 3.16 and (3.3) we know that:

Gad
F T−1(Dt −H(t))T = Gad

F P ad = 1+Gad
F V ad

−∞ on X ad,m+ 1
2

F ,

hence

TGad
F T−1(Dt −H(t))T = T + TGad

F V ad
−∞ on X ad,m+ 1

2

F .
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By (3.19), (3.24) we know that T−1̺ : Xm
F → X ad,m+ 1

2

F . It follows that

TGad
F T−1(Dt −H(t))̺ = ̺+ TGad

F V ad
−∞T−1̺, on Xm

F .

Since (Dt −H(t))̺ = π∗
1π1(Dt −H(t)), we obtain that

(3.36)

GFP = π0TG
ad
F T−1π∗

1π1(Dt −H(t))̺

= π0̺+ π0TG
ad
F V ad

−∞T−1̺

= 1+ π0TG
ad
F V ad

−∞T−1̺ on Xm
F .

Using (3.19) and Lemma 3.17 we obtain that GFP − 1 is compact on Xm
F , which

proves ii).
Proof of iii): we note that for any operator Aad one has

π0A
adπ∗

1 = π1qA
adπ∗

1 , hence (π0A
adπ∗

1)
∗ = π1qA

ad†π∗
1 .

This gives

i(GF −G∗
F) = i−1π1qT (G

ad
F −Gad†

F )T−1π∗
1 = i−1(π1T )q

ad(Gad
F −Gad†

F )(π1T )
∗ ≥ 0,

by Thm. 3.16 iii).
Proof of iv): we first see using U d(t, s)(Ds−Hd(s)) = 0 and integration by parts

that Gad
F maps compactly supported elements of H−p(R;H−k) into Hp(R;H−k−2p)

for k, p ∈ N, hence V ad
−∞Gad

F maps compactly supported elements of H−p(R;Hk)

into Hp(R,Hk). The same argument shows that Gad
F maps also compactly sup-

ported elements H−p(R;Hk) into Hp(R,Hk). By (3.33), (3.35), (3.36) this implies
iv).

Proof of v): Let GF,ref be given by the analog of (3.32) with U d replaced by U ad

in the definition of Gad
F . By [GOW, Thm. 7.10, Prop. 7.11], GF,ref is a Feynman

parametrix. From (2.13) we obtain that U d(t, s)−U ad(t, s) ∈ C∞(R2;W−∞(Rd)),
which implies that GF −GF,ref is smoothing and completes the proof of of v). 2

4. Asymptotically Minkowski spacetimes

4.1. Assumptions. In this final section we consider asymptotically Minkowski
spacetimes and prove analogues of the results from Sect. 3 by a reduction pro-
cedure.

We work on M = R1+d and use the notation y = (t, y) for its elements.
For δ ∈ R we denote by Sδ

std(R
1+d), resp. Sδ

std(R
± × Rd), the class of smooth

functions such that

∂α
y f ∈ O(〈y〉δ−|α|), α ∈ N

1+d,

holds on R1+d, resp. R± × Rd.
The analogous spaces on R

d will be denoted by Sδ
sd(R

d).
We denote by ηµν the Minkowski metric on R1+d, fix a Lorentzian metric g on

R1+d and consider the Klein-Gordon operator

(4.1) P = −2g + V (y),

where V is again a smooth real function on R1+d. We assume that (M, g) is asymp-
totically Minkowski and V is asymptotically constant in the following sense:

(aM)

i) gµν(y)− ηµν ∈ S−δ
std(R

1+d), δ > 1,

ii) V(y)− m2 ∈ S−δ
std(R

1+d), m > 0, δ > 1,

iii) (R1+d, g) is globally hyperbolic,

iv) (R1+d, g) has a time function t̃ with t̃− t ∈ S1−ǫ
std (R1+d) for ǫ > 0.
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We recall that a smooth function t̃ is called a time function if ∇t̃ is a timelike vector
field.

Remark 4.1. We conjecture that (aM) iv) follows from (aM) i), iii).

4.2. Global hyperbolicity and non-trapping condition. In what follows we
discuss the relation of our hypothesis (aM) with non-trapping assumptions for null
geodesics.

