N

N
N

HAL

open science

Defining Verifiability in e-Auction Protocols

Jannik Dreier, Hugo Jonker, Pascal Lafourcade

» To cite this version:

Jannik Dreier, Hugo Jonker, Pascal Lafourcade. Defining Verifiability in e-Auction Protocols. Asia
Conference on Information, Computer and Communications Security, ACM, May 2013, Hangzhou,

China. 10.1145/2484313.2484387 . hal-01337416

HAL Id: hal-01337416
https://hal.science/hal-01337416

Submitted on 25 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01337416
https://hal.archives-ouvertes.fr

Defining Verifiability in e-Auction Protocols:

Jannik Dreier
Université Grenoble 1, CNRS
jannik.dreier@imag.fr

ABSTRACT

An electronic auction protocol will only be used by those
who trust that it operates correctly. Therefore, e-auction
protocols must be verifiable: seller, buyer and losing bidders
must all be able to determine that the result was correct.
We pose that the importance of verifiability for e-auctions
necessitates a formal analysis. Consequently, we identify
notions of verifiability for each stakeholder. We formalize
these and then use the developed framework to study the
verifiability of two examples, the protocols due to Curtis et
al. and Brandt, identifying several issues.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Protocol verification; K.4.4
[Electronic Commerce]: Security

Keywords
Verifiability; e-Auction; Formal Methods; Protocol Analysis

1. INTRODUCTION

Auctions provide sellers and buyers with a way to ex-
change goods for a mutually acceptable price. Unlike a mar-
ketplace, where the sellers compete with each other, auctions
are a seller’s market where buyers bid against each other
over the goods for sale. There are many different types of
auctions, varying how to determine winner and price. For
example, in an English auction, buyers bid publicly against
each other and the highest bid wins (e.g. [16]). A Vick-
rey auction is rather similar, except that the winning buyer
pays the price of the second-highest bid (see e.g. [10, 14]).
Conversely, in a Dutch auction, the price starts too high —
the auctioneer keeps lowering the price until a buyer claims
the good for that price (e.g. [17]). Sealed-bid auctions are

*©ACM 2013. This is the author’s version of the work.
It is posted here for your personal use. Not for redistri-

bution. The definitive Version of Record was published in
ASTACCS'13, http://dx.doi.org/10.1145,/2484313.2484387.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIA CCS’13, May 8-10, 2013, Hangzhou, China.

Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

Hugo Jonker
University of Luxembourg

hugo.jonker@uni.lu

Pascal Lafourcade
Université Grenoble 1, CNRS
pascal.lafourcade@imag.fr

auctions that run in one round: in the bidding phase, each
buyer submits one sealed bid, which are then simultane-
ously opened in the opening phase. Sealed-bid auctions can
be used to implement auctions where the bidder with the
highest bid wins (e.g. [4, 15, 1, 5]), but also Vickrey-style
auctions, where the winner pays the second-highest price
(e.g. [14]). In this paper, we focus on verifiability of sealed-
bid auctions (though our results are applicable to English
and, in a limited sense, Dutch auctions).
Auctions involve the following stakeholders:

e Bidders: prospective buyers, who want to pay as little
as possible.

e Seller: a seller, striving to sell for as much as possible.
e Auctioneer: the party organizing the auction.

As is readily apparent, the interests of the various stake-
holders are opposed. Buyers are in competition with each
other for the goods on sale, sellers are in competition with
buyers for the price of the goods, the auctioneer may profit
directly from overvalued sale price (which provides an incen-
tive to collude with the seller), but a reputation for under-
valued sale prices will ensure many repeat customers (which
provides incentive to collude with buyers). Consider e.g. the
case where there are several bids for the same price. In such
a case, an auctioneer might prefer the most “active” bid-
der instead of the normal tie-breaking rules, and so favor
frequent customers over occasional ones.

There are thus no impartial parties to oversee the correct-
ness of the process to determine selling price and winner.
For this reason, an auction system must provide some form
of verifiability for each involved party — irrespective of how
the auction process is run and the winner is determined.

Auction verifiability is easy to achieve in isolation, as
happens in English “shout-out” auctions. However, main-
taining verifiability while ensuring other properties (non-
repudiation, privacy, etc.) is far harder. Too often, newly
proposed auction protocols proudly show how they achieve
these other properties, while only acknowledging the require-
ment for verifiability in passing. Typically, verifiability is
subsequently claimed without providing any formal proof,
e.g., [3, 6]. To address this, we propose a generic formal
framework applicable independent of the type of auction.
The framework consists of formal tests of verifiability.

