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Abstract. We consider the massive Klein-Gordon equation on a class of
asymptotically static spacetimes (in the long range sense) with Cauchy surface
of bounded geometry. We prove the existence and Hadamard property of the
in and out states constructed by scattering theory methods.

1. Introduction & summary

1.1. Hadamard property of in/out states. The construction of quantum states
from scattering data is a subject that has been studied extensively in various
contexts in Quantum Field Theory. Let us mention for example the wave and
Klein-Gordon fields on Minkowski space, in external electromagnetic potentials
[Is, Lu, Ru, Se], or on curved spacetimes with special asymptotic symmetries,
[Wa1, DK1, DK2, DK3, Mo1]. On the physics side, the primary motivation is to
give meaning to the notion of particles and anti-particles and to describe quantum
scattering phenomena.

From the mathematical point of view, the problems often discussed in this con-
text in the literature involve existence of scattering and Møller operators, the
question of asymptotic completeness, or specific properties of states such as the
ground state or thermal condition with respect to an asymptotic dynamics, see
e.g. [Dr, DD, DRS, GGH, I-R, Ni] for various recent developments on curved back-
grounds.

In the present paper we address the question of whether the so-called in and out
states on asymptotically static spacetimes satisfy the Hadamard condition [KW].
Nowadays regarded as an indispensable ingredient in the perturbative construction
of interacting fields (see e.g. recent reviews [HW3, KM, FV2]), this property ac-
counts for the correct short-distance behaviour of two-point functions. It can be
conveniently formulated as a condition on the wave front set of the state’s two-point
functions [Ra] — a terminology that we explain in the paragraphs below. It is known
that in the special case of the conformal wave equation, one can study the wave front
set of the two-point functions quite directly in the geometrical setup of conformal
scattering on asymptotically flat spacetimes [Mo2, GW3] (cf. [DMP1, DMP2, BJ]
for generalizations on the allowed classes of spacetimes). Furthermore, propagation
estimates in b-Sobolev spaces of variable order were used recently to show a similar
result in the case of the wave equation on asymptotically Minkowski spacetimes
[VW], drawing on earlier developments by Vasy et al. [BVW, HV, Va1, Va2]. The
two methods being however currently limited to a special value of the mass param-
eter, our focus here is instead on the proof of the Hadamard property of the in
and out state for the Klein-Gordon operator P = −2g + m2 for any positive mass
m, or more generally for P = −2g + V with a real-valued potential V ∈ C∞(M)
satisfying an asymptotic positivity condition.
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1.2. The model problem. We first consider the special case of a 1+d-dimensional
globally hyperbolic spacetime (M, g) with Cauchy surface Σ and metric of the form
g = −dt2 + ht, with ht a Riemannian metric smoothly depending on t. The Klein-
Gordon operator can be written in the form

(1.1) P = ∂2t + r(t)∂t + a(t, x, ∂x),

where r(t) is the multiplication operator |ht|− 1
2 ∂t|ht| 12 and a(t, x, Dx) ∈ Diff2(Σ)

has principal symbol k ·h−1
t (x)k (where ξ = (τ, k) is the dual variable of x = (t, x)).

Now, supposing Σ is a manifold of bounded geometry (see Subsect. 3.1), there exist
uniform pseudodifferential operator classes Ψm(Σ) due to Kordyukov and Shubin
[Ko, Sh1] that generalize the well-known pseudodifferential calculus of Hörmander
on Rd and closed manifolds. Here in addition, in order to control decay in time, we

introduce t-dependent pseudodifferential operators Ψm,δ
td (R; Σ) as quantizations of

t-dependent symbols a(t, x, k) that satisfy

|∂αt ∂βx ∂γka(t, x, k)| ≤ Cαβγ〈t〉δ−α〈k〉m−|γ|, α ∈ N, β, γ ∈ N
d,

where 〈t〉 = (1 + t2)
1
2 , 〈k〉 = (1 + |k|2) 1

2 , and the constants Cαβγ are uniform in an
appropriate sense. This allows us to state a hypothesis that accounts for asymptotic
ultra-staticity of (M, g) at future and past infinity. Namely, we assume that there
exists δ > 0 and aout, ain ∈ Ψ2(Σ) elliptic such that on R± × Σ,

(td)
a(t, x, Dx)− aout/in(x, Dx) ∈ Ψ2,−δ

td (R; Σ),

r(t) ∈ Ψ0,−1−δ
td (R; Σ).

In practice, in our main cases of interest aout/in(x, Dx) will simply be the Laplace-
Beltrami operator of some asymptotic metric hout/in plus the mass or potential
term.

On top of that, an important condition that we assume is the strict positivity of
aout/in(x, Dx), namely:

aout/in(x, Dx) ≥ m2 > 0.

This condition has two consequences. First of all, it ensures that the vacuum
states ωvac

out/in for the Klein-Gordon operators Pout/in = ∂2t + aout/in(x, , Dx) have

covariances given by pseudodifferential operators (in the uniform classes Ψm(Σ)).
Secondly, it allows to control the differences of fractional powers a(t, x, Dx)

α −
aout/in(x, Dx)

α when t→ ∞, see Prop. 3.10. This control is an important technical
tool in Sect. 4.

Let now U (t, s) be the Cauchy evolution of P , i.e. the operator that maps
Cauchy data of P at time s to Cauchy data at time t. In this setup, what we call
time-t covariances of the out state are the pair of operators defined by

(1.2) c±out(t) ··= lim
t+→+∞

U (t, t+)c
±,vac
out U (t+, t)

whenever the limit exists (in a sense made precise later on), where c±,vac
out equals

c±,vac
out =

1

2

(
1 ±a−

1
2

out

±a
1
2

out 1

)
.

To elucidate the interpretation of c±,vac
out let us point out that c±,vac

out is the spectral
projection on R± of the generator1 of the Cauchy evolution Uout(t, s) corresponding
to the asymptotic Klein-Gordon operator Pout ··= ∂2t + aout. On the other hand, to

1This generator is selfadjoint for the energy scalar product.
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c±,vac
out , c±out we can associate pairs of operators Λ±,vac

out , Λ±
out : C

∞
c (M) → C∞(M)

by

Λ±,vac
out (t, s) ··= ∓π0Uout(t, 0)c

±,vac
out Uout(0, s)π

∗
1 ,

Λ±
out(t, s) ··= ∓π0U (t, 0)c±out(0)U (0, s)π∗

1 ,

where we wrote Λ±,vac
out , Λ±

out as operator-valued Schwartz kernels in the time variable

and πi : C
∞
c (Σ)2 ∋

(
f0
f1

)
7→ fi ∈ C∞

c (Σ) are the projections to the two components

of Cauchy data.
In QFT terms (strictly speaking, using the terminology for charged fields), the

operators Λ±,vac
out , Λ±

out are two-point functions, i.e. they satisfy

PoutΛ
±,vac
out = Λ±,vac

out Pout = 0, Λ+,vac
out − Λ−,vac

out = iGout, Λ±,vac
out ≥ 0,

PΛ±
out = Λ±

outP = 0, Λ+
out − Λ−

out = iG, Λ±
out ≥ 0,

where Gout, G are the causal propagators for respectively Pout, P , i.e.

Gout(t, s) = iπ0Uout(t, s)π
∗
1 , G(t, s) = iπ0U (t, s)π∗

1 .

As a consequence, using the standard apparatus of algebraic QFT one can associate
states ωvac

out, ωout on the corresponding CCR C∗-algebras: ωvac
out is then the very well

studied ground state associated with Pout and ωout is the out state that we study.
Our first result can be expressed as follows in terms of the two-point functions

Λ±
out.

Theorem 1.1. Assume (td). Then the limit (1.2) exists and ωout is a Hadamard
state, i.e. the two-point functions Λ±

out satisfy the Hadamard condition:

(1.3) WF′(Λ±
out) ⊂ N± ×N±,

where N+, N− are the two connected components of the characteristic set N ⊂
T ∗M \ o of P .

Above, WF′(Λ±
out) stands for the primed wave front set of Λ±

out, i.e. it is the image
of the wave front set of the (full) Schwartz kernel of Λ±

out by the map (x, ξ, x′, ξ′) 7→
(x, ξ, x′,−ξ′). We recall that the wave front set of a distribution characterizes the
location (x, x′) of its singularities, as well as the responsible directions (ξ, ξ′) in
Fourier space, see [Hö] for the precise definition and basic properties, cf. [BDH] for
a concise introduction. The characteristic set of P is by definition N = p−1({0})
understood as a subset of T ∗M \o (where o is the zero section of the cotangent
bundle), where p(x, ξ) = ξ · g−1(x)ξ is the principal symbol of P .

The essential feature of the Hadamard condition (1.3) is that it constraints
WF′(Λ±

out) to the positive/negative frequency components N± ×N± (rather than
merely to N × N , as would be the case for very general classes of bi-solutions).
Thus, on a very heuristic level, the plausibility of this statement can be explained
as follows. In a static situation, c±,vac

out are interpreted as projections that single out
Cauchy data that propagate as superpositions of plane waves with positive/negative
frequency, and thus with wave front set in N±. On a generic asymptotically flat
spacetime it is not immediately clear what the analogous decomposition at finite
times is, but instead one can try to use the decomposition given by c±,vac

out at infinite
times : this is what indeed motivates the definition of Λ±

out. The crucial difficulty is
however to control the wave front set of the infinite time limit (1.2).

In addition to the statement of Thm. 1.1, we get in a similar vein a Hadamard
state ωin by taking the limit analogous to (1.2) with t− → −∞ instead of t+ → +∞
and c±,vac

in instead of c±,vac
out . This is the so-called in state.
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1.3. General asymptotically static spacetimes. Our results extend to a more
general class of asymptotically static spacetimes M = R × Σ with metric of the
form

g = −c2(x)dt2 + (dxi + bi(x)dt)hij(x)(dx
j + bj(x)dt),

where (Σ, h) is a manifold of bounded geometry and c, h, b as well as their inverses
are bounded with all derivatives (with respect to the norm defined using a reference
Riemannian metric). By asymptotically static we mean that there exist Riemannian
metrics hout/in and smooth functions cout/in on Σ, such that on R± × Σ,

(ast)
h(x) − hout/in(x) ∈ S−µ,

b(x) ∈ S−µ′

, and c(x) − cout/in(x) ∈ S−µ

for some µ > 0, µ′ > 1; in a similar vein the potential V is required to satisfy
V(x) − Vout/in(x) ∈ S−µ for some smooth Vout/in. Above, the notation f ∈ S−µ

means symbolic decay in time, i.e. ∂αt f ∈ O(〈t〉−µ−|α|) for all α ∈ N
1+d; we refer

to Subsect. 5.1 for the precise formulation.
In this more general situation, the Klein-Gordon operator is not necessarily of

the form (1.1) considered so far. However, under a positivity assumption (pos) on
Vout/in, it turns out that there are natural coordinates in terms of which the Klein-
Gordon operator is very closely related to an operator (1.1) satisfying (td), i.e. one
is obtained from the other by conjugation with some multiplication operators. This
allows us to give a very similar definition of the out/in state ωout/in and to prove
a direct analogue of Thm. 1.1.

1.4. Outline of proofs. The importance of our result stems from the fact that it
brings together for the first time methods from scattering theory and the analysis
of Hadamard states. The main technical ingredient that we use in the proof of our
theorem is an approximate diagonalization2 of the Cauchy evolution by means of
elliptic pseudodifferential operators, derived in detail in [GOW] and based on the
strategy developed successively in the papers [Ju, JS, GW1, GW2]. Specifically, its
outcome is that the Cauchy evolution of P can be written as

(1.4) U (s, t) = T (t)U ad(t, s)T (s)−1

where T (t) is a 2×2 matrix of pseudodifferential operators (smoothly depending on
t) and U ad(t, s) is ‘almost diagonal’ (hence the superscript ad). Namely, U ad(s, t)
is the Cauchy evolution of a time-dependent operator of the form i∂t + Had(t),
where

Had(t) =

(
ǫ+(t) 0
0 ǫ−(t)

)

modulo smooth terms (more precisely, modulo terms in C∞(R2,W−∞(Σ) ⊗ C2),
where W−∞(Σ) are the operators that map H−m(Σ) to Hm(Σ) for each m ∈ N),
and ǫ±(t) are elliptic pseudodifferential operators of order 1 with principal symbol

±(k·h−1
t k)

1
2 . Now, because of this particular form of the principal symbol, solutions

of (i−1∂t + ǫ±(t)) propagate with wave front set in N±. This allows us to prove
that if we fix some t0 ∈ R and set

c±ref(t0) ··= T (t0)π
±T−1(t0), where π+ =

(
1 0
0 0

)
, π− =

(
0 0
0 1

)
,

2On a side note, let us mention that a different diagonalization procedure was proposed by
Ruzhansky and Wirth in the context of dispersive estimates [RW, Wi]; in their method it is the
(full) symbol of the generator of the Cauchy evolution that is diagonalized (rather than the Cauchy
evolution itself).
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then Λ±
ref(t, s) ··= ∓π0U (t, t0)c

±
ref(t0)U (t0, s)π

∗
1 have wave front set only in N± ×

N± and therefore satisfy the Hadamard condition (1.3). As a consequence, to prove
the Hadamard condition for Λ±

in/out it suffices to show that

c±in/out − c±ref ∈ W−∞(Σ)⊗B(C2).