The null geodesics of g coincide modulo reparametrization with the projections
on the base of null bicharacteristics of m(x, ξ) = |ξ|−1ξ · g−1(x)ξ. We recall that
Φs is the flow of the Hamiltonian vector field Hp, p(y, ξ) = ξ · g−1(y)ξ, which acts
naturally on S∗R1+d = T ∗R1+d ∩ {|ξ| = 1}. Null bicharacteristics stay in one of
the two connected components N± of N . We set

Γ±
in/out = {X ∈ S± : φs(X) 6→ ∞ as s → ±∞}, S± = N± ∩ {|ξ| = 1}.

The familiar non-trapping condition is:

(nt) there are no trapped null geodesics of g, i.e. Γ± = Γ±
in ∩ Γ±

out = ∅.
By a well-known argument, this actually implies that Γ±

in/out = ∅, see Lemma 4.2

below, hence any null geodesic escapes to infinity both when the affine parameter
s tends to +∞ and to −∞.

Lemma 4.2. If (nt) holds then Γ±
in = Γ±

out = ∅.
Proof. We drop the ± superscript. We claim that Γin 6= ∅ or Γout 6= ∅ implies
Γ 6= ∅. In fact Let X0 ∈ Γin, K1 a compact set such that {Φs(X0) : s ≥ 0} ⊂ K1.
Let sj → +∞ a sequence such that Xj = Φsj (X0) → X∞ ∈ K1. Clearly Φs(Xj) =
Φs+sj (X0) → Φs(X∞) for any s ∈ R. For j large enough we have Φs+sj (X0) ∈ K1

hence Φs(X∞) ∈ K1 for any s ∈ R, which means that X∞ ∈ Γ. 2

Proposition 4.3. Assume (aM) i). Then
(1) (R1+d, g) is globally hyperbolic iff (nt) holds,
(2) if (aM), iii) and iv) hold then there exists a Cauchy time function t̃ such that

t̃− t ∈ C∞
c (R1+d).

In the sequel we will work with the Cauchy time function t̃ obtained in (2) of
Prop. 4.3 .

Proof. First let us prove (1). By (aM) i) we have

{p, t} = ∂τ (|ξ|−1(τ2 − k2)) +O(〈x〉−δ |ξ|−1) ≥ τ |ξ|−1 +O(〈x〉−δ |ξ|−1).

It follows that there exist c0 > 0 and compact sets K± ⊂ N± such that

(4.2) ±{p, t} ≥ c0 on S± \K±

This implies that if X ∈ S+ and φs(X) → ∞ when s → ±∞ then t ◦φs(X) → ±∞
when s → ±∞. Of course a similar statement is true for X ∈ S− with the reversed
sign.

Let us set Σs = t−1(s). Using (4.2) we obtain that there exists T0 > 0 such that
any null geodesic intersects Σ±T transversally for T ≥ T0 and hence enters I±(Σ±T ).
Moreover Σ±T is achronal for T large enough, since ∂t is a future directed time-like
vector field in {±t ≥ ±T } for T large enough. We can apply then the Geroch-
Sánchez theorem (see for instance [Wa2, Thm. 8.3.7] for its basic version), which
implies that Σ±T are Cauchy hypersurfaces for T large enough, which completes
the proof of (1), ⇐.

Assume now that (R1+d, g) is globally hyperbolic and (nt) is violated. Let γ =
{x(s) : s ∈ R} be an (affine parametrized) null geodesic which is past and future
trapped, ie γ ⊂ K for some compact set K. Since (R1+d, g) is strongly causal,
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for each x ∈ K there exists an open neighborhood U(x) of x such that γ enters
U(x) only once, ie {s ∈ R : x(s) ∈ U(x)} ··= I(x) is a bounded open interval. By
compactness of K we have x(s) 6∈ K for s 6∈ ∪n

i=1I(xi), which is a contradiction.
This completes the proof of (1), ⇒.

Now let us prove (2). Let t̃ be the time function in (aM) iii). First of all, we
note that it follows from (aM) that −C−1 ≤ dt̃ · g−1dt̃ ≤ −C for some C > 0.
We fix a cutoff function χ ∈ C∞

c (R1+d) with 0 ≤ χ ≤ 1, χ = 1 near 0 and set
χR(y) = χ(R−1y), t̂R = χR t̃+ (1− χR)t. We have:

dt̂R = χRdt̃+ (1 − χR)dt+ (t̃− t)dχR.