Contribution. The main contribution of this work is to
identify a set of scheme-independent definitions, which, taken
together, cover verifiability of auctions. To this end, we focus
on the bidders (distinguishing verifiability for losing bidders

from the winning bidder) and the seller. We present this
framework as a set of formal verifiability tests. Moreover,
we investigate the auction protocols by Curtis et al. [6] and
by Brandt [3]. Both protocols claim verifiability, yet we
identify issues with each.

Related work. There are relatively few formal analyses of
auction protocols. Dong et al. [7] study privacy properties of
the protocol by Abe and Suzuki [1] in the applied 7-calculus.
More recently, Dreier et al. [8] used the applied w-calculus to
formalize several properties (privacy, non-repudiation, non-
cancellation and fairness, but not verifiability) for auction
protocols, and studied (and found problems with) two auc-
tion protocols. Besides these, verifiability in auctions has
(to the best of our knowledge) only been studied for partic-
ular schemes. However, in the field of voting several more
generic definitions of verifiability have emerged, and we look
there for inspiration.

In voting, the property of individual verifiability — a voter
can verify that her vote counts correctly for the result — has
been a well-established notion since the field’s inception [9,
2, 18, 11]. Sako and Killian [18] introduced the concept of
universal verifiability: the property that any observer may
verify (using only public information) the correctness of the
result. Kremer et al. [12] introduced the notion of eligibility
verifiability: the property whereby any observer may verify,
using only public information, that the set of cast votes from
which the result is determined originates only from eligible
voters, and each eligible voter cast at most one vote. Finally,
Kiisters et al. [13] introduced the notion of accountability:
when verifiability fails, it is possible to identify the person
responsible for the failure.

While the intuition behind these notions carries (to some
degree) over to auctions, we do note, that unlike voting,
auctions involve competing parties — an illegal bid (e.g., by
the seller) may increase the winning price, while not chang-
ing the winner. Hence, a lack of verifiability in auctions
can compromise fairness. In addition, winner/price deter-
mination can be quite complex depending on the type of
auction, e.g. for second-price or multi-good auctions. Thus,
verification of voting systems does not translate directly to
verification of auction systems.

Outline. In Section 2, we describe our modeling of auc-
tions. In Section 3, we formalize the verifiability definitions,
taking into account the point of view of the seller and the
bidders. In Section 4, we then apply our model to two ex-
amples and exhibit problems in both cases.

2. MODELING AUCTION PROTOCOLS

We consider a set of bidders B and a seller S. We do not
model other parties as only bidders and the seller verify the
execution of the protocol.

Bids are of type Bid (in the simplest case just a price).
When being submitted the bids might be encrypted or ano-
nymized to ensure privacy, hence we use the type EBid for
such bids. We assume that there is a public list L. of length
n and type List(EBid) of all submitted bids, for example a
bulletin board. To define the soundness of the verification
tests we need a mapping between both types, i.e. a function
getPrice: EBid — Bid that gives the bid for an encrypted
bid. This function does not need to be computable for any
party, as it is only used in the soundness definition.

Bidders have to register at some point, or are otherwise

authenticated when bidding, in order to be able to obtain
their goods once the auction has ended. This could for exam-
ple be implemented using signatures, authentication tokens,
MAC:s etc. Therefore we require a function isReg: EBid —
{true, false} that returns true if a bid was submitted by a
registered bidder, and not modified — this integrity protec-
tion is necessary to prevent manipulation of bids.

In addition, we require a public function that - given a list
of bids - computes the index of the winning bid within the
list of all bids: win: List(Bid) — Index. This might simply
be the index of the maximal bid among all bids, but there
may be more complex operations to determine this index
depending on the type of auction or to deal with ties (i.e.
several maximal bids).

Lastly, we assume that the variable winBid of type Index
refers to the index of the announced winning bid at the end
of the auction, and that each bidder has a variable myBid
of type Index that refers to the index of his bid in L.

Note that for a list [we write [[¢] to denote the i-th element
of the list starting with 1, and Indices(l) to denote the set
of indices of [, i.e. {1,...,n} if [contains n elements.

DEFINITION 1. An auction protocol is a tuple (B, S, L,
getPrice, isReg, win, winBid) where

e 3 is the set of bidders,

e S is the seller,

L is a list of all submitted bids,

e getPrice: EBid — Bid is a function mapping submit-
ted bids to bids,

e isReg: EBid — {true, false} is a function that returns
true if a bid was submitted by a registered bidder,

e win: List(Bid) — Index is a function that returns the
index of the winning bid,

o winBid is a variable referring to the index of the win-
ning bid at the end of the auction.