To demonstrate that this is the case, we use assumption (td) to control the decay in
time of various remainders in identities ‘modulo smooth’. The most crucial estimate
here is

(1.5) Had(t)−
(
a(t)

1
2 0

0 −a(t) 1
2

)
∈ Ψ0,−1−δ

td (R; Σ)⊗B(C2)

for large t, which then yields time-decay of various commutators that appear in
the proofs. We obtain (1.5) by revisiting the approximate diagonalization (1.4)

using poly-homogeneous expansions of pseudodifferential operators in Ψm,−δ
td (R; Σ)

in both m and δ; more details are given in Sect. 4.5. This requires us to study the

classes Ψm,−δ
td (R; Σ) carefully, in particular we employ a variant of Seeley’s theorem

on powers of pseudodifferential operators elliptic in the standard Ψm sense.

1.5. Plan of the paper. The paper is structured as follows.
In Sect. 2 we fix some basic terminology and recall the definition of two-point

functions and covariances of states in the context of non-interacting Quantum Field
Theory.

Sect. 3 contains a brief overview of the pseudodifferential calculus on manifolds
of bounded geometry. We then introduce the time-dependent pseudodifferential

operator classes Ψm,δ
td and study some of their properties.

In Sect. 4 we recall the approximate diagonalization of the Cauchy evolution
used in [GOW] to construct generic Hadamard states. We then give a refinement
in the setup of assumption (td) by showing time decay of various remainder terms.

Sect. 5 contains the construction of the in and out states and the proof of their
Hadamard property in the case of asymptotically static spacetimes (assumptions
(ast) and (pos)). The key ingredients are the reduction to the setup of assumption
(td) and the estimates obtained in Sect. 4.

Various auxiliary proofs are collected in Appendix A.

2. Preliminaries

2.1. Notation. The space of differential operators (of order m) over a smooth
manifold M (here always without boundary) is denoted Diff(M) (Diffm(M)). The
space of smooth functions on M with compact support is denoted C∞

c (M).
The operator of multiplication by a function f will be denoted by f , while the

operators of partial differentiation will be denoted by ∂i, so that [∂i, f ] = ∂if .

- If a, b are selfadjoint operators on a Hilbert space H, we write a ∼ b if

a, b > 0, Dom a
1
2 = Dom b

1
2 , c−1b ≤ a ≤ cb,

for some constant c > 0.

- Similarly, if I ⊂ R is an open interval and {Ht}t∈I is a family of Hilbert spaces
with Ht = H as topological vector spaces, and a(t), b(t) are two selfadjoint op-
erators on Ht, we write a(t) ∼ b(t) if for each J ⋐ I there exist constants
c1,J , c2,J > 0 such that

(2.1) a(t), b(t) ≥ c1,J > 0, c2,Jb(t) ≤ a(t) ≤ c−1
2,Jb(t), t ∈ J.
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2.2. Klein-Gordon operator. Let (M, g) be a Lorentzian spacetime (we use the
convention (−,+, . . . ,+) for the Lorentzian signature). We consider the Klein-
Gordon operator with a real-valued potential V ∈ C∞(M)

P = −2g + V ∈ Diff2(M),

Since V is real-valued we have P = P ∗ in the sense of formal adjoints with respect
to the L2(M, g) scalar product, canonically defined using the volume form.

For K ⊂ M we denote J±(K) ⊂ M its causal future/past, see e.g. [BF1, Wa2].
Let C∞

± (M) be the space of smooth functions whose support is future or past
compact, that is

C∞
± (M) = {f ∈ C∞(M) : suppf ⊂ J±(K) for some compact K ⊂M}.

We assume that (M, g) is globally hyperbolic, i.e. admits a foliation by Cauchy
surfaces3 (in the next sections we will impose more restrictive conditions on (M, g),
but these are irrelevant for the moment). It is well known that P has then unique
advanced/retarded propagators, i.e. operators G± : C∞

± (M) → C∞
± (M) s.t.

(2.2) PG± = 1 on C∞
± (M).

A standard duality argument that uses P = P ∗, (2.2), and the fact that C∞
+ (M)∩

C∞
− (M) = C∞

c (M) on globally hyperbolic spacetimes, gives G∗
+ = G− as sesquilin-

ear forms on C∞
c (M). The causal propagator (often also called Pauli-Jordan com-

mutator function) of P is by definition G ··= G+ −G−, interpreted here as a map
from C∞

c (M) to C∞
+ (M) +C∞

− (M), the space of space-compact smooth functions.

2.3. Symplectic space of solutions. In what follows we recall the relation be-
tween quasi-free states, two-point functions, and field quantization. The reader
interested only in the analytical aspects can skip this discussion and move directly
to equations (2.6)–(2.8), which can be taken as the definition of two-point functions
in the present context.

By a phase space we will mean a pair (V , q) consisting of a complex vector space
V and a non degenerate hermitian form q on V . In our case the phase space of
interest (i.e. the phase space of the classical non-interacting scalar field theory) is

(2.3) V ··=
C∞

c (M)

PC∞
c (M)

, u qv ··= i(u|Gv),

where (·|·) is the L2(M, g) pairing. The sesquilinear form q is indeed well-defined
on the quotient space C∞

c (M)/PC∞
c (M) because PG = GP = 0 on test functions.

Using that G∗
+ = G− one shows that q is hermitian, and it is also not difficult to

show that it is non-degenerate.
Note that in contrast to most of the literature, we work with hermitian forms

rather than with real symplectic ones, but the two approaches are equivalent.

2.4. States and their two-point functions. Let V be a complex vector space,
V ∗ its anti-dual and Lh(V ,V ∗) the space of hermitian sesquilinear forms on V . If

q ∈ Lh(V ,V ∗) then we can define the polynomial CCR ∗-algebra CCRpol(V , q)
(see e.g. [DG2, Sect. 8.3.1]) 4. It is constructed as the span of the so-called abstract
complex fields V ∋ v 7→ ψ(v), ψ∗(v), which are taken to be anti-linear, resp. linear
in v and are subject to the canonical commutation relations

[ψ(v), ψ(w)] = [ψ∗(v), ψ∗(w)] = 0, [ψ(v), ψ∗(w)] = vqw1, v, w ∈ V .

3Let us recall that a Cauchy surface is a smooth hypersurface that is intersected by every
inextensible, non-spacelike (i.e. causal) curve exactly once.

4See also [GW1, Wr] for remarks on the transition between real and complex vector space
terminology.
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Our main object of interests are the states5 on CCRpol(V , q).

The complex covariances Λ± ∈ Lh(V ,V ∗) of a state ω on CCRpol(V , q) are
defined in terms of the abstract field operators by

(2.4) vΛ+w = ω
(
ψ(v)ψ∗(w)

)
, vΛ−w = ω

(
ψ∗(w)ψ(v)

)
, v, w ∈ V

Note that both Λ± are positive and by the canonical commutation relations one
always has Λ+ −Λ− = q. Conversely, if one has a pair of hermitian forms Λ± such
that Λ+ − Λ− = q and Λ± ≥ 0 then there is a unique quasi-free state ω such that
(2.4) holds. We will thus further restrict our attention to quasi-free states and more
specifically to their complex covariances Λ±.

In QFT (at least for scalar fields) the phase space of interest is the one defined in
(2.3). In that specific case it is convenient to consider instead of complex covariances
a pair of operators Λ± : C∞

c (M) → C∞(M) such that

(2.5) (v|Λ+w) = ω
(
ψ(v)ψ∗(w)

)
, (v|Λ−w) = ω

(
ψ∗(w)ψ(v)

)
, v, w ∈ C∞

c (M).

We call Λ± the two-point functions of the state ω and identify them with the
associated complex covariances whenever possible. Note that because (·|Λ±·) has
to induce a hermitian form on the quotient space C∞

c (M)/PC∞
c (M), the two-point

functions have to satisfy PΛ± = Λ±P = 0 on C∞
c (M). By the Schwartz kernel

theorem we can further identify Λ± with a pair of distributions on M ×M , these
are then bi-solutions of the Klein-Gordon equation.

In QFT on curved spacetime one is especially interested in the subclass of quasi-
free Hadamard states [KW, Ra]. These can be defined as in the introduction, i.e. by
requiring that the primed wave front set of the Schwartz kernel of Λ± is contained in
N±×N± (cf. e.g. [Ra, SV, Sa] for a discussion of various equivalent formulations),
N± ⊂ T ∗M \o being the two connected components of the characteristic set of P
(and o ⊂ T ∗M the zero section). To sum this up, specifying a Hadamard state
amounts to constructing a pair of operators Λ± : C∞

c (M) → C∞(M) satisfying the
properties:

PΛ± = Λ±P = 0, Λ+ − Λ− = iG,(2.6)

Λ± ≥ 0,(2.7)

WF′(Λ±) ⊂ N± ×N±.(2.8)

Existence of two-point functions as above was proved in [FNW], and an alternative
argument was given in [GW1], followed by the construction of a very large class of
examples in [GOW]. The importance of Hadamard states is primarily due to their
pivotal role in renormalization on curved spacetimes [BF2, HW1, HW2, Da], see
[FV2, KM, HW3] for recent reviews.

Here we will be interested in showing (2.8) for specific two-point functions with
prescribed asymptotic properties, motivated by the conceptual need for distin-
guished Hadamard states whenever allowed by the spacetime geometry.

2.5. Cauchy data of two-point functions. We will need a version of two-point
functions acting on Cauchy data of P instead of spacetime quantities such as Λ±.
To this end, let {Σs}s∈R be a foliation of M by Cauchy surfaces (since all Σs are
diffeomorphic we occasionally write Σ instead). We define the map

̺su ··= (u, i−1na∇au)↾Σs ,

acting on distributions u such that the restriction ↾Σs makes sense, where na is the
unit normal vector to Σs. It is well-known that ̺s ◦ G maps C∞

c (M) to C∞
c (Σs)

5Let us recall that a state ω is a linear functional on CCRpol(V , q) such that ω(a∗a) ≥ 0 for

all a in CCRpol(V , q), and ω(1) = 1.
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and that there exists an operator G(s) acting on C∞
c (Σ)⊗ C2 (not to be confused

with G) that satisfies

(2.9) G =·· (̺sG)∗ ◦G(s) ◦ ̺sG,
where (̺sG)

∗ is the formal adjoint of ̺s ◦G wrt. the L2 inner product on Σs ⊔Σs

respective to some density (that can depend on s, later on we will make that choice
more specific). We also set

q(s) ··= i−1G(s),

so that q(s)∗ = q(s).
The next result provides a Cauchy surface analogue of the two-point functions

Λ±, cf. [GW2] for the proof.

Proposition 2.1. For any s ∈ R the maps:

(2.10) λ±(s) 7→ Λ± ··= (̺sG)
∗λ±(s)(̺sG),

and

(2.11) Λ± 7→ λ±(s) ··= (̺∗sG(s))
∗Λ±(̺∗sG(s))

are bijective and inverse from one another.

It is actually convenient to make one more definition and set:

(2.12) c±(s) = ±(iG(s))−1λ±(s) : C∞
c (Σ)⊗B(C2) → C∞(Σ)⊗B(C2).

We will simply call c±(s) the (time-s) covariances of the state ω. A pair of operators
c±(s) are covariances of a state iff the operators Λ± defined by (2.10) and (2.12)
satisfy (2.6)-(2.7), which is equivalent to the conditions

c+(s) + c−(s) = 1,(2.13)

λ±(s) ≥ 0,(2.14)

where we identified the operators λ±(s) with hermitian forms using the same pairing
as when we took the formal adjoint in (2.9). Note that (2.13) can also be expressed
as λ+(s)− λ−(s) = q(s).

Additionally, a state (recall that we consider only quasi-free states) is pure iff
its covariances c±(s) extend to projections on the completion of C∞

c (Σ)⊗C2 w.r.t.
the inner product given by λ+ + λ−. In practice it is sufficient to construct c±(s)
as projections acting on a space that is big enough to contain C∞

c (Σ) ⊗ C2, but
small enough to be contained in the Hilbert space associated to λ+ + λ−.

2.6. Propagators for the Cauchy evolution. Recall that we have defined the
operator G(s) via the identity

(2.15) G =·· (̺sG)∗ ◦G(s) ◦ ̺sG.
A direct consequence is that the operator G∗̺sG(s) assigns to Cauchy data on Σs

the corresponding solution. Similarly, for t, s ∈ R the operator

(2.16) U (s, t) ··= ̺sG
∗̺∗tG(t)

produces Cauchy data of a solution on Σs given Cauchy data on Σt. We will call
{U (s, t)}s,t∈R the Cauchy evolution of P . A straightforward computation gives the
group property

(2.17) U (t, t) = 1, U (s, t′)U (t′, t) = U (s, t), t′ ∈ R;

and the conservation of the symplectic form by the evolution

(2.18) U
∗(s, t)q(s)U (s, t) = q(t).
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These identities allow to conclude that the covariances c±(t) (and two-point func-
tions λ±(t)) at different ‘times’ of a quasi-free state are related by

(2.19)
λ±(t) = U (s, t)∗λ±(s)U (s, t),

c±(t) = U (t, s)c±(s)U (s, t).