The covector αR = χRdt̃ + (1 − χR)dt is a convex combination of future directed
timelike covectors, which using (aM) i) implies that there exists C > 0 such that
−C−1 ≤ αR · g−1αR ≤ −C, uniformly for R ≥ 1. The error term (t̃ − t)dχR is of
norm O(R−ǫ), which shows that t̂R is a time function for R large enough. Let us
fix such an R and denote t̂R by t̂. Clearly t̂ − t ∈ C∞

c (R1+d). It remains to check
that t̂ is a Cauchy time function. First using that t̂ = t+C∞

c (R1+d) we obtain that

(4.3) lim
T→+∞

sup
Σ−T

t̂ = −∞, lim
T→+∞

inf
ΣT

t̂ = +∞.

Let now γ be an inextendible future directed continuous causal curve and s ∈ R.
Since t̂ is a time function, γ intersects t̂−1(s) at most once. By global hyperbolicity,
γ intersects the Cauchy hypersurfaces Σ±T for T large enough. By (4.3) this implies
choosing T very large that γ intersects t̂−1(s±) for some s− < s < s+ hence also
t̂−1(s). Therefore t̂−1(s) is a Cauchy hypersurface for each s and t̂ is a Cauchy time
function. 2

4.3. Reduction to the model case. We now perform the reduction to the model
case following the method explained in [GW4], here however we need to take into
account the space-time decay of g and V.

After possibly redefining t̃ by adding a constant, we can assume that Σ ··=
t̃−1({0}) = {0} × Rd, so that Σ is a Cauchy hypersurface both for g and η.

We set v =
g−1dt̃

dt̃ · g−1dt̃
, so that v = ∂t outside a compact set. If φt is the flow of

v, we set:

χ : R× Σ ∈ (t, x) 7→ φt(0, x) ∈ R
1+d,

so that t̃(χ(t, x)) = t. Thanks to the space-time decay properties (aM), the diffeo-
morphism χ has the following proprieties.

Lemma 4.4. Assume (aM). Then

χ∗g = −ĉ2(t, x)dt2 + ĥ(t, x)dx2, χ∗V = V̂,

where:

ĥ, ĥ
−1

, ĉ, ĉ−1, V̂ ∈ S0
std(R

1+d).

Moreover there exist diffeomorphisms yout/in of Σ with

yout/in(x)− x ∈ S1−δ
sd (Rd),

such that if

ĥout/in ··= y∗out/inδ,

where δ is the flat Riemannian metric on Rd, we have:

ĥ − ĥout/in, ĉ − 1, V̂ − m2 ∈ S−δ
std(R

± × R
d).
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Proof. We have v = ∂t + S−δ
std, which also implies that

(4.4) 〈φs(0, x)〉 ≥ C(〈s〉+ 〈x〉), C > 0.

Setting w ··= πyv, we have πyχ(t, x) = πyx +
´ t

0
w(φs(x))ds. Using that w ∈

S−δ
std(R

1+d), we obtain that

yout/in(x) ··= lim
t→±∞

πyχ(t, x)

exist and:

(4.5) πyχ(t, x)− yout/in(x) ∈ S1−δ
std (R± × R

d), yout/in(x)− x ∈ S1−δ
sd (Rd).

Since t̃ = t outside a compact set, we also have χ(t, x) = (t, πyχ(t, x)) for |t|+ |x| ≥
C, hence

Dχ(t, x) =

(
1 0
0 Dyout/in(x)

)
+ S−δ

std(R
± × R

d).

This estimate and (4.4) imply the assertion. 2

If P ∈ Diff(R1+d) we denote by χ∗P the pullback of P by χ defined by (χ∗P )u ◦
χ = (Pu) ◦ χ.

We set P̂ = χ∗P and P̃ = ĉ1−n/2P̂ ĉ1+n/2. By a direct computation, one finds

(4.6) P̃ = ∂
2

t + r(t, x)∂t + a(t, x, ∂x),

where by Lemma 4.4, r, a satisfy (std) for δ > 1, with

(4.7) aout/in(x, ∂x) ··= −∆
ĥout/in

+ m2.