3. DEFINING VERIFIABILITY

In this section, we formally define verifiability for auction
protocols. In the first part we consider only first-price auc-
tions. Thereafter we generalize the definitions to account
for second-price, multi-price, and other types of auctions.

3.1 First-Price Auctions
To understand which verifications are needed, we start by

discussing three different stakeholder’s perspectives:

e A losing bidder wants to be convinced that he actually
lost, i.e. that:

— the winning bid was actually superior to his bid
(as defined by the win function), and

— that the winning bid was submitted by another
bidder (preventing both seller and auctioneer from
maliciously adding or manipulating bids to influ-
ence the final price).

e A winning bidder wants to check that:

— he actually submitted the winning bid,

— the final price is correctly computed,
— all other bids originated from bidders, and

— no bid was modified.

Together, these verification checks ensure that the win-
ning bidder is indeed the correct winner, for the cor-
rect price. Moreover, the last two checks ensure that
the auction process was only influenced by legitimate
bidders — neither seller nor auctioneer influenced the
process.

e The seller wants to verify that:

— the announced winner is correct, and

— the winning price is correct,

in particular if the outcome of the auction was not
determined publicly (e.g. privately by the auctioneer,
or using distributed computations among the bidders).

To execute these verifications, we introduce the notion of
Verification Tests.

We define a Verification Test as an efficient terminating
algorithm that takes as input the data visible to a partici-
pant of an auction protocol and returns a Boolean value.

We deliberately do not specify more details at this point
as they will depend on the underlying protocol model. Such
a test could be a logical formula (whose size is polynomial in
the input) in a symbolic model or a polynomial-time Turing-
machine in a computational model. Obviously there can
be different tests for different participants (e.g. for bidders
and the seller), since they may have different views of the
protocol execution.

We define verifiability as follows.

DEFINITION 2
An auction protocol (B, S, L, getPrice, isReg, win, winBid)
ensures Verifiability if we have Verification Tests rvs, T4,
ovy, 0V, 0Vs Tespecting the following soundness conditions:

1. Registration and Integrity Verifiability (RV):

e Anyone can verify that all bids on the list were
submitted by registered bidders:
rvs = true => Vb € L: isReg(b) = true

e Anyone can verify that the winning bid is one of
the submitted bids:
Ty = true = winBid € Indices(L)

2. Outcome Verifiability (OV):

e A losing bidder can verify that his bid was not the
winning bid:
ovy = true = myBid # win(getPrice(L))

e A winning bidder can verify that his bid was the
winning bid:
ovy = true = myBid = win(getPrice(L))

e The seller can verify that the winning bid is actu-
ally the highest submitted bid:
ovs = true = winBid = win(getPrice(LL))

as well as the following completeness condition:

e [f all participants follow the protocol correctly, the above
tests succeed (i.e., the implications hold in the opposite
direction, <=, as well).

(VERIFIABILITY - 1ST-PRICE AUCTIONS).

where — with abuse of notation — we write getPrice(L) for
getPrice(LL[1]), ..., getPrice(L[n]).

Consider the perspective of a losing bidder: He can verify
that his bid was not the winning bid (ov;), and that the
winning bid was among the ones submitted by registered
bidders, which were also not modified (rvs and rv,). Sim-
ilarly a winning bidder can check that his bid was actually
the winning bid (ovy), and that the other bids were sub-
mitted by other bidders and not modified (rvs). Lastly, the
seller can also check that the bids using for computing the
winner were submitted only by registered bidders (rvs and
T), and that the outcome was correct (ovs). Hence these
tests cover all the verifications discussed above.

In the case of soundness, we require the conditions to hold
even in the presence of malicious participants (since the tests
should check if they did their work correctly), whereas in the
case of completeness we only consider honest participants.
This is necessary as otherwise e.g. a dishonest auctioneer
could announce the correct result, but publish incorrect evi-
dence. Hence the verification tests fail although the outcome
is correct, but this acceptable since the auctioneer did not
“work correctly” in the sense that he deviated from the pro-
tocol specification.

Definition 2 can be applied to sealed-bid auctions, where
all bids are submitted in a private way, as well as English
auctions, where the price increases with each publicly an-
nounced bid. These latter are verified by applying the veri-
fication tests after each price increase.

Example.

Consider a simple auction system where all bidders pub-
lish their (not encrypted and not signed) bids on a bulletin
board, and at the end of the bidding phase the auctioneer
announces the winner. In this case there is a simple test
for rv,: anyone can simply test if the winning bid is one of
published ones. However there is no test for rvs since bids
are not authenticated. If we require bidders to sign their
bids before publishing them, we also have a simple test for
rvs: verifying the signatures.