Notice that this induces a splitting of the evolution in two parts:

U (s, t) = U
+(s, t) + U

−(s, t), with U
±(s, t) = U (s, t)c±(t).

If the state is pure then c±(t) are projections for all t and the operators U ±(s, t)
obey the composition formula

U
±(s, t′)U ±(t′, t) = U

±(s, t), U
±(s, t′)U ∓(t′, t) = 0, t′ ∈ R.

Let us stress that U ±(t, t) is not the identity, but rather equals c±(t). Furthermore,
if the state is Hadamard then U (s, t)c±(t) propagate singularities along N± (see
the discussion in [GW2]). In Sect. 4 we will be interested in the reversed argu-
ment, namely we will construct covariances c±(t) of pure Hadamard states from a
splitting of the evolution U (t, s) into two parts that propagate singularities along
respectively N+, N−.

3. Pseudodifferential calculus on manifolds of bounded geometry

3.1. Manifolds of bounded geometry. In the present section we introduce man-
ifolds of bounded geometry and review the pseudodifferential calculus of Kordyukov
and Shubin [Ko, Sh1], making also use of some results from [GOW].

Let us denote by δ the flat metric on Rd and by Bd(y, r) ⊂ Rd the open ball of
center y and radius r.

If (Σ, h) is a d−dimensional Riemannian manifold and X is a (p, q) tensor on
Σ, we can define the canonical norm of X(x), x ∈ Σ, denoted by ‖X‖x, using
appropriate tensor powers of h(x) and h−1(x). X is bounded if supx∈Σ ‖X‖x <∞.

If U ⊂ Σ is open, we denote by BTp
q(U, δ) the Fréchet space of (p, q) tensors

on U , bounded with all covariant derivatives in the above sense. Among several
equivalent definitions of manifolds of bounded geometry (see [Sh1, GOW]), the one
below is particularly useful in applications.

Definition 3.1. A Riemannian manifold (Σ, h) is of bounded geometry iff for each
x ∈ Σ, there exists an open neighborhood of x, denoted Ux, and a smooth diffeo-
morphism

ψx : Ux
∼−→ Bd(0, 1) ⊂ R

d

with ψx(x) = 0, and such that if hx ··= (ψ−1
x )∗h then:

(C1) the family {hx}x∈Σ is bounded in BT0
2(Bd(0, 1), δ),

(C2) there exists c > 0 such that :

c−1
δ ≤ hx ≤ cδ, x ∈ Σ.

A family {Ux}x∈Σ resp. {ψx}x∈Σ as above will be called a family of good chart
neighborhoods, resp. good chart diffeomorphisms.

A known result (see [Sh1, Lemma 1.2]) says that one can find a covering Σ =⋃
i∈N

Ui by good chart neighborhoods Ui = Uxi (xi ∈ Σ) which is uniformly finite,
i.e. there exists N ∈ N such that

⋂
i∈I Ui = ∅ if ♯I > N . Setting ψi = ψxi , we will

call the sequence {Ui, ψi}i∈N a good chart covering of Σ.
Furthermore, by [Sh1, Lemma 1.3] one can associate to a good chart covering a

partition of unity:

1 =
∑

i∈N

χ2
i , χi ∈ C∞

c (Ui)



Hadamard property of the in and out states on asymptotically static spacetimes 10

such that {(ψ−1
i )∗χi}i∈N is a bounded sequence in C∞

b (Bd(0, 1)). Such a partition
of unity will be called a good partition of unity.

3.2. Bounded tensors and bounded diffeomorphisms.

Definition 3.2. Let (Σ, h) be of bounded geometry. We denote by BTp
q(Σ, h) the

spaces of smooth (q, p) tensors X on Σ such that if Xx = (exph
x ◦ex)∗X, where

ex : (Rd, δ) → (TxΣ, h(x)) is an isometry, then the family {Xx}x∈Σ is bounded in
BTp

q(Bd(0,
r
2 ), δ). We equip BTp

q(Σ, h) with its natural Fréchet space topology.
We denote by C∞

b (R; BTp
q(Σ, h)) the space of smooth maps R ∈ t 7→ X(t) such

that ∂nt X(t) is uniformly bounded in BTp
q(Σ, h) for n ∈ N.

We denote by Sδ(R; BTp
q(Σ, h)), δ ∈ R the space of smooth maps R ∈ t 7→ X(t)

such that 〈t〉−δ+n∂nt X(t) is uniformly bounded in BTp
q(Σ, h) for n ∈ N.

It is well known (see e.g. [GOW, Subsect. 2.3]) that we can replace in Def. 3.2
the geodesic maps exph

x ◦ex by ψ−1
x , where {ψx}x∈Σ is any family of good chart

diffeomorphisms as in Thm. 3.1.

Definition 3.3. Let (Σ, h) be an n−dimensional Riemannian manifold of bounded
geometry and χ : Σ → Σ a smooth diffeomorphism. One says that χ is a bounded
diffeomorphism of (Σ, h) if for some some family of good chart diffeomorphisms
{Ux, ψx}x∈Σ, the maps

χx = ψχ(x) ◦ χ ◦ ψ−1
x , χ−1

x = ψχ−1(x) ◦ χ−1 ◦ ψx : Bn(0, 1) → Bn(0, 1)

are bounded in C∞
b (Bn(0, 1)) uniformly with respect to x ∈ Σ.

It is easy to see that if the above properties are satisfied for some family of
good chart diffeomorphisms then they are satisfied for any such family, furthermore
bounded diffeomorphisms are stable under composition.

3.3. Symbol classes. We recall some well-known definitions about symbol classes
on manifolds of bounded geometry, following [Sh1, Ko, ALNV].

3.3.1. Symbol classes on Rn. Let U ⊂ Rd be an open set, equipped with the flat
metric δ on Rd.

We denote by Sm(T ∗U), m ∈ R, the space of a ∈ C∞(U × Rd) such that

〈k〉−m+|β|∂αx ∂
β
k a(x, k) is bounded on U × R

d, ∀α, β ∈ N
n,

equipped with its canonical semi-norms ‖ · ‖m,α,β.
We set

S−∞(T ∗U) ··=
⋂

m∈R

Sm(T ∗U), S∞(T ∗U) ··=
⋃

m∈R

Sm(T ∗U),

with their canonical Fréchet space topologies. If m ∈ R and am−i ∈ Sm−i(T ∗U)
we write a ≃∑i∈N

am−i if for each p ∈ N

(3.1) rp(a) ··= a−
p∑

i=0

am−i ∈ Sm−p−1(T ∗U).

It is well-known (see e.g. [Sh2, Sect. 3.3]) that if am−i ∈ Sm−i(T ∗U), there exists
a ∈ Sm(T ∗U), unique modulo S−∞(T ∗U) such that a ≃∑i∈N

am−i.
We denote by Sm

h (T ∗U) ⊂ Sm(T ∗U) the space of a such that a(x, λk) =
λma(x, k), for x ∈ U , |k| ≥ C, C > 0 and by Sm

ph(T
∗U) ⊂ Sm(T ∗U) the space of a

such that a ≃∑i∈N
am−i for a sequence am−i ∈ Sm−i

h (T ∗U) (a is then called a poly-

homogeneous6 symbol). Following [ALNV] one equips Sm
ph(T

∗U) with the topology

6These are also called classical symbols in the literature.
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defined by the semi-norms of am−i in Sm−i(T ∗U) and rp(a) in Sm−p−1(T ∗U), (see
(3.1)). This topology is strictly stronger than the topology induced by Sm(T ∗U).

The space Sm
ph(T

∗U)/Sm−1
ph (T ∗U) is isomorphic to Sm

h (T ∗U), and the image of

a under the quotient map is called the principal symbol of a and denoted by σpr(a).
If U = Bn(0, 1) (more generally, if U is relatively compact with smooth bound-

ary), there exists a continuous extension map E : Sm(T ∗U) → Sm(T ∗
R

d) such that
Ea↾T∗U= a. Moreover E maps Sm

ph(T
∗U) into Sm

ph(T
∗Rd) and is continuous for the

topologies of Sm
ph(T

∗U) and Sm
ph(T

∗Rd), which means that all the maps

a 7→ (Ea)m−i, a 7→ rp(Ea),

are continuous.

3.3.2. Time-dependent symbol classes on Rd. We will also need to consider various
classes of time-dependent symbols a(t, x, k) ∈ C∞(R× T ∗U). First of all the space
C∞(R;Sm(T ∗U)) is defined as the space of a ∈ C∞(R× T ∗U) such that

〈k〉−m+|β|∂γt ∂
α
x ∂

β
k a(t, x, k) is bounded on I × U × R

d, ∀α, β ∈ N
n, γ ∈ N,

for any interval I ⋐ R. We denote by C∞
b (R;Sm(T ∗U)) the subspace of symbols

which are uniformly bounded in Sm(T ∗U) with all time derivatives.
Furthermore, anticipating the need for some additional decay in t in Sect. 4.5,

we denote by Sδ(R;Sm(T ∗U)) the space of a ∈ C∞(R× T ∗U) such that

〈t〉−δ+γ〈k〉−m+|β|∂γt ∂
α
x ∂

β
k a(t, x, k) is bounded on R× U × R

d, ∀α, β ∈ N
n, γ ∈ N.

The notation a ∼∑i am−i and the poly-homogeneous spaces

C∞
(b)(R;S

m
ph(T

∗U)), Sδ(R;Sm
ph(T

∗U)),

are defined analogously, by requiring estimates on the time derivatives of the am−i

and rp in (3.1).

3.3.3. Symbol classes on Σ. Let (Σ, h) be a Riemannian manifold of bounded ge-
ometry and {ψx}x∈Σ a family of good chart diffeomorphisms.

Definition 3.4. We denote by Sm(T ∗Σ) for m ∈ R the space of a ∈ C∞(T ∗Σ)
such that for each x ∈ Σ, ax ··= (ψ−1

x )∗a ∈ Sm(T ∗Bn(0, 1)) and the family {ax}x∈Σ

is bounded in Sm(T ∗Bn(0, 1)). We equip Sm(T ∗Σ) with the semi-norms

‖a‖m,α,β = sup
x∈Σ

‖ax‖m,α,β.

Similarly we denote by Sm
ph(T

∗Σ) the space of a ∈ Sm(T ∗Σ) such that for each

x ∈ Σ, ax ∈ Sm
ph(T

∗Bn(0, 1)) and the family {ax}x∈Σ is bounded in Sm
ph(T

∗Bn(0, 1)).

We equip Sm
ph(T

∗Σ) with the semi-norms

‖a‖m,i,p,α,β = sup
x∈Σ

‖ax‖m,i,p,α,β.

where ‖ · ‖m,i,p,α,β are the semi-norms defining the topology of Sm
ph(T

∗Bn(0, 1)).

We also set S∞
(ph)(T

∗Σ) =
⋃

m∈R
Sm
(ph)(T

∗Σ).

The definition of Sm(T ∗Σ), Sm
ph(T

∗Σ) and their Fréchet space topologies are

independent on the choice of the family {ψx}x∈Σ of good chart diffeomorphisms.
The notation a ≃ ∑

i∈N
am−i for am−i ∈ Sm−i

ph (T ∗Σ) is defined as before. If

a ∈ Sm
ph(T

∗Σ), we denote again by apr the image of a in Sm
ph(T

∗Σ)/Sm−1
ph (T ∗Σ).

The spaces C∞
(b)(R;S

m
(ph)(T

∗Σ)), Sδ(R;Sm
(ph)(T

∗Σ)) are defined as in 3.3.2 and

equipped with their natural Fréchet space topologies.
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3.4. Sobolev spaces and smoothing operators. Using the metric h one defines
the Sobolev spaces Hm(Σ) as follows.

Definition 3.5. For s ∈ R the Sobolev space Hm(Σ) is:

Hm(Σ) ··= 〈−∆h〉−m/2L2(Σ),

with its natural Hilbert space topology, where −∆h is the Laplace-Beltrami operator
on (Σ, h), strictly speaking the closure of its restriction to C∞

c (Σ).

We further set

H∞(Σ) ··=
⋂

m∈Z
Hm(Σ), H−∞(Σ) ··=

⋃
m∈Z

Hm(Σ),

equipped with their Fréchet space topologies.
We denote by W−∞(Σ) the Fréchet space B(H−∞(Σ), H∞(Σ)) with its Fréchet

space topology, given by the semi-norms

‖a‖m = ‖a‖B(H−m(Σ),Hm(Σ)), m ∈ N.

This allows us to define C∞
(b)(R;W−∞(Σ)), Sδ(R;W−∞(Σ)), the latter consisting

of operator-valued functions a(t) such that

‖∂γt a(t)‖m ∈ O(〈t〉δ−γ), ∀γ,m ∈ N.

3.5. Pseudodifferential operators. Starting from the well-known Weyl quanti-
zation on open subsets of Rd, one constructs a quantization map Op for symbols in
Sm(T ∗Σ) using a good chart covering of Σ and good chart diffeomorphisms. More
precisely let {Ui, ψi}i∈N be a good chart covering of M and

∑

i∈N

χ2
i = 1

a subordinate good partition of unity, see Subsect. 3.1. If

(ψ−1
i )∗dg =·· midx,

we set
Ti : L2(Ui, dg) → L2(Bn(0, 1), dx),

u 7→ m
1
2

i (ψ
−1
i )∗u,

so that Ti : L
2(Ui, dg) → L2(Bn(0, 1), dx) is unitary. We then fix an extension map

E : Sm
ph(T

∗Bd(0, 1)) → Sm
ph(T

∗
R

d).