Thus, one is reduced to the setting from previous sections, with the mere notational
difference that the model Klein-Gordon operator from Sect. 2 is now denoted P̃ .

Note that

aout/in(x, ∂x) = χ∗
out/in(−∆x + m2), where χout/in(t, x) ··= (t, yout/in(x)).

There are several inconveniences related to the possibility that aout 6= ain. It
turns out, however, that they can be circumvented by considering the dynamics as-
sociated to the free Laplace operator −∆x+m2 instead of the asymptotic dynamics
Uout/in(t, s) associated to aout/in(x, ∂x).

4.4. Wave operators. Let Σs ··= t̃−1({s}) for m ∈ R. Using the diffeomorphism
χ we identify Σs with Rd to define the Sobolev spaces Hm(Σs). We introduce the
energy spaces:

Em(s) ··= H1+m(Σs)⊕Hm(Σs), m ∈ R.

Of course, under χ all spaces Em(s) equal Em(Rd) with uniformly equivalent norms.
We denote by U (t, s) : Em(s) → Em(t) the Cauchy evolution associated to P .

The approximate diagonalization of U (t, s) can be performed after reduction to

the model Klein-Gordon operator P̃ , thus one needs to take into account the diffeo-
morphism χ and the conformal transformation involving appropriate powers of ĉ.
This is done in the lemma below, which is proved by straightforward computations
detailed in [GW4].

Lemma 4.5. Let χt(x) = y(t, 0, x). Let Z(t) : Em(t) → Hm+ 1
2 be defined by

Z(t) ··= (χ∗
t )

−1ĉn/2−1

(
1 0

−i(n/2− 1)∂t ln(ĉ) 1

)
◦ T (t),

and similarly let us define Zout/in ··= (χ∗
out/in)

−1Tout/in. Then

(4.8) U (t, s) = Z(t)U ad(t, s)Z−1(s),
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where U ad(t, s) is the approximately diagonalized Cauchy evolution of P̃ defined in
(2.7). Furthermore,

(4.9) lim
t→±∞

Z(t)−1Zout/in − 1 = 0 in B(Hm).

We set Pfree ··= ∂
2

t −∆x+m2. Denoting by Ufree(t, s) the usual Cauchy evolution
for Pfree, we have by (4.7):

Ufree(t, s) = Zout/inU
ad
out/in(t, s)Z

−1
out/in.

Proposition 4.6. The limits

(4.10) Wout/in ··= lim
t→±∞

U (0, t)Ufree(t, 0)

exist in B(Em(0)) with inverses

(4.11) W−1
out/in = W †

out/in = lim
t→±∞

Ufree(0, t)U (t, 0).

Moreover one has:

(4.12) Wout/in = Z(0)W ad
out/inZ

−1
out/in,

where we recall that W ad
out/in = limt→±∞ U ad(0, t)U ad

out/in(t, 0).

Proof. The existence of the limits (4.10), (4.11) follows from the Cook argument,
using the short range condition δ > 1. The identity (4.12) follows from (4.9). 2

4.5. Fredholm problems and Feynman pseudo-inverse. Following the nota-
tion in (4.6), the objects introduced in Sect. 3 will be denoted with tildes, like

X̃m, Ỹm, etc. We define the spaces
(4.13)

Ym ··= (χ−1)∗Ỹm = (χ−1)∗
(
〈t〉−γL2(R;Hm)

)
,

Xm ··= (χ−1)∗X̃m = (χ−1)∗
{
ũ ∈

(
C0(R;Hm+1) ∩ C1(R;Hm)

)
: P̃ ũ ∈ Ỹm

}
.

In particular Xm is the space of u ∈ D ′(R1+d) such that u ◦ χ ∈ C0(R;Hm+1) ∩
C1(R;Hm) and Pu ∈ Ym. We equip Ym and Xm with the norms obtained from

Ỹm and X̃m.
We now introduce the projections

c±,vac
free =

1

2

(
1 ±

√
−∆x + m2

±
√
−∆x + m2 1

)
.

An easy computation shows that

(4.14) c±,vac
free = Zoutπ

±Z−1
out = Zinπ

±Z−1
in .