It is clear that we have simple tests for ov;, ov, and ovs
since everybody can compute the winner on the public list
of unencrypted bids. This however means that the protocol
ensures no privacy, and no fairness since a bidder can chose
his price depending on the previously submitted bids. If we
add encryption for the bids to address this shortcoming, the
situation becomes more complex and the auctioneer has to
prove that he actually computed the winner correctly, for
example using zero-knowledge proofs.

3.2 Other Types of Auctions

Our definition can be extended to other auctions, includ-
ing second-price auctions, more general (M + 1)st-price auc-
tions, and even bulk-good auctions that have multiple win-
ners at different prices. The price in these types of auctions
may also depend on the other submitted bids — not only on
the winning bid. To deal with this, we enrich our model of
an auction protocol with a type Price. The function win
now returns lists of winners and prices win: List(Bid) —
List(Index) x List(Price). We also assume that there are
two variables winPrice and myPrice instantiated as the an-
nounced list of winning prices and the price announced to
a winning bidder respectively. Similarly winBid is now in-
stantiated as a list of indices of bids.

For such auctions, registration verifiability does not change,
but winner(s) and seller also want to verify the price they
pay to prevent a malicious party from increasing price(s).

DEFINITION 3 (GENERALIZED VERIFIABILITY). An auc-
tion protocol (B, S, L, getPrice, isReg, win, winBid, winPrice)
ensures Verifiability if we have Verification Tests rvs, T04,
ov], OV, 0Us Tespecting the following conditions:

1. Soundness:

(a) Registration and Integrity Verifiability (RV):

e Anyone can verify that all bids on the list
were submitted by registered bidders:
rvs = true = Vb € L: isReg(b) = true

e Anyone can verify that the winning bids are
among the submitted bids:
Ty = true —
Vb € winBid: b € Indices(L)

(b) Outcome Verifiability (OV):
Let (indexes, prices) = win(getPrice(L)).

e A losing bidder can verify that his bid was not
the winning bids:
ovy = true = myBid ¢ indexes

o A winning bidder can verify that his bid was
among the winning bids, and that his price is
correct:
ovy = true = Fi: (myBid = indexes[i]
A myPrice = prices[i])

e The seller can verify that the list of winners
and the winning prices are correctly deter-
mined:
ovs = true —>
(winBid = indexes N\ winPrice = prices)

2. Completeness: If all participants follow the protocol
correctly, the above tests succeed (i.e., the implications
hold in the opposite direction, <=, as well).

where — with abuse of notation — we write getPrice(LL) for
getPrice(LL[1]), ..., getPrice(L[n]). Differences to Def. 2 are
marked in bold.

Note that e.g. in the case of a second-price auction ver-
ifying the price, for example in test ov,, may implicitly
include some more registration verification, namely check-
ing that the second-highest bid was actually submitted by
a bidder. Otherwise a malicious seller could add a higher
second-highest bid or manipulate the existing one to achieve
a higher selling price. This is however included in our model
as the function win only works on the list L, hence adding
another bid later on to manipulate the bidding price violates
the test, and adding or manipulating a bid in L violates rvs.

4. CASE STUDIES

In this section, we discuss two case studies: The protocols
by Curtis et al. [6] and Brandt [3].

4.1 Protocol by Curtis et al. [6]

The protocol by Curtis et al. [6] was designed to support
any type of sealed-bid auction while guaranteeing fairness,
privacy, verifiability and non-repudiation.

4.1.1 Informal Description

The main idea of the protocol is the following: using a
public-key infrastructure (PKI), the bidders register with a
trusted Registration Authority (RA), who issues pseudonyms
that will then be used for submitting bids to the Seller (S).
The seller eventually receives all bids in clear and can hence
apply any possible win function. However, he can only link
bids to pseudonyms, not to bidders. The protocol is split
into three phases: Registration, Bidding, and Winner deter-
mination.

e Registration: Each bidder sends his identity, a hash of
his bidding price b; and a signature of h(b;) to the RA.
The RA checks the identity and the signature using the
PKI, and replies with an encrypted and signed message
containing a newly generated pseudonym p and the
hashed bid h(b;).

e Bidding: The RA generates a new symmetric key k.
Each bidder will send ¢ = Encpig(bi), his bid b; en-
crypted with the seller’s public key, and a signature of
¢, together with his pseudonym to the RA. The RA
will reply with a signature on ¢, and encrypts the bid-
ders message, together with the hashed bid h(b;) from
phase one, using the symmetric key k. This encrypted
message is then send to the seller.

o Winner determination: After all bids have been sub-
mitted, the RA will reveal the symmetric key & to the
seller. The seller can then decrypt the bids, verify the
correctness of the hash and determine the winner. To
identify the winner using the pseudonym he can ask
the RA to reveal the true identity.