Definition 3.6. Let a = a(t) ∈ C∞(R;Sm
ph(T

∗M)). We set

Op(a) ··=
∑

i∈N

χiT
∗
i ◦Opw(Eai) ◦ Tiχi,

where ai ∈ Sm
ph(T

∗Bd(0, 1)) is the push-forward of a↾T∗Ui by ψi and Opw is the
Weyl quantization.

If Op′ is another such quantization map for different choices of Ui, ψi, χi and E
then

Sm
ph(T

∗Σ) → W−∞(Σ)

Op−Op′ : C∞
(b)(R;S

m
ph(T

∗Σ)) → C∞
(b)(R;W−∞(Σ)),

Sδ(R;Sm
ph(T

∗Σ)) → Sδ(R;W−∞(Σ)),
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are bounded. Then one defines the classes

Ψm(Σ) ··= Op(Sm
ph(T

∗Σ)) +W−∞(Σ),

C∞
(b)(R; Ψ

m(Σ)) ··= Op(C∞
(b)(R;S

m
ph(T

∗Σ))) + C∞
(b)(R;W−∞(Σ)),

Sδ(R; Ψm(Σ)) ··= Op(Sδ(R; Ψm
ph(T

∗Σ)) + Sδ(R;W−∞(Σ)).

Thanks to including the ideal W−∞(Σ) of smoothing operators, the so-obtained
pseudodifferential classes are stable under composition, for example

Ψm1(Σ) ◦Ψm2(Σ) ⊂ Ψm1+m2(Σ).

Note that Sδ(R; Ψm(Σ)) = 〈t〉δS0(R; Ψm(Σ)) and similarly with Ψm(Σ) replaced
by W−∞(Σ) so in what follows one can assume without loss of generality that δ = 0.

The spaces W−∞(Σ), C∞
(b)(R;W−∞(Σ)) and Sδ(R;W−∞(Σ)) have natural Fré-

chet space topologies. If necessary we equip the spaces Ψm(Σ), C∞
(b)(R; Ψ

m(Σ)) and

Sδ(R; Ψm(Σ)) with the quotient topology obtained from the map:

(c, R) 7→ Op(c) +R

between the appropriate spaces.
If a ∈ Ψm(Σ), the principal symbol σpr(a) ∈ Sm

h (T ∗Σ) is defined in analogy to
the case Σ = Rd. The operator a is elliptic if there exists C > 0 such that

(3.2) |σpr(a)| ≥ C|k|m, |k| ≥ 1,

uniformly in the chart open sets. If a ∈ C∞(R; Ψm(Σ)) we say that a is elliptic
if a(t) is elliptic for all t ∈ R and the constant C in (3.2) is locally uniform in t.
For a ∈ C∞

b (R; Ψm(Σ)) or S0(R; Ψm(Σ)) there is also a corresponding notion of
ellipticity, where we require C to be uniform in t.

As shown in [GOW], the pseudodifferential classes Ψm(Σ) fit into the general
framework of Ammann, Lauter, Nistor and Vasy [ALNV], and consequently they
have many convenient properties that generalize well-known facts for say, pseudo-
differential operators on closed manifolds, such as the existence of complex powers
for elliptic, bounded from below operators.

We state below a particular case of Seeley’s theorem for real powers, partly proved
in [GOW, Sect. 5] and based on a general result from [ALNV].

Theorem 3.7 (Seeley’s theorem). Let a ∈ C∞(R; Ψm(Σ)) be elliptic, selfadjoint
with a(t) ≥ c(t)1, c(t) > 0. Then aα ∈ C∞(R; Ψmα(Σ)) for any α ∈ R and
σpr(a

α)(t) = σpr(a(t))
α.

The same result holds replacing C∞(R; Ψm(Σ)) by C∞
(b)(R; Ψ

m(Σ)) or also by

S0(R; Ψm(Σ)) if one assumes a(t) ≥ c01 for c0 > 0.

Proof. The C∞
(b) cases are proved in [GOW, Thm. 5.12], by checking that

the general framework of [ALNV] applies to these two situations. The S0 case
can be proved similarly. The only point deserving special care is the spectral
invariance of the ideal S0(R;W−∞(Σ)), which we explain in some detail. Let
r−∞ ∈ S0(R;W−∞(Σ)), considered as a bounded operator on L2(Rt × Σx). The
spectral invariance property is the fact that if 1−r−∞ is invertible in B(L2(Rt×Σx))
then (1− r−∞)−1 = 1− r1,−∞ for r1,−∞ ∈ S0(R;W−∞(Σ)). This can be however
proved exactly as in [GOW, Lemma 5.5]. 2
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3.6. Egorov’s theorem. If b(t) ∈ C∞(R; Ψm(Σ)) (or more generally, if b(t) is a
square matrix consisting of elements of C∞(R; Ψm(Σ)) and H−∞(Σ) is tensorized
by powers of C accordingly) we denote by

Ub(t, s) : H
−∞(Σ) → H−∞(Σ)

the evolution generated by b(t), i.e. the Cauchy evolution of ∂t − ib(t), or put in
other words, the unique solution (if it exists) of the system

(3.3)





∂
∂tUb(t, s) = ib(t)Ub(t, s),

∂
∂sUb(t, s) = −iUb(t, s)b(s),

Ub(t, s) = 1.

The existence of Ub(t, s) can typically be established if b(t) defines a differentiable
family of self-adjoint operators on a Hilbert space, or a small perturbation of such
family. Specifically, consider b(t) ∈ C∞(R; Ψ1(Σ)) such that b(t) = b1(t) + b0(t)
with bi(t) ∈ C∞(R; Ψi(Σ)) and:

(E) b1(t) is elliptic and bounded from below on H∞(Σ), locally uniformly in t.

Using [ALNV, Prop. 2.2] it follows that b(t) is closed with domain Dom b(t) =
H1(Σ). Moreover the map R ∋ t 7→ b(t) ∈ B(H1(Σ), L2(Σ)) is norm continuous.
It follows that we can define Ub(t, s), using for instance [RS, Thm. X.70]. In the
present setup one can prove a result known generally as Egorov’s theorem, we refer
to [GOW] for the details and proofs.

Lemma 3.8. Assume (E). Then:
(1) Ub(t, s) ∈ B(Hm(Σ)) for m ∈ R or m = ±∞.
(2) if r ∈ W−∞(Σ) then Ub(t, s)r, rUb(s, t) ∈ C∞(R2

t,s,W−∞(Σ)).

(3) if moreover b(t) ∈ S0(R; Ψ1(Σ)) and b(t)− b∗(t) ∈ S−1−δ(R; Ψ0(Σ)) for δ > 0
then Ub(t, s) is uniformly bounded in B(L2(Σ)).

Theorem 3.9 (Egorov’s theorem). Let c ∈ Ψm(Σ) and b(t) satisfying (E). Then

c(t, s) ··= Ub(t, s)cUb(s, t) ∈ C∞(R2
t,s,Ψ

m(Σ)).

Moreover

σpr(c)(t, s) = σpr(c) ◦ Φ(s, t),
where Φ(t, s) : T ∗Σ → T ∗Σ is the flow of the time-dependent Hamiltonian σpr(b)(t).

3.7. Some auxiliary results. For the sake of having a slightly more short-hand
notation, for (Σ, h) of bounded geometry we set:

Ψm,δ
td (R; Σ) ··= Sδ(R; Ψm(Σ)).

for pseudodifferential operator classes with time decay (td) of the symbols.

3.7.1. Difference of fractional powers. We now state an auxiliary result about frac-
tional powers of elliptic operators that will be needed later on.

Proposition 3.10. Let ai ∈ Ψ2,0
td (R; Σ), i = 1, 2 elliptic with ai = a∗i and ai(t) ≥

c01 for some c0 > 0. Assume that a1−a2 ∈ Ψ2,−δ
td (R; Σ) with δ > 0. Then for each

α ∈ R one has:

aα1 − aα2 ∈ Ψ2α,−δ
td (R; Σ).

Prop. 3.10 is proved in Subsect. A.1.
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3.7.2. Ressummation of symbols. We now examine the ressummation of symbols.
One can think of this as a statement about the uniform symbol classes on Rd, after
applying a chart diffeomorphism.

We denote Ψ−∞,−δ
td (R; Σ) ··=

⋂
m∈R

Ψm,−δ
td (R; Σ).

Lemma 3.11. Let δ ∈ R and let (mj) be a real sequence decreasing to −∞. Then

if aj ∈ Ψ
mj,−δ
td (R; Σ) there exists a ∈ Ψm0,−δ

td (R; Σ), unique modulo Ψ−∞,−δ
td (R; Σ),

such that

a ∼
∞∑

j=0

aj, i.e. a−
N∑

j=0

aj ∈ Ψ
mN+1,−δ
td (R; Σ), ∀N ∈ N.

Proof. By introducing the new variable s =
´ t

0 〈σ〉−1dσ (so that 〈t〉∂t = ∂s) and
putting the extra variable s together with the x variables we can reduce ourselves
to the situation covered by the standard proof (see e.g. [Sh2, Prop. 3.5]).2

4. Parametrix for the Cauchy evolution and Hadamard states

4.1. Model Klein-Gordon equation. We fix a d−dimensional manifold Σ equipped
with a reference Riemannian metric k such that (Σ, k) is of bounded geometry. We
equipM = R×Σ, the elements of which are denoted by x = (t, x), with a Lorentzian
metric g and a real function V such that:

(4.1)

g = −dt2 + hij(t, x)dx
idxj ,

h ∈ C∞(R,BT0
2(Σ, k)), h−1 ∈ C∞(R; BT2

0(Σ, k)),

V ∈ C∞(R; BT0
0(Σ, k)).

Although the first assumption may look restrictive, we will give in Subsect. 5.2 a
reduction procedure that will allow us to treat more general cases.

In this setup, the Klein-Gordon operator P = −2g + V equals

(4.2)
P = |h|− 1

2 ∂t|h|
1
2 ∂t − |h|− 1

2 ∂ih
ij |h| 12 ∂j + V

= ∂
2

t + r(t, x)∂t + a(t, x, ∂x),

where
a(t, x, ∂x) = −|h|− 1

2 ∂ih
ij |h| 12 ∂j + V(t, x)

is formally self-adjoint with respect to the t-dependent L2(Σ, |h| 12 dx)-inner product
and

r(t, x) = |h|− 1
2 ∂t(|h|

1
2 )(t, x).

Note that the above function is closely related to the extrinsic curvature of Σ in
M .

In the sequel we will often abbreviate a(t, x, ∂x) by a(t) or a.

4.2. Construction of parametrix. Following [GOW] we now explain how one
obtains a parametrix for the Cauchy evolution for the model Klein-Gordon operator
(and a splitting of it) by means of an approximate time-dependent diagonalization.
We will then adapt it to the setup of scattering theory.

The first step consists of observing that the Klein-Gordon equation (∂2t +r(t)∂t+
a(t))φ(t) = 0 is equivalent to

(4.3) i−1∂tψ(t) = H(t)ψ(t), where H(t) =

(
0 1

a(t) ir(t)

)
,

by setting

(4.4) ψ(t) =

(
φ(t)

i−1∂tφ(t)

)
.
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Let us denote by U (s, t) the evolution generated by H(t), cf. (3.3). Recall that on
Cauchy data on Σs = {s}×Σ, we have a symplectic form induced from an operator
G(s), defined by:

G = (̺sG)
∗ ◦G(s) ◦ (̺sG).

Here the formal adjoint will always be taken with respect to the L2(Σ, |h| 12 dx)-inner
product. We have also introduced the hermitian operator q(s) = iG(s). It is well
known that with these choices, q(s) equals specifically

(4.5) q(s) =

(
0 1

1 0

)
,

in particular it does not depend on s (we will thus simply write q instead). Fur-
thermore,

(4.6) U
∗(t, s)qU (t, s) = q,

(the Cauchy evolution is symplectic).

4.2.1. Riccati equation. The approximate diagonalization of U (s, t) will be based
on solving the Riccati equation

(4.7) i∂tb− b2 + a+ irb = 0,

modulo smoothing terms, where the unknown is b(t) ∈ C∞(R; Ψ1(Σ)). By repeating
the arguments in [GW1, GW2] this can be solved modulo terms in C∞(R;W−∞(Σ)).
Concretely, supposing for the moment that a(t) ≥ c(t)1 for c(t) > 0, upon setting

ǫ = a
1
2 , b = ǫ+ b0 one obtains the equations:

b0 =
i

2
(ǫ−1∂tǫ+ ǫ−1rǫ) + F (b0),

F (b0) =
1

2
ǫ−1(i∂tb0 + [ǫ, b0] + irb0 − b20).

These can be solved by substituting a poly-homogeneous expansion of the symbol
of b0, yielding an approximate solution of (4.7) in the sense that

(4.8) i∂tb− b2 + a+ irb = r−∞ ∈ C∞(R;W−∞(Σ)).