Definition 4.7. We set ̺out/in ··= s− limt→±∞ Ufree(0, t)̺t and

̺F ··= c+,vac
free ̺out + c−,vac

free ̺in, W †
F
··= c+,vac

free W †
out + c−,vac

free W †
in,

̺F ··= c−,vac
free ̺out + c+,vac

free ̺in, W †
F
··= c−,vac

free W †
out + c+,vac

free W †
in,

and for I ∈ {in, out,F,F}:
Xm

I
··= {u ∈ Xm : ̺Icu = 0}.

Theorem 4.8. Assume (aM) and let P , Xm
I be as defined in (4.1) and Def. 4.7

for m ∈ R and I ∈ {in, out,F,F}. Then:

(1) P : Xm
I → Ym is Fredholm of index indW †

Ic , and invertible with inverse G± if
I = out/in. Furthermore, KerP |Xm

I
⊂ C∞(M) and the index does not depend

on the Sobolev order m.
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(2) Let

GF ··= (χ−1)∗(ĉ1+n/2G̃Fĉ1−n/2),

where G̃F is the operator defined in (3.32) and ĉ, χ are defined in Subsect.
4.3. Then:

i) GF ∈ B(Ym,Xm
F ), PGF = 1Ym +KYm ,where KYm is compact on Ym,

ii) GFP = 1Xm
F

+KXm
F
,where KXm

F
is compact on Xm

F ,

iii) i(GF −G∗
F) ≥ 0 on Ym, for m ≥ 0,

iv) PGF − 1, GFP − 1 are smoothing operators,

v) WF(GF)
′ = (diagT∗M ) ∪⋃

t≤0(Φt(diagT∗M ) ∩ π−1N ).

In particular, GF is a Feynman parametrix of P in the sense of Def. 1.1.

Proof. The maps

Ym ∋ f 7→ f̃ ··= ĉ1−n/2f ◦ χ ∈ Ỹm,

Xm ∋ u 7→ ũ ··= ĉ1+n/2u ◦ χ ∈ Ỹm,

are boundedly invertible and furthermore, Pu = f iff P̃ ũ = f̃ . Moreover, by a
direct computation we obtain that Z−1̺u = T−1 ˜̺ũ and hence u ∈ Xm

I iff ũ ∈ X̃m
I .

The theorem follows hence from Thm. 3.18 provided we check that

(4.15) indW †
I = indW ad†

I .

This is obvious for I = out/in since the operators are then bijective. Let us check
(4.15) for I = F for example. We denote by Zfree the analog of Zout/in with ǫout/in
replaced by ǫfree = (−∆x+m2)

1
2 and χout/in replaced by 1. Using (4.12) and (4.14)

we obtain that

Z−1
freeW

†
F
= (Z−1

freeZoutπ
−W ad†

out + Z−1
freeZinπ

+W ad†
in )Z(0)−1 = S ◦W ad†

F
◦ Z(0)−1,

for S = Z−1
freeZoutπ

− + Z−1
freeZinπ

+. But since c±,vac
free = Zfreeπ

±Z−1
free, Z−1

freeZout/in

commutes with π+ and π−, using again (4.14). Therefore S = π−Z−1
freeZoutπ

− +

π+Z−1
freeZinπ

+ is invertible and hence indW †
F
= indW ad†

F
. 2

Appendix A

A.1. Proof of Prop. 2.2. To prove Prop. 2.2 we first need an auxiliary lemma
about parameter-dependent pseudodifferential calculus.

We start by introducing parameter dependent versions of the Ψm,0
std (R;Rd) calcu-

lus. Namely, we define S̃m,δ
std (R;T ∗Rd) to be the space of functions c(t, x, k, λ) such

that:

∂n
t ∂

p
λ∂

α
x ∂

β
k c(t, x, k, λ) ∈ O

(
(〈x〉+〈t〉)δ−n−|α|(〈k〉+〈λ〉)m−|β|−p

)
, α, β ∈ N

d, p, n ∈ N.

The typical element of S̃m,0
std (R;T ∗Rd) is c(t, x, k, λ) = a(t, x, k) + λm for a ∈

Sm,0
std (R;T ∗Rd).