Set

(4.9) b+ = b, b− = −b∗.
Taking the adjoint of both sides of (4.8) with respect to the t-dependent inner

product L2(Σ, |h| 12 dx) and using that

(∂tb)
∗ = ∂t(b

∗) + rb∗ − b∗r,

we obtain

(4.10) i∂tb
± − b±2 + a+ irb± = r±−∞,

with r+−∞ = r−∞, r−−∞ = r∗−∞ ∈ C∞(R;W−∞(Σ)).
In general we can find a cutoff function ϕ ∈ C∞

c (R) such that a(t) + ϕ(a(t)) ≥
c(t)1 for c(t) as above, using the locally uniform ellipticity of a(t). Since ϕ(a(t)) is
a smoothing operator, replacing a(t) by a(t) + ϕ(a(t)) is a harmless modification.

A redefinition of b(t) involving a cutoff in low frequencies as in [GW2, GOW]
gives then control of the norm sufficient to obtain in addition

(4.11) (b+(t)− b−(t))−1 ≥ C(t)ǫ(t)−1

for some C(t) > 0, while keeping the property that b±(t) = ±ǫ(t)+C∞(R; Ψ0(Σ)),
and with (4.10) still valid for some r±−∞ ∈ C∞(R;W−∞(Σ)).
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Observe now that the Riccati equation (4.10) implies the following approximate
factorization of the Klein-Gordon operator:

(4.12) (∂t + ib±(t) + r(t)) ◦ (∂t − ib±(t)) = ∂
2

t + r∂t + a− r±−∞.

Such a factorization of the Klein-Gordon operator was already used by Junker [Ju]
and Junker and Schrohe [Ju] to construct pure Hadamard states in the case the
Cauchy surface Σ is compact.

Here we use (4.12) to diagonalize (4.3) by setting

ψ̃(t) ··=
(
∂t − ib−(t)

∂t − ib+(t)

)
φ(t).

A direct computation yields then ψ̃(t) = S−1(t)ψ(t) with

(4.13) S−1(t) = i

(
−b−(t) 1

−b+(t) 1

)
, S(t) = i−1

(
1 −1

b+(t) −b−(t)

)
(b+(t)− b−(t))−1,

where well-definiteness and invertibility of S(t) rely on the fact that b+(t) − b−(t)
is invertible by (4.11). We obtain from (4.12) that

(
∂t + ib− + r 0

0 ∂t + ib+ + r

)
ψ̃(t) =

(
∂
2

t + a+ r∂t − r−−∞

∂
2

t + a+ r∂t − r+−∞

)
φ(t)

=

(
r−−∞ 0
r+−∞ 0

)
S(t)ψ̃(t) = i−1

(
r−−∞ −r−−∞

r+−∞ −r+−∞

)
(b+ − b−)−1ψ̃(t).

Therefore, ψ̃(t) solves a diagonal matrix equation modulo smooth terms. More

precisely, we have ψ̃(t) = UB(t, s)ψ̃(s) for

(4.14) B(t) = B̃(t) +R−∞(t),

(4.15)

B̃(t) =

(
−b− + ir 0

0 −b+ + ir

)
, R−∞(t) = −

(
r−−∞ −r−−∞

r+−∞ −r+−∞

)
(b+ − b−)−1,

Ultimately, we can thus conclude that

(4.16) U (t, s) = S(t)UB(t, s)S(s)
−1.

4.3. Improved approximate diagonalization. It is convenient to modify S(t)
to obtain a simple formula for the symplectic form S∗(t)q(t)S(t) preserved by the
almost diagonalized evolution. Namely, setting

(4.17)

T (t) ··= S(t)(b+ − b−)
1
2 (t) = i−1

(
1 −1

b+ −b−
)
(b+ − b−)−

1
2 ,

T−1(t) = i(b+ − b−)−
1
2

(
−b− 1

−b+ 1

)
,

we find that for q defined in (4.5) one has:

(4.18) T ∗(t)qT (t) =

(
1 0
0 −1

)
=·· qad.

We now define

(4.19) U (t, s) =·· T (t)U ad(t, s)T (s)−1,
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and we obtain that U ad(t, s)∗qadU ad(t, s) = qad. Furthermore, the generator of
the evolution group {U ad(t, s)}t,s∈R is:
(4.20)

Had(t) = (b+ − b−)−
1
2B(t)(b+ − b−)

1
2 − i∂t(b

+ − b−)−
1
2 (b+ − b−)

1
2

=

(
−b− + r−b 0

0 −b+ + r+b

)
− (b+ − b−)−

1
2

(
r−−∞ −r−−∞

r+−∞ −r+−∞

)
(b+ − b−)−

1
2 ,

where r±−∞ ∈ C∞(R;W−∞(Σ)) are the remainder terms from (4.10), and

(4.21) r±b = ir + [(b+ − b−)−
1
2 , b±]− i∂t(b

+ − b−)−
1
2 (b+ − b−)

1
2 ∈ Ψ0(Σ).

This way, denoting by Hd the diagonal part of Had(t), using that Had(t)∗qad =
qadHad(t) we have:

Hd(t) = Hd∗(t), Hd(t) =

(
ǫ+(t) 0
0 ǫ−(t)

)
,

where
ǫ± = −b∓ + r∓b + C∞(R;W−∞(Σ)),

and Had(t) = Hd(t) + V ad
−∞(t), where V ad

−∞(t) ∈ C∞(R;W−∞(Σ) ⊗ B(C2)). The

evolution U d(t, s) generated by Hd(t) is diagonal, in fact:

(4.22) U
d(t, s) =

(
Uǫ+(t, s) 0

0 Uǫ−(t, s)

)
.

Moreover:

(4.23)
U (t, s) = T (t)U ad(t, s)T (s)−1

= T (t)U d(t, s)T (s)−1 + C∞(R2;W−∞(Σ)).

This is shown by an ‘interaction picture’ argument explained in detail in [GOW];
we omit the proof here.

Remark 4.1. One easily sees that S(t) is an isomorphism from L2(Σ)⊕L2(Σ) to
H1(Σ)⊕ L2(Σ) (the so-called energy space of Cauchy data of (4.3)), while T (t) is

an isomorphism from L2(Σ)⊕L2(Σ) to H
1
2 (Σ)⊕H− 1

2 (Σ) (this is the charge space
that appears naturally in the quantization of the Klein-Gordon equation).

4.4. Splitting of the parametrix and of the Cauchy evolution. Let us set

(4.24) π+ =

(
1 0
0 0

)
, π− =

(
0 0
0 1

)
.

Since U d(t, s) is diagonal we have:

U
d(t, s) = U

d(t, s)π+ + U
d(t, s)π−,

with U d(t, s)π± propagating with wave front set contained in N± (this follows
from b± being ±ǫ modulo terms of lower order). This suggests that at least modulo
smoothing terms, the splitting of U (t, s) at time s should be given by a pair of
operators c±ref(s) defined as follows. We first fix a reference time t0 ∈ R.

Definition 4.2. We set:

c±ref(t0) ··= T (t0)π
±T−1(t0) =

(
∓(b+ − b−)−1b∓ ±(b+ − b−)−1

∓b+(b+ − b−)−1b− ±b±(b+ − b−)−1

)
(t0).

Then c±ref(t0) is a 2× 2 matrix of pseudodifferential operators and

c±ref(t0)
2 = c±ref(t0), c+ref(t0) + c−ref(t0) = 1.

We set:

(4.25) U
±(t, s) ··= U (t, t0)c

±
ref(t0)U (t0, s),
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so that

(4.26) U (t, s) = U
+(t, s) + U

−(t, s).

This splitting has the following properties (see [GOW]):

Proposition 4.3.

(4.27)

i) U
±(t, s)U ±(s, t′) = U

±(t, t′),

ii) (∂t − iH(t))U ±(t, s) = U
±(t, s)(∂s + iH(s)) = 0,

iii) WF(U ±(t, s))′ = {(X,X ′) ∈ T ∗Σ× T ∗Σ : X = Φ±(t, s)(X ′)},
where Φ±(t, s) : T ∗Σ → T ∗Σ is the symplectic flow generated by the time-dependent

Hamiltonian ±(hij(t, x)kikj)
1
2 .

If we set for t ∈ R:

(4.28) U
±(t, t) =·· c±ref(t) = U (t, t0)c

±
ref(t0)U (t0, t),

then

c±ref(t)
2 = c±ref(t), c+ref(t) + c−ref(t) = 1, c±ref(t) = U (t, s)c±ref(s)U (s, t).

Moreover from (4.18) and the fact that ±qad ◦ π± ≥ 0, we obtain that

λ±ref(t) = ±q ◦ c±ref(t) ≥ 0.

As a consequence c±ref(t) are the time-t covariances of a Hadamard state [GOW].
In general, we say that a state is a regular Hadamard state if its time-t covariances
differ from c±ref(t) by terms in W−∞(Σ)⊗B(C2), and one can show that it suffices
to check that property for one value of t [GOW]. In summary:

Theorem 4.4 ([GOW]). The pair of operators c±ref(t) defined in (4.28) are the
covariances of a pure, regular Hadamard state.

We stress that in general c±ref(t) are not ‘canonical’ nor ‘distinguished’, because
they depend on the choice of the reference time t0 and on the precise choice of
the operators b±(t) (to which one can always add suitable regularizing terms). On
the other hand, in Sect. 4.5 we will construct covariances c±in(t) and c±out(t) of the
distinguished in and out states, and the operators c±ref(t) will play an important
role in the proof of their Hadamard property: a suitable sufficient condition for
that is in fact that

(4.29) c±out/in(t)− c±ref(t) ∈ W−∞(Σ)⊗B(C2)

for some (and hence all) t ∈ R.

4.5. Further estimates in scattering settings. In what follows we give a re-
finement of the constructions in Sect. 4 for the model Klein-Gordon equation in a
scattering situation, corresponding to a situation when the metric g, resp. the po-
tential V converge to ultra-static metrics gout/in = −dt2 + hout/in,ij(x)dx

idxj , resp.
to time-independent potentials Vout/in as t → ±∞. We start by fixing two classes
of assumptions on the model Klein-Gordon equation (4.2).

We will often abbreviate the classes Ψm,δ
td (R; Σ) (introduced in Subsect. 3.5-3.7)

by Ψm,δ
td . We make the following assumption:

(td)

a(t, x, Dx) = aout/in(x, Dx) + Ψ2,−δ
td (R; Σ) on R± × Σ, δ > 0,

r(t) ∈ Ψ0,−1−δ
td (R; Σ),

aout/in(x, Dx) ∈ Ψ2(Σ) elliptic, aout/in(x, Dx) = aout/in(x, Dx)
∗ ≥ C∞ > 0.
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The assumption δ > 0 corresponds to a long-range setup (as opposed to the
more narrow short-range case when δ > 1).

Below, we give estimates on the solution of the Riccati equation, taking now into
account the decay in time that follows from (td). To simplify notation we simply

write a1(t) = a2(t) +Ψm,δ
td (R±; Σ) when a1(t) = a2(t) +Ψm,δ

td (R; Σ) in R± ×Σ. We

also abbreviate Ψm,δ
td (R±; Σ) by Ψm,δ

td when it is clear from the context whether the
future or past case is meant.

From hypothesis (td) we deduce that there exists c(t) ∈ C∞
c (R) such that a(t)+

c(t)1 ∼ aout/in, uniformly in t ∈ R±. By functional calculus we can find ϕ ∈ C∞
c (R)

such that a(t) + ϕ(a(t)c(t) ) ∼ aout/in, uniformly in t ∈ R
±. The error term ϕ(a(t)c(t) )

belongs to C∞
c (R;W−∞(Σ)).

We can hence replace a(t) by a(t) + ϕ(a(t)c(t) ) in the Riccati equation (4.7) and

assume that

a(t) ∼ aout/in uniformly in t ∈ R
±.

If ǫout/in ··= a
1
2

out/in, then from Prop. 3.10 we deduce that if (td) holds then

(4.1) ǫ(t) ··= a(t)
1
2 = ǫout/in +Ψ1,−δ

td .

Proposition 4.5. There exists b(t) = ǫ(t)+Ψ0,−1−δ
td (R; Σ) = ǫout/in+Ψ1,−δ

td (R±; Σ)
that solves

i∂tb− b2 + a+ irb ∈ Ψ−∞,−1−δ
td (R; Σ).

The proof is given in Appendix A.2.

Proposition 4.6. Assume (td) and let r±b be defined in (4.21) and r±−∞ in (4.10).
Then

r±b ∈ Ψ0,−1−δ
td (R; Σ), r±−∞ ∈ Ψ−∞,−1−δ

td (R; Σ).

The proof is given in Appendix A.3.

5. The out/in states on asymptotically static spacetimes

5.1. Assumptions. In what follows we introduce a class of asymptotically static
spacetimes on which we will construct the in and out states and prove their
Hadamard property. One of the key ingredients is the reduction to a model Klein-
Gordon operator that satisfies the assumptions (td) considered in Subsect. 4.5.

We will use the framework of manifolds and diffeomorphisms of bounded geom-
etry introduced in Defs. 3.2, 3.3.

We fix a d−dimensional manifold Σ equipped with a reference Riemannian metric
k such that (Σ, k) is of bounded geometry, and consider M = Rt × Σy, setting
y = (t, y), n = 1 + d. We equip M with a Lorentzian metric g of the form

(5.1) g = −c2(y)dt2 + (dyi + bi(y)dt)hij(y)(dy
j + bj(y)dt),

where we assume:

(bg)

hij ∈ C∞
b (R; BT0

2(Σ, k)), h−1
ij ∈ C∞

b (R; BT2
0(Σ, k)),

b ∈ C∞
b (R; BT1

0(Σ, k)),

c, c−1 ∈ C∞
b (R; BT0

0(Σ, k)).

We recall that t̃ ∈ C∞(M) is called a time function if ∇t̃ is a timelike vector field.
It is called a Cauchy time function if its level sets are Cauchy hypersurfaces. By
[CC, Thm. 2.1] we know that (M, g) is globally hyperbolic and t is a Cauchy time
function.
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We will consider the Klein-Gordon operator on (M, g):

(5.2) P = −2g + V,

with V ∈ C∞
b (R; BT0

0(Σ, k)) a smooth real-valued function. We consider two static
metrics

gout/in = −c2out/in(y)dt
2 + hout/in(y)dy

2

and time-independent potentials Vout/in and assume the following conditions:

(ast)

h(y)− hout/in(y) ∈ S−µ(R±; BT0
2(Σ, k)),

b(y) ∈ S−µ′

(R; BT1
0(Σ, k)),

c(y)− cout/in(y) ∈ S−µ(R±; BT0
0(Σ, k)),

V(y)− Vout/in(y) ∈ S−µ(R±; BT0
0(Σ, k)),

(pos)
n− 2

4(n− 1)
(Rc

−2

out/in
hout/in

− c2out/inRgout/in
) + c2out/inVout/in ≥ m2,

for some µ > 0, µ′ > 1 and m > 0. Above, Rg, resp. Rh denotes the scalar curvature
of g, resp. h.

Condition (ast) means that g, resp. V are asymptotic to the static metrics gout/in,

resp. to the time-independent potentials Vout/in as t → ±∞. Condition (pos)

means that the asymptotic Klein-Gordon operators ∂
2

t + aout/in(x, ∂x) introduced
in Lemma 5.2 below are massive.

It follows from (bg) that hout/in ∈ BT0
2(Σ, k), h−1

out/in ∈ BT2
0(Σ, k), and that

Vout/in,V
−1
out/in ∈ BT0

0(Σ, k).

5.2. Reduction to the model case. In this subsection we perform the reduction
of the Klein-Gordon operator P to the model case considered in Sect. 4.5. We
start with the well-known orthogonal decomposition of g associated with the time
function t. Namely, we set

v ··=
g−1dt

dt · g−1dt
= ∂t + bi∂yi ,

which using (bg) is a complete vector field. Furthermore, we denote by φt its flow,
so that

φt(x) = (t, y(t, 0, x)), t ∈ R, x ∈ Σ,

where y(t, s, ·) is the flow of the time-dependent vector field b on Σ. We also set

(5.3) χ : R× Σ ∋ (t, x) 7→ (t, y(t, 0, x)) ∈ R× Σ.

Lemma 5.1. Assume (bg), (ast). Then

ĝ := χ∗g = −ĉ2(t, x)dt2 + ĥ(t, x)dy2, χ∗V = V̂,

where:
ĉ, ĉ−1, V̂ ∈ C∞

b (R; BT0
0(Σ, k)),

ĥ ∈ C∞
b (R; BT0

2(Σ, k)), ĥ
−1 ∈ C∞

b (R; BT2
0(Σ, k)).

Moreover there exist bounded diffeomorphisms yout/in of (Σ, k) such that if:

ĥout/in ··= y∗out/inhout/in,

ĉout/in ··= y∗out/incout/in, V̂out/in ··= y∗out/inVout/in,

then we have:

ĥout/in ∈ BT0
2(Σ, k), ĥ

−1

out/inBT
2
0(Σ, k),

ĉout/in, ĉ
−1
out/in, V̂out/in ∈ BT0

0(Σ, k),
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and furthermore,

ĥ − ĥout/in ∈ S−min(1−µ′,µ)(R±,BT0
2(Σ, k)),

ĉ − ĉout/in ∈ S−min(1−µ′,µ)(R±,BT0
0(Σ, k)),

V̂ − V̂out/in ∈ S−µ(R±,BT0
0(Σ, k)).

Lemma 5.1 is proved in Appendix A.4.
Writing P as −2g+

n−2
4(n−1)Rg+W for W = V− n−2

4(n−1)Rg, and using the conformal

invariance of −2g + n−2
4(n−1)Rg and the estimates in Lemma 5.1, we obtain the

following result, which completes the reduction to the model case.
If P ∈ Diff(R×Σ) we denote by χ∗P the pullback of P by χ defined by (χ∗P )u◦

χ = (Pu) ◦ χ.

Lemma 5.2. Assume (bg), (ast), (pos) and consider the Klein-Gordon operator

P in (5.2). Let ĥ, ĉ, V̂ be as in Lemma 5.1 and set:

P̂ = χ∗P, P̃ = ĉ1−n/2P̂ ĉ1+n/2, g̃ = ĉ−2ĝ, h̃ = ĉ−2ĥ.

Then

P̃ = ∂
2

t + r(t, x)∂t + a(t, x, ∂x),

for

a(t, x, ∂x) = −∆h̃t
+ Ṽ, r = |h̃t|− 1

2 ∂t|h̃t| 12 ,
Ṽ = n−2

4(n−1) (Rg̃ − ĉ2Rĝ) + ĉ2V̂.

Moreover a, r satisfy (td) with δ = min(µ, µ′ − 1) and

aout/in(x, ∂x) = −∆h̃out/in
+ Ṽout/in(x),

where

Ṽout/in =

(
n− 2

4(n− 1)
(Rc

−2

out/in
hout/in

− c2out/inRgout/in
) + c2out/inVout/in

)
◦ yout/in.

Note that condition (pos) simply means that Ṽout/in ≥ m2 > 0.

5.3. Cauchy evolutions. In this subsection we relate the Cauchy evolutions of P
and of the model Klein-Gordon operator P̃ .

The trace operator for P associated to the time function t is given by:

(5.4) ̺tφ =

(
u(t, ·)

i−1n · ∇φ(t, ·)

)
,

where n is the future directed unit normal to Σt. The corresponding trace operator
for P̂ = χ∗P is:

ˆ̺tφ =

(
φ(t, ·)

i−1ĉ−1∂tφ(t, ·)

)
,

so that denoting χ∗φ = φ ◦ χ, we have:

ˆ̺tχ
∗φ = χ∗

t ̺tφ for χ∗
t

(
u0
u1

)
=

(
u0 ◦ χt

u1 ◦ χt

)
,

and χt(x) = y(t, 0, x), see (5.3). Finally the trace operator for P̃ as in Lemma 5.2
is

˜̺tφ =

(
φ(t, ·)

i−1φ(t, ·)

)

so that if φ̃ = ĉn/2−1φ is the conformal transformation in Lemma 5.2, we have:

˜̺tφ̃ = R(t)ˆ̺tφ, for R(t) = ĉn/2−1

(
1 0

−i(n/2− 1)∂t ln(ĉ) 1

)
.
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Let us denote by U (t, s) the Cauchy evolution for P associated to ̺t and by
U ad(t, s) the almost diagonal Cauchy evolution introduced in Subsect. 4.3 for

the model Klein-Gordon operator P̃ . The following lemma follows from the above
computations and (4.19).

Lemma 5.3. Let Z(t) ··= (χ∗
t )

−1R(t)T (t), where T (t) is defined in (4.17). Then

(5.5) U (t, s) = Z(t)U ad(t, s)Z−1(s).

We have a similar reduction for the asymptotic Klein-Gordon operators:

Pout/in = −2gout/in
+

n− 2

4(n− 1)
Rgout/in + Vout/in,

for gout/in = −c2out/in(y)dt
2 + hout/in(y)dy

2, where hout/in, cout/in,Vout/in were in-

troduced in (ast). The associated trace operator is

̺t,out/inφ =

(
φ(t, ·)

i−1c−1
out/in∂tφ(t, ·)

)
.

We also set

χ∗
out/in

(
u0
u1

)
=

(
u0 ◦ yout/in
u1 ◦ yout/in

)
, Rout/in = ĉ

(d−1)/2
out/in 1,

and for ǫout/in = a
1
2

out/in:

Tout/in = (i
√
2)−1


ǫ

− 1
2

out/in −ǫ−
1
2

out/in

ǫ
1
2

out/in ǫ
1
2

out/in


 , Zout/in = (χ∗

out/in)
−1Rout/inTout/in,

so that the Cauchy evolution of Pout/in is given by

(5.6) Uout/in(t, s) = Zout/in ◦ U
ad
out/in(t, s) ◦ Z−1

out/in,

where U ad
out/in stands for the evolution generated by

(5.7) Had
out/in =

(
ǫout/in 0

0 ǫout/in

)
.

The following fact will be needed in the sequel.

Lemma 5.4. We have:

Z−1(t)Zout/in − 1, Z−1
out/inZ(t)− 1 → 0 in B(L2(Σ)⊗ C

2) as t→ ±∞.

Proof. From Prop. 4.5 we obtain that T−1
out/inT (t) − 1 tends to 0 in norm as

t → ±∞. By Lemma 5.1, R(t) tends to Rout/in in norm. Finally, from the proof

of Lemma 5.1, see in particular (A.12), we obtain that (χ∗
out/in)

−1χ∗
t tends to 1 in

norm. This implies the lemma. 2

5.4. Construction of Hadamard states by scattering theory. In this subsec-
tion we construct the out/in states ωout/in for the Klein-Gordon operator P and
show that they are Hadamard states. We assume hypotheses (bg), (ast), (pos).

By the positivity condition (pos), the asymptotic Klein-Gordon operators Pout/in

admit vacuum states (that is, ground states for the dynamics Uout/in) ω
vac
out/in. In

terms of t = 0 Cauchy data their covariances are the projections:

c±,vac
out/in = Zout/inπ

±Z−1
out/in,

where π± are defined in (4.24). Clearly we have

Uout/in(t, s)c
±,vac
out/inUout/in(s, t) = c±,vac

out/in,
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i.e. ωvac
out/in are invariant under the asymptotic dynamics. For t ∈ R we now consider

the projections:

(5.8)
c±,t
out/in(0) ··= U (0, t)c±,vac

out/inU (t, 0)

= U (0, t)Uout/in(t, 0)c
±,vac
out/inUout/in(0, t)U (t, 0).

By taking the t→ ±∞ limit of c±,t
out/in(0) we obtain the time-0 covariances c±out/in(0)

of a state ωout/in (for the Klein-Gordon operator P ) that ‘equals ωvac
out/in asymptoti-

cally’ at t = ±∞. The main new result that we prove is that ωout/in are Hadamard
states.

Before stating the theorem let us recall that the Sobolev spaces Hm(Σ) are
naturally defined using the reference Riemannian metric k on Σ. The charge space

H
1
2 (Σ)⊕H− 1

2 (Σ) is the natural space of Cauchy data in connection with quantized
Klein-Gordon fields.

Theorem 5.5. Assume hypotheses (bg), (ast), (pos). Then

(5.9) lim
t→±∞

c±,t
out/in(0) =·· c±out/in(0) = c±ref(0)+W−∞(Σ), in B(H

1
2 (Σ)⊕H− 1

2 (Σ)),

where c±ref(0) = Z(0)π±Z−1(0). The operators c±out/in(0) are pairs of projections

defining a pure state ωout/in for the Klein-Gordon operator P . Moreover ωout/in is
a Hadamard state.

Proof. From (5.5), (5.6) we obtain:

(5.10)

Uout/in(0, t)U (t, 0) = Zout/in(0)U
ad
out/in(0, t)Z

−1
out/inZ(t)U

ad(t, 0)Z−1(0),

U (0, t)Uout/in(t, 0) = Z(0)U ad(0, t)Z−1(t)Zout/inU
ad
out/in(t, 0)Z

−1
out/in.

It follows that:

(5.11)
c±,t
out/in(0) = Z(0)U ad(0, t)Z−1(t)Zout/inU

ad
out/in(t, 0)

× π±
U

ad
out/in(0, t)Z

−1
out/inZ(t)U

ad(t, 0)Z−1(0).