We denote by S̃m,δ
std,ph(R;T

∗Rd) the subspace of symbols wich are polyhomoge-

neous in (k, λ).

Furthermore, we define W̃−∞
std (R;Rd) as the set of maps R ∋ λ 7→ a(t, λ) ∈

W−∞
std (R;Rd) such that:

‖(D2
x + x2 + λ2 + 1)m∂n

t ∂
p
λa(t, λ)(D

2
x + x2 + λ2 + 1)m‖B(L2(Rd)) ∈ O(〈t〉−m〈λ〉−m),

for all m,n, p ∈ N. We set

Ψ̃m,δ
std (R;Rd) = Op

(
S̃m,δ
std,ph(R;T

∗
R

d)
)
+ W̃−∞

std (R;Rd).
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Lemma A.1. Suppose that a(t) ∈ Ψ2,0
std(R;R

d) and that a(t) is elliptic, selfadjoint

on L2(Rd) and satisfies a(t) ≥ c01, c0 > 0. Then (a(t) + λ2)−1 ∈ Ψ̃−2,0
std (R;Rd).

Proof. Let us consider the operator A(t) = a(t)+D2
l acting on L2(Rd×R), where

l is the dual variable to λ. It is selfadjoint on H2(Rd ×R) and satisfies A(t) ≥ c01.
The idea of the proof is to construct a time-dependent pseudodifferential calculus
on Rd

x × Rl in which A(t) is elliptic, and such that Seeley’s theorem holds true.
Step 1. In step 1 we construct a convenient pseudodifferential calculus acting on

Rd+1 = Rd
x × Rl. Specifically, the symbol classes Sm

std(R;T
∗Rd+1) are defined by

the conditions

∂n
t ∂

α
x ∂

β
k ∂

p
l ∂

m
λ a(t, x, k, l, λ) ∈ O

(
(〈x〉+ 〈t〉)−n−|α|(〈k〉+ 〈λ〉)m−|β|−m

)
,

for all α, β ∈ Nd, m, n, p ∈ N. We denote by Sm
std,ph(R;T

∗Rd+1) the subspace of

symbols which are polyhomogeneous in (k, λ).

The class of t−dependent pseudodifferential operators Ψ̃m
std(R;R

d+1) consists by

definition of sums of Õp(Sm
std,ph(R;T

∗
R

d+1)), where Õp denotes the Weyl quan-

tization in (x, l), and of elements of the ideal W−∞
std (R;Rd+1) of operator-valued

functions R ∋ t 7→ a(t) such that

(A.1) ‖(D2
l +D2

x + 〈x〉2)n∂m
t adpl a(t)(D

2
l +D2

x + 〈x〉2)n‖B(L2(Rd
x×Rl)) ∈ O(〈t〉−n),

for all m,n, p ∈ N, where we use the notation adAB = [A,B].
Let us check that Seeley’s theorem is still valid for this class of operators, by veri-

fying once again the abstract conditions in [ALNV]. As in the proof of Thm. 2.1 we
use the notations in [GOW, Subsect. 5.3]. We take as Hilbert space H = L2(Rt ×
Rd+1), as injective operator in W−∞

std (R;Rd+1) the operator e−D2
x+D2

l +x2+t2+1.

The fact that a ∈ Sm
std,ph(R;T

∗Rd+1) and Õp(a) ∈ W−∞
std (R;Rd+1) implies a ∈

S−∞,0
std,ph(R;T

∗Rd+1) is easy to check.

The proof of the spectral invariance of W−∞
std (R;Rd+1) is done as in Thm. 2.1,

using that the operator adl satisfies Leibniz rule and the identity adl(1 − R)−1 =
(1−R)−1adlR(1−R)−1.

Step 2. In step 2 we describe the relationship between the classes Ψm
std(R;R

1+d)

and Ψ̃m
std(R;R

d). Denoting by F the Fourier transform in l and by Tl the group of
translations in l, we see that

c ∈ Sm
std,ph(R;T

∗R1+d), [Tl, Õp(c)] = 0

⇔ FOp(c)F−1 =
´ ⊕
R

Op(c(λ))dλ, for c(λ) ∈ S̃m
std,ph(R;T

∗Rd).