Since Z(0) : L2(Σ)⊗ C2 → H
1
2 (Σ) ⊕H− 1

2 (Σ) is boundedly invertible it suffices to
show the existence of the limit

d±out/in = lim
t→±∞

U
ad(0, t)Z−1(t)Zout/inU

ad
out/in(t, 0)π

±

× U
ad
out/in(0, t)Z

−1
out/inZ(t)U

ad(t, 0)

in B(L2(Σ)⊗ C2).
By Prop. 5.6 (1) below we know that U ad(t, s), U ad

out/in(t, s) are uniformly

bounded in B(L2(Σ)⊗ C2). Hence using Lemma 5.4 we can replace Z−1(t)Zout/in

and Z−1
out/inZ(t) by 1 in the rhs of (5.11), modulo an error of size o(t0) in B(L2(Σ)⊗

C2), i.e. we are reduced to prove the existence of the limit

d±out/in ··= lim
t→±∞

U
ad(0, t)U ad

out/in(t, 0)π
+

U
ad
out/in(0, t)U

ad(t, 0)

= lim
t→±∞

Wout/in(t)π
+W−1

out/in(t),

whereWout/in(t) = U ad(0, t)U ad
out/in(t, 0). By Prop. 5.6 the limit exists inB(L2(Σ)⊗

C2) and equals π++W−∞(Σ). The limit operators d±out/in are projections as norm

limits of projections. It follows that

(5.12) c±out/in(0) = Z(0)d±out/inZ(0)
−1 +W−∞(Σ) = c+ref(0) +W−∞(Σ)
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is a projection. The conditions (2.13), (2.14) are satisfied by c±out/in(0) since they

are satisfied by c±,t
out/in(0) for each finite t. Therefore c±out/in are the covariances

of two pure states ωout/in for P . Finally as in [GOW] we obtain from (5.12) that
ωout/in are Hadamard states. 2

In the proof of Thm. 5.5, the crucial ingredient is the following proposition.

Proposition 5.6. Let Had(t), Had
out/in be as in (4.20), (5.7). Then:

(1) U ad
out/in(t, s) and U ad(t, s) are uniformly bounded in B(Hm(Σ) ⊗ C2), for all

m ∈ R.
(2) Let Wout/in(t) = U ad(0, t)U ad

out/in(t, 0). Then

lim
t→+∞

Wout/in(t)π
+Wout/in(t)

−1 = π+ +W−∞(Σ)⊗ L(C2), in B(L2(Σ)⊗ C
2).

Proof. Proof of (1): we can assume without loss of generality that s = 0. The

statement for U ad
out/in(t, 0) is obvious since Had

out/in =

(
ǫout/in 0

0 −ǫout/in

)
. Let us

prove it for U ad(t, 0). We have:
(5.13)

Had(t) =

(
−b−(t) + ir−b (t) 0

0 −b+(t) + ir+b (t)

)
+Ψ−∞,−1−δ

td (R; Σ)⊗B(C2)

=

(
ǫ(t) 0
0 −ǫ(t)

)
+Ψ0,−1−δ

td (R; Σ)⊗B(C2),

by Props. 4.5, 4.6. Since ǫ(t) is selfadjoint, this implies that U ad(t, 0) is uniformly
bounded in B(L2(Σ)), which proves (1) for m = 0.

We now note that ‖u‖Hm(Σ) ∼ ‖ǫm(t)u‖L2(Σ), uniformly for t ∈ R, since ǫ(t) is
elliptic uniformly for t ∈ R. Therefore to prove (1) it suffices, using the uniform
boundedness of U ad(t, 0) in B(L2(Σ)), to show that

(5.14) U
ad(0, t) (ǫ(t)m ⊗ 1C2)U

ad(t, 0)
(
ǫ(0)−m ⊗ 1C2

)
is uniformly bounded

in B(L2(Σ)). We have by (5.13):

∂tU
ad(0, t) (ǫ(t)m ⊗ 1C2)U

ad(t, 0)
(
ǫ(0)−m ⊗ 1C2

)

= U
ad(0, t)

(
∂tǫ

m(t)⊗ 1C2 + i[Had(t), ǫm(t)⊗ 1C2 ]
)
U

ad(t, 0)
(
ǫ(0)−m ⊗ 1C2

)

= U
ad(0, t)

(
∂tǫ

m(t)⊗ 1C2 + i[Had(t), ǫm(t)⊗ 1C2 ]
) (
ǫ(t)−m ⊗ 1

)
U

ad(t, 0)

× U
ad(0, t) (ǫ(t)m ⊗ 1C2)U

ad(t, 0)
(
ǫ(0)−m ⊗ 1C2

)

=··M(t)U ad(0, t) (ǫ(t)m ⊗ 1C2)U
ad(t, 0)

(
ǫ(0)−m ⊗ 1C2

)
.

By (td) and Prop. 3.10 we see that ∂tǫ
m(t) ∈ Ψm,−1−δ

td , and by (5.13) that

[Had(t), ǫm(t) ⊗ 1C2 ] ∈ Ψm,−1−δ
td . Therefore ‖M(t)‖B(L2(Σ)⊗C2) ∈ O(〈t〉−1−δ).

Hence, setting

f(t) ··= ‖U ad(0, t) (ǫ(t)m ⊗ 1C2)U
ad(t, 0)

(
ǫ(0)−m ⊗ 1C2

)
‖B(L2(Σ)),

we have f(0) = 1, |∂tf(t)| ∈ O(〈t〉−1−δ)f(t). If f(t) 6= +∞ for each t, an application
of Gronwall’s inequality would immediately imply (5.14). If m ≤ 0 the use of
Gronwall’s inequality is justified by applying the above time dependent operator to
a vector u ∈ Hm(Σ). If m > 0 we replace the unbounded operator A = ǫ(t)⊗1C2 by
the bounded operator Aδ = A(1 + iδA), for δ > 0. For the corresponding function
fδ(t) we obtain that fδ(0) ≤ 1, |∂tfδ(t)| ∈ O(〈t〉−1−δ)fδ(t) uniformly for 0 < δ ≤ 1.
Then (5.14) follows using that ‖Amu‖ = sup0<δ≤1 ‖Am

δ u‖.
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Proof of (2): note first that [π+, A] = 0 for any diagonal operator A. Therefore:

Wout/in(t)π
+Wout/in(t)

−1 = U (0, t)π+
U (t, 0),

and by (5.13)

(5.15)
∂t(Wout/in(t)π

+Wout/in(t)
−1) = −iU (0, t)[Had(t), π+]U (t, 0)

= U (0, t)[R−∞(t), π+]U (t, 0), R−∞ ∈ Ψ−∞,−1−δ
td (R; Σ)⊗B(C2).

By (1), this implies that ∂t(Wout/in(t)π
+Wout/in(t)

−1) ∈ Ψ−∞,−1−δ
td (R; Σ)⊗B(C2),

hence:

lim
t→+∞

Wout/in(t)π
+Wout/in(t)

= π+ +

ˆ +∞

0

∂t(Wout/in(t)π
+Wout/in(t)

−1)dt in B(L2(Σ)⊗ C
2).

The integral term belongs to W−∞(Σ). 2

Appendix A

A.1. Proof of Prop. 3.10. To prove Prop. 3.10 we first need an auxiliary lemma
about parameter-dependent pseudodifferential calculus.

We start by introducing parameter dependent versions of the spaces Ψm(Σ),
S0(R; Ψm(Σ)).

We define the symbol classes S̃m(T ∗Σ) for m ∈ R as the space of functions
c(x, k, λ) ∈ C∞(T ∗Σ× R) such that:

∂γλ∂
α
x ∂

β
k c(x, k, λ) ∈ O(〈k〉 + 〈λ〉)m−|β|−γ , α, β ∈ N

d, γ ∈ N,

as usual understood after fixing a good chart cover and good chart diffeomorphisms,
with uniformity of the constants with respect to the element of the cover. The
standard example of such a symbol is c(x, k, λ) = (a(x, k)+〈λ〉m), for a ∈ Sm(T ∗Σ)
elliptic and positive.

The subspaces of symbols poly-homogeneous in (k, λ) are denoted by S̃m
ph(T

∗Σ).

We define W̃−∞(Σ) as the set of smooth maps R ∋ λ 7→ a(λ) ∈ W−∞(Σ) such
that:

‖∂γλa(λ)‖B(H−m(Σ),Hm(Σ)) ∈ O(〈λ〉−n), ∀m,n, γ ∈ N,

and we set

Ψ̃m(Σ) ··= Op(S̃m
ph(T

∗Σ)) + W̃−∞(Σ).

We also define the time-dependent versions:

S0(R; S̃m
(ph)(T

∗Σ)), S0(R; W̃−∞(Σ)), S0(R; Ψ̃m(Σ)),

in analogy with Subsect. 3.3. For example c(t, x, k, λ) ∈ S0(R; S̃m(T ∗Σ)) if

∂nt ∂
γ
λ∂

α
x ∂

β
k c(t, x, k, λ) ∈ O(〈t〉−n(〈k〉+ 〈λ〉)m−|β|−γ), α, β ∈ N

d, γ, n ∈ N.

Lemma A.1. Let a(t) ∈ S0(R; Ψ2(Σ)) such that a(t) is elliptic, selfadjoint on

L2(Σ) with a(t) ≥ c01, c0 > 0. Then (a(t) + λ2)−1 ∈ S0(R; Ψ̃−2(Σ)).

Proof. The proof is based on a reduction to the situation without the parameter
λ. We first present the argument in the time-independent case.

Step 1. Let us denote by l ∈ R the dual variable to λ. We consider the manifold
of bounded geometry Σx×Rl equipped with the metric hij(x)dx

idxj+dl2. As good

chart covering we can take Ũi = Ui × R, ψ̃i(x, l) = (ψi(x), l) where {Ui, ψi}i∈N is a
good chart covering for (Σ, h). A subordinate good partition of unity is χ̃i(x, l) =
χi(x).
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The classes Sm
ph(T

∗(Σ × R)) are then defined as in Subsect. 3.3. Denoting

adAB ··= [A,B], one sets and one sets:

(A.1) W−∞(Σ× R) = {A : adγl A ∈ B(H−m(Σ× R), Hm(Σ× R)),m, γ ∈ N.},
This choice of the ideal W−∞(Σ×R) is dictated by the definition of W̃−∞(Σ). We

set then Ψm(Σ× R) = Õp(Sm
ph(T

∗(Σ × R))) +W−∞(Σ × R), where Õp is defined
as in Subsect. 3.5 with Σ replaced by Σ × R. Note that because of our choice of

the chart covering Õp is the usual Weyl quantization w.r.t. the (l, λ) variables.

Step 2. In step 2 we describe the link between Ψm(Σ×R) and Ψ̃m(Σ). We note
that

S̃m
ph(T

∗Σ) = {c ∈ Sm
ph(T

∗(Σ× R)) : ∂lc = 0},
and denoting by Tl the group of translations in l we have

[Tl, Õp(c)] = 0, ∀ l ∈ R ⇔ c ∈ S̃m
ph(T

∗Σ).

Equivalently, if F is the Fourier transform in l we have

(A.2)

c ∈ Sm
ph(T

∗(Σ× R)), [Tl, Õp(c)] = 0

⇔ F Õp(c)F−1 =

ˆ ⊕

R

Op(c(λ))dλ, for c(λ) ∈ S̃m
ph(T

∗Σ).

Let now w ∈ W−∞(Σ× R) with [w, Tl] = 0. We have:

(A.3) FwF
−1 =

ˆ ⊕

R

w(λ)dλ.

Since adγl w ∈ ⋂m∈N
B(H−m(Σ× R), Hm(Σ× R)) we obtain that:

ˆ

R

〈λ〉n‖∂γλw(λ)u(λ)‖2Hp(Σ)dλ ≤ Cn,p

ˆ

R

〈λ〉−n‖u(λ)‖2H−p(Σ)dλ, ∀γ, n, p ∈ N,

or equivalently
ˆ ⊕

R

〈λ〉n(−∆h + 1)p/2∂γλw(λ)(−∆h + 1)p/2dλ ∈ B(L2(Σ× R)).

By Sobolev’s embedding theorem this implies that

‖∂γλw(λ)‖B(H−p/2(Σ),Hp/2(Σ)) ∈ O(〈λ〉−n) ∀γ, n, p ∈ N,

hence w(λ) ∈ W̃−∞(Σ). Conversely, if w(λ) ∈ W̃−∞(Σ) it is immediate that w
defined by (A.3) belongs to W−∞(Σ× R). Hence we have shown

(A.4)

w ∈ W−∞(Σ× R), [w, Tl] = 0

⇔ FwF
−1 =

ˆ ⊕

R

w(λ)dλ, for w(λ) ∈ W̃−∞(Σ).

Let us now consider the time-dependent situation. If we define the time-dependent

classes C∞
b (R; S̃m(T ∗Σ)), C∞

b (R; W̃−∞(Σ)) and C∞
b (R; Ψ̃m(Σ)) in the obvious way,

then

(A.5)

c ∈ C∞
b (R;Sm

ph(T
∗(Σ× R))), [Tl, Õp(c)(t)] = 0

⇔ F Õp(c)(t)F−1 =

ˆ ⊕

R

Op(c(t, λ))dλ, c(t, λ) ∈ C∞
b (R; S̃m(T ∗Σ)),

w ∈ C∞
b (R;W−∞(Σ× R)), [w(t), Tl] = 0

⇔ Fw(t)F−1 =

ˆ ⊕

R

w(t, λ)dλ, w(t, λ) ∈ C∞
b (R; W̃−∞(Σ)).
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The same results hold also if we replace C∞
b (R;A) by Sδ(R;A) for A = Sm

ph(T
∗(Σ×

R)), S̃m(T ∗Σ) etc. In fact it suffices to note that c(t) ∈ Sδ(R;A) iff 〈t〉−δ+n∂nt c(t) ∈
C∞

b (R;A) for all n ∈ N.
Step 3. Let now a(t) ∈ S0(R; Ψ2(Σ)) be as in the lemma and let A(t) = a(t)+D2

l

acting on L2(Σ×R). The operator A(t) is elliptic in S0(R; Ψ2(Σ×R)), selfadjoint
on H2(Σ× R) with A(t) ≥ c01 for c0 as in the lemma.