Let now w ∈ W−∞
std (R;Rd+1) with [w, Tl] = 0. We have:

(A.2) FwF
−1 =

ˆ ⊕

R

w(t, λ)dλ.

From (A.1) we obtain that:
ˆ

R

〈λ〉n‖(D2
x + 〈x〉2)n∂m

t ∂p
λw(t, λ)u(λ)‖2L2(Rd)dλ

≤ Cn,p〈t〉−n

ˆ

R

‖(D2
x + 〈x〉2)−nu(λ)‖2L2(Rd)dλ, ∀m,n, p ∈ N,

or equivalently
ˆ ⊕

R

〈λ〉n(D2
x + 〈x〉2)n/2∂m

t ∂p
λw(λ)(D

2
x + 〈x〉2)n/2dλ
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is of norm O(〈t〉−n) in B(L2(Rd+1)). By Sobolev’s embedding theorem this implies
that

‖(D2
x + 〈x〉2)n/2∂m

t ∂p
λw(λ)(D

2
x + 〈x〉2)n/2‖B(L2(Rd)) ∈ O(〈t〉n〈λ〉−n) ∀m,n, p ∈ N,

hence w(t, λ) ∈ W̃−∞
std (R;Rd). Conversely, if w(t, λ) ∈ W̃−∞

std (R;Rd) it is immediate

that w defined by (A.2) belongs to W−∞
std (R;Rd+1). Hence we have shown

(A.3)

w ∈ W−∞
std (R : Rd+1), [w, Tl] = 0

⇔ FwF
−1 =

ˆ ⊕

R

w(λ)dλ, for w(λ) ∈ W̃−∞
std (R;Rd).

Step 3. We can now conclude the proof of the lemma. By assumption A(t) =
a(t) +D2

l ∈ Ψ2
std(R;R

d+1) and is uniformly elliptic in that class, hence by Seeley’s

theorem A(t)−1 ∈ Ψ−2
std(R;R

d+1). We have

FA(t)−1
F

−1 =

ˆ ⊕

R

(a(t) + λ2)−1dλ,

where by Step 2 (a(t) + λ2)−1 ∈ Ψ̃−2
std(R;R

d). This completes the proof of the
lemma. 2

Proof of Prop. 2.2 In view of the identity

a1+α
1 − a1+α

2 = (a1 − a2)a
α
1 + a2(a

α
1 − aα2 ),

we see that it suffices to prove the proposition for 0 < α < 1. We will use the
following formula, valid for example if a is a selfadjoint operator on a Hilbert space
H with a ≥ c1, c > 0:

(A.4) aα = Cα

ˆ +∞

0

(a+ s)−1sαds = Cα

ˆ

R

(a+ λ2)−1λ2α+1dλ, α ∈ R,

where the integrals are norm convergent in say, B(Dom am,H) for m large enough.
We have for r(t) = a1(t)− a2(t):

(a1(t) + λ2)−1 = (a2(t) + λ2)−1(1+ r(t)(a1(t) + λ2)−1)

= (a2(t) + λ2)−1 + (a2(t) + λ2)−2(a2(t) + λ2)r(t)(a1(t) + λ2)−1

= (a2(t) + λ2)−1 + (a2(t) + λ2)−2a2(t)c1(t, λ)

= (a2(t) + λ2)−1 + a2(t)c2(t, λ),

where using Lemma A.1, c1(t, λ) ∈ Ψ̃0,−δ(R;Rd)) and c2(t, λ) ∈ Ψ̃−4,−δ(R;Rd).
From (A.4) we obtain that:

(A.5) aα1 (t)− aα2 (t) = Cαa2(t)

ˆ

R

c2(t, λ)λ
2α+1dλ.

We now write c2(t, λ) as Op(d2(t, λ)) + w2(t, λ), for d2 ∈ S̃−4,−δ
std,ph (R;T

∗rd) and

w2(t, λ) ∈ W̃−∞(R;Rd). Using that
ˆ

R

(〈ξ〉 + 〈λ〉)−4−kλ2α+1dλ ∼ 〈ξ〉2α−2−k,

we first obtain that
ˆ

R

d2(t, λ)λ
2α+1dλ ∈ S2α−2,−δ

std,ph (R;Rd).