We would like to apply Thm. 3.7 for α = −1 to the class S0(R; Ψm(Σ×R)) to ob-
tain that A(t)−1 belongs to S0(R; Ψ−2(Σ×R)). Note that the ideal S0(R;W−∞(Σ×
R)) is smaller than the one used in Subsect. 3.5 for the manifold Σ × R, because
multi-commutators adγl A appear in (A.1).

However we can still apply the abstract framework in [ALNV] to this situation,
see [GOW, Subsect. 5.3.4] for a concise summary. We choose as Hilbert space
H = L2(Rt × Σx × Rl). As injective operator in S0(R;W−∞(Σ × R)) we choose

e∆h+D2
l +1. The only point which differs a little from the situation in Subsect. 3.5

is the spectral invariance of S0(R;W−∞(Σ × R)), see the proof of Thm. 3.7: if
R ∈ S0(R;W−∞(Σ × R)) and (1 + R) is boundedly invertible in B(H), then we
have

(1+R)−1 = 1+R1, R1 = −R+R(1+R)−1R.

We have R1 =
´ ⊕

R
R−1(t)dt, for

(A.6) R1(t) = −R(t) +R(t)(1+R(t))−1R(t).

We have to check that

‖∂nt adγl R−1(t)‖B(H−p(Σ×R),Hp(Σ×R)) ∈ O(〈t〉−n), ∀γ, n, p ∈ N.

This follows from (A.6) using the Leibniz rule for ∂t and adl and the identities

∂t(1+R(t))−1 = −(1+R(t))−1∂tR(t)(1+R(t))−1

adl(1+R(t))−1 = −(1+R(t))−1adlR(t)(1+R(t))−1.

In conclusion we can apply Seeley’s theorem and obtain that A(t)−1 belongs to
S0(R; Ψ−m(Σ× R)). We have then:

FA(t)−1
F

−1 =

ˆ ⊕

R

(a(t) + λ2)−1dλ,

which by (A.5) implies that (a(t) + λ2)−1 ∈ S0(R; Ψ̃−2(Σ)). This concludes the
proof of the lemma.2

Proof of Prop. 3.10. In view of the identity

a1+α
1 − a1+α

2 = (a1 − a2)a
α
1 + a2(a

α
1 − aα2 ),

we see that it suffices to prove the proposition for 0 < α < 1. We will use the
following formula, valid for example if a is a selfadjoint operator on a Hilbert space
H with a ≥ c1, c > 0:

(A.7) aα = Cα

ˆ +∞

0

(a+ s)−1sαds = Cα

ˆ

R

(a+ λ2)−1λ2α+1dλ, α ∈ R,

where the integrals are norm convergent in say, B(Dom am,H) for m large enough.
We have for r(t) = a1(t)− a2(t):

(a1(t) + λ2)−1 = (a2(t) + λ2)−1(1+ r(t)(a1(t) + λ2)−1)

= (a2(t) + λ2)−1 + (a2(t) + λ2)−2(a2(t) + λ2)r(t)(a1(t) + λ2)−1

= (a2(t) + λ2)−1 + (a2(t) + λ2)−2a2(t)c1(t, λ)

= (a2(t) + λ2)−1 + a2(t)c2(t, λ),
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where using Lemma A.1, c1(t, λ) ∈ S−δ(R; Ψ̃0(Σ)) and c2(t, λ) ∈ S−δ(R; Ψ̃−4(Σ)).
From (A.7) we obtain that:

(A.8) aα1 (t)− aα2 (t) = Cαa2(t)

ˆ

R

c2(t, λ)λ
2α+1dλ.

We now write c2(t, λ) as Op(d2(t, λ)) + w2(t, λ), for d2 ∈ S−δ(R; S̃−4
ph (T

∗Σ)) and

w2(t, λ) ∈ S−δ(R; W̃−∞(Σ)). Using that
ˆ

R

(〈ξ〉 + 〈λ〉)−4−kλ2α+1dλ ∼ 〈ξ〉2α−2−k,

we first obtain that
ˆ

R

d2(t, λ)λ
2α+1dλ ∈ S−δ(R;S2α−2

ph (Σ)).

Similarly we obtain that
´

R
w2(t, λ)λ

2α+1dλ ∈ S−δ(R;W−∞(Σ)). Using (A.8) this

implies that aα1 (t)− aα2 (t) ∈ S−δ(R; Ψ2α(Σ)), as claimed.

A.2. Proof of Prop. 4.5. We follow the proof in [GW1]. The out and in cases
are treated similarly. We set a0 = i

2 (ǫ
−1∂tǫ + ǫ−1rǫ),

F (c) ··=
1

2
ǫ−1

(
i∂tc+ [ǫ, c] + irc− c2

)
= G(c)− 1

2
ǫ−1c2.

and look for b(t) as ǫ(t) + c, where c ∈ Ψ0,−1−δ
td has to satisfy c = a0 +F (c). Let us

start by studying some properties of the map F . First if c ∈ Ψ0,−µ
td then:

G(c) ∈ Ψ−1,0
td ×Ψ0,−1−µ

td +Ψ−1,0
td ×Ψ0,−µ

td +Ψ−1,0
td Ψ0,−1−δ

td ×Ψ0,−µ
td ,

ǫ−1c2 ∈ Ψ−1,−2µ
td ,

hence

(A.9) c ∈ Ψ0,−µ
td ⇒ F (c) ∈ Ψ−1,−µ

td .

Secondly, if c1, c2 ∈ Ψ0,−µ
td and c1 − c2 ∈ Ψ−j,−µ

td then:

G(c1)−G(c2) = G(c1 − c2)

∈ Ψ−1,0
td ×Ψ−j,−1−µ

td +Ψ−1,0
td ×Ψ−j,−µ

td +Ψ−1,0
td ×Ψ0,−1−δ

td ×Ψ−j,−µ
td ,

ǫ−1(c21 − c22) = ǫ−1c1(c1 − c2) + ǫ−1(c1 − c2)c2

∈ Ψ−1,0
td ×Ψ0,−µ

td ×Ψ−j,−µ
td +Ψ−1,0

td ×Ψ−j,−µ
td × Ψ0,−µ

td ,

hence

(A.10) c1, c2 ∈ Ψ0,−µ
td , c1 − c2 ∈ Ψ−j,−µ

td ⇒ F (c1)− F (c2) ∈ Ψ−j−1,−µ
td .

We also have

a0 =
i

2
(ǫ−1∂tǫ+ ǫ−1rǫ)

∈ Ψ−1,0
td ×Ψ1,−1−δ

td +Ψ−1,0
td ×Ψ0,−1−δ

td ×Ψ1,0
td ⊂ Ψ0,−1−δ

td .

We now follow the proof in [GW1, Lemma A.1], namely, we set c0 = a0, cn =

a0 + F (cn−1) and obtain by induction that cn − cn−1 ∈ Ψ−n,−1−δ
td . We then set

c ∼ a0 +

∞∑

n=1

cn − cn−1 ∈ Ψ0,−1−δ
td ,

where the Ψ0,−1−δ
td membership follows from Lemma 3.11. We obtain that

i∂tb− b2 + a+ irb ∈ Ψ−∞,−1−δ
td .



Hadamard property of the in and out states on asymptotically static spacetimes 30

By construction we have b(t) = ǫ(t) + Ψ0,−1−δ
td (R; Σ). Applying Prop. 3.10 we get

ǫ(t) = ǫout/in +Ψ1,−δ
td (R; Σ) on R

± × Σ.

2

A.3. Proof of Prop. 4.6. From Prop. 4.5 we first obtain that b+−b− = (b+b∗) =

2ǫ+Ψ0,−1−δ
td (R; Σ). It follows first that (b+ − b−)2 = 4a+Ψ1,−1−δ

td (R; Σ) and then
by Prop. 4.5 that

(b+ − b−)α = ((b+ − b−)2)α/2 =

{
(2ǫ)

1
2 +Ψ0,−1−δ

td (R; Σ), α = 1
2

(2ǫ)−
1
2 +Ψ

−3/2,−1−δ
td (R; Σ), α = − 1

2 .

We obtain again by Prop. 4.5 that:

[(b+ − b−)−
1
2 , b±] = [(2ǫ)−

1
2 +Ψ

−3/2,−1−δ
td (R; Σ),±ǫ+Ψ0,−1−δ

td (R; Σ)]

∈ Ψ
−3/2,−1−δ
td (R; Σ),

∂t(b
+ − b−)−

1
2 (b+ − b−)

1
2 = (∂t(2ǫ)

− 1
2 +Ψ

−3/2,−2−δ
td (R; Σ))×Ψ

1
2
,0

td (R; Σ)

= ∂t(2ǫ)
− 1

2 ×Ψ
1
2
,0

td (R; Σ) + Ψ−1,−2−δ
td (R; Σ).

Since by Prop. 3.10 (2ǫ)−
1
2 = (2ǫout/in)

− 1
2 +Ψ

−3/2,−δ
td (R±; Σ), we have

∂t(2ǫ)
− 1

2 ∈ Ψ
−3/2,−1−δ
td (R; Σ) ⇒ ∂t(b

+ − b−)−
1
2 (b+ − b−)

1
2 ∈ Ψ−1,−1−δ

td (R; Σ).

Since by hypothesis (td), r ∈ Ψ0,−1−δ
td (R; Σ), we obtain that r±b ∈ Ψ0,−1−δ

td (R; Σ).

Finally we obtain immediately from Prop. 4.5 that r±−∞ = i∂tb
±−(b±)2+a+irb± ∈

Ψ−∞,−1−δ
td (R; Σ). 2

A.4. Proof of Lemma 5.1. Let us fix two good chart coverings {Ui, ψi}i∈N and

{Ũi, ψ̃i}i∈N with Ui ⋐ Ũi. Since b ∈ C∞
b (R; BT1

0(Σ, k)), we obtain easily by trans-
porting b to Bn(0, 1) using ψi that there exists t+,ǫ > 0 such that y(t, s, ·) is a
bounded diffeomorphism of (Σ, k), uniformly for |t− s| ≤ t+,ǫ. By the group prop-
erty of the flow we can replace t+,ǫ by any t+ > 0, keeping the above uniformity
property.

Moreover if bi ··= (ψ−1
i )∗b we obtain from (ast) that bi ∈ S−δ(R; BT1

0(Bn(0, 1))),
uniformly in i ∈ N. If yi(t, s, ·) denotes the flow of bi we obtain that:

yi(t, s, x) = x +

ˆ t

s

bi(σ, yi(σ, s, x))dσ.

From this we obtain that there exists t+ ≫ 1 such that

yi(±t,±t+, ·) : Bn(0,
1
2 ) → Bn(0, 1)

for all t ≥ t+ and moreover

lim
t→±∞

yi(t,±t+, y) =
ˆ ±∞

±t+

bi(σ, yi(σ,±t+, x))ds =·· yi(±∞, t+, x).

We can also choose t+ large enough so that if we set

(A.11) y(±∞,±t+, x) ··= ψ−1
i ◦ yi(±∞,±t+, ·) ◦ ψi(y), x ∈ Ui

then y(±∞,±t+, ·) is well defined, and is a bounded diffeomorphism of (Σ, k). We
now set:

yout/in ··= y(±∞,±t+, ·) ◦ y(±t+, 0, ·),
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which is also a bounded diffeomorphism of (Σ, k). We also obtain from (A.11) and
the previous estimates on y(t, s, ·) for |t− s| ≤ t+ that {y(t, 0, ·)}t∈R is a bounded
family of bounded diffeomorphisms of (Σ, k). Moreover from (A.11) we obtain that

(A.12) yi(t, 0, x)− yi,out/in(x) ∈ S1−δ′(R;C∞
b (Bn(0, 1))), uniformly in i ∈ N.

Let us now consider the metric χ∗g.
Since v · dt = 0, χ∗g = tDχ(g ◦ χ)Dχ = −ĉ2(t, x)dt2 + ĥ(t, x)dx2. Using (A.12)

we obtain that

ĉ(t, x) = c(t, y(t, x)) + S−2δ′(R; BT0
0(Σ))

= cout/in(y(t, x)) + S−min(2δ′,δ)(R±; BT0
0(Σ))

= cout/in(yout/in(x)) + S−min(1−δ′,δ)(R±; BT0
0(Σ)).

Similarly,

ĥ(t, x) = tDy(t, x)h(t, y(t, x))Dy(t, x)

= tDy(t, x)hout/in(y(t, x))Dy(t, x) + S−δ(R±; BT0
2(Σ))

= tDyout/in(x)hout/in(yout/in(x))Dyout/in(x) + S−min(1−δ′,δ)(R±; BT0
2(Σ)),

χ∗V = r(t, y(t, x)) = rout/in(y(t, x)) + S−δ(R±; BT0
0(Σ))

= Vout/in(yout/in(x)) + S−min(1−δ′,δ)(R±; BT0
0(Σ)).

Since by definition

ĥout/in = y∗out/inhout/in, ĉout/in = y∗out/incout/in, V̂out/in = y∗out/inVout/in,

we obtain the assertion. 2
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