Similarly we obtain that
´

R
w2(t, λ)λ

2α+1dλ ∈ W−∞
std (R;Rd). Using (A.5) this

implies that aα1 (t)− aα2 (t) ∈ Ψ2α,−δ(R;Rd), as claimed. 2
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A.2. Proof of Lemma 3.3. By interpolation, it suffices to prove the lemma for
m, k ∈ N. Let us set

Tm,k(t) = 〈ǫ(0)〉m〈x〉kU ad(0, t)(〈x〉+ 〈t〉)−k〈ǫ(0)〉−m,

Rm,k(t, s) = U ad(t, s)〈ǫ(s)〉m〈x〉kU ad(s, t)(〈x〉+ 〈t〉)−k〈ǫ(0)〉−m.

Using the uniform ellipticity of ǫ(t) it suffices to prove that

(A.6) sup
t≥0

‖Tm,k(t)‖B(H0) < ∞.

We claim that

(A.7) sup
0≤s≤t

‖Rm,k(t, s)‖B(H0) < ∞,

This of course implies (A.6) by taking s = 0 and using that U ad(t, s) is uniformly
bounded in B(H0), see [GW4]. To prove (A.7) we compute
(A.8)
∂sRm,k(t, s)

= U
ad(t, s)

(
∂s〈ǫ(s)〉m + [Had(s),−i〈ǫ(s)〉m]

)
〈x〉kU ad(s, t)(〈x〉+ 〈t〉)−k〈ǫ(0)〉−m

+ U
ad(t, s)〈ǫ(s)〉m[Had(s),−i〈x〉k]U ad(s, t)(〈x〉 + 〈t〉)−k〈ǫ(0)〉m.

Recall that

Had(t) =

(
ǫ(t) 0
0 −ǫ(t)

)
+Ψ0,−1−δ

std (R;Rd)⊗B(C2)

by Prop. 2.5. Hence:
(
∂s〈ǫ(s)〉m + [Had(s),−i〈ǫ(s)〉m]

)
∈ Ψm,−1−δ

std (R;Rd)⊗B(C2),

and we can write:

(A.9)
(
∂s〈ǫ(s)〉m + [Had(s),−i〈ǫ(s)〉m]

)
= Am(s)〈ǫ(s)〉m〈x〉−1,

where

(A.10) ‖Am(s)‖B(H0) ∈ O(1),

since (〈x〉+ 〈t〉)−1−δ ≤ 〈x〉−1. Similarly, we have

(A.11) 〈ǫ(s)〉m[Had(s), i〈x〉k] = Cm,k(s)〈ǫ(s)〉m〈x〉k−1,

where

(A.12) ‖Cm,k(s)‖B(H0) ∈ O(1).

We also set

Bm,k(t) = (〈x〉+ 〈t〉)−k+1〈ǫ(0)〉−m(〈x〉+ 〈t〉)k−1〈ǫ(0)〉m,

and we have by pseudodifferential calculus

(A.13) ‖Bm,k(t)‖B(H0) ∈ O(1).

Hence, we can rewrite (A.8) as

(A.14)
∂sRm,k(t, s)

= U
ad(t, s)Dm,k(s)U

ad(s, t)×Rm,k−1(t, s)×Bm,k(t)× (〈x〉+ 〈t〉)−1,

where

(A.15) Dm,k(s) = Am(s) + Cm,k(s), ‖Dm,k(s)‖B(H0) ∈ O(1).
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We can prove now (A.7) by induction for k. First, note that by 1) of [GW4, Prop.
5.6], (A.7) holds for k = 0. Assume that (A.7) holds for k − 1. Integrating (A.14)
from t to s we obtain:

‖Rm,k(t, s)−Rm,k(t, t)‖ ≤
ˆ t

0

‖Rm,k−1(t, σ)‖〈t〉−1dt ∈ O(1), for 0 ≤ s ≤ t

by the induction hypothesis. We conclude the proof of (A.7) using that

‖Rm,k(t, t)‖ = ‖〈ǫ(t)〉m〈x〉k(〈x〉+ 〈t〉)−k〈ǫ(0)〉m‖ ∈ O(1).

This completes the proof of the lemma. 2
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