4.1.2 Formal Model

We have the set of bidders B and a seller S. We do not
need to specify the type of bids Bid since the protocol sup-
ports any type of bids. The bids are published when the
auctioneer reveals the symmetric key, i.e. L contains bids of
the following type: (Pseudo X PEnc(Bid) x Hash), where
Pseudo is the type of pseudonyms, PFEnc is a public-key en-
cryption and Hash are hash values. The function getPrice
will simply decrypt the encrypted bid (the second entry of
the tuple). The function isReg will return true if and only
if the hash value is correct, the pseudonym was actually at-
tributed by the RA and the bid was submitted correctly
signed by the bidder with this pseudonym. The protocol is
independent of the used auction mechanism and hence does
not define win. The seller will simply decrypt all bids and
can then apply any function win. He will publish the win-
ning price and the winning bidders pseudonym, and winBid
will denote the index of the bid containing this pseudonym.

4.1.3 Analysis

Since the seller does the winner determination on his own,
there is a simple test for ovs: He can check his own compu-
tations. As the computation of the winner is not specified
in order to support any type of auction, we cannot give tests
for ov; and ov,, — they would have to be designed as a func-
tion of the used auction algorithm. Yet there is also a test
for rv,: Checking if the pseudonym appears in the list of
bids.

However, the messages from the RA to the seller are not
authenticated, hence there can be no suitable tests for rvs

once the (encrypted) bids are revealed. Even if they were
authenticated, this still requires trusting the RA, since there
is no way to verify if a pseudonym actually corresponds to a
bidder. This also shows a simple attack: the RA can create
a new pseudonym and submit a bid under this pseudonym,
which may allow him to manipulate the auction outcome.

Curtis et al. explicitly state that the RA needs to be
trusted. However, they themselves propose a property “ro-
bustness” which states that an auction protocol should be
able to handle corrupt behavior. Clearly, their protocol is
not robust to dishonest behavior by the RA, and verifiabil-
ity of their protocol requires trust in the RA. We argue that
basing verifiability tests on such a trust assumption at least
partly contradicts the main point of verifiability, which is to
eliminate such trust assumptions by providing evidence that
a trusted party actually behaved honestly.

4.2 Protocol by Brandt [3]

The protocol by Brandt [3] realizes a first-price sealed-
bid auction and was designed to ensure full privacy in a
completely distributed way. It exploits the homomorphic
properties of a distributed El-Gamal Encryption scheme for
a secure multi-party computation of the winner.

4.2.1 Informal Description

The participating bidders and the seller communicate us-
ing a bulletin board, i.e. an append-only memory accessible
for everybody. The bids are encoded as bit-vectors where
each entry corresponds to a price. The protocol then uses
linear algebra operations on the bid vectors to compute a
function f;, which returns a vector containing one entry “1”
if bidder ¢ submitted the highest bid, and different num-
bers (# 1) otherwise. To be able to compute this function
in a completely distributed way, and to guarantee that no
coalition of malicious bidders can break privacy, these com-
putations are performed on the encrypted bids using homo-
morphic properties of a distributed El-Gamal encryption.

In a nutshell, the protocol realizes the following steps:

1. Firstly, the distributed key is generated: each bidder
chooses his part of the secret key and publishes the
corresponding part of the public key on the bulletin
board.

2. Each bidder then computes the joint public key, en-
crypts his bid using this key and publishes it on the
bulletin board.

3. Then function f; is calculated for every bidder ¢ using
the homomorphic property of the encryption scheme.

4. The outcome of this computation (n encrypted values)
are published on the bulletin board, and each bidder
partly decrypts each value using his secret key.

5. These shares are sent to the seller, who can combine
all to obtain the result (i.e. all f;). He publishes part
of the shares such that each bidder j can only compute
his f; to see if he won or lost (using his knowledge and
the published shares), but not the other f;.

4.2.2 Formal Model

We have a set of bidders B and a seller S. The list of all
submitted bids IL is published on the bulletin board. The

function getPrice(C) decrypts the bid using the joint pri-
vate key. The function win returns the index of the high-
est bid submitted, in case of ties the one submitted by the
bidder with the smallest index. The protocol has two par-
ticularities: Firstly there is no registration (and hence no
meaningful function isReg), and secondly the winner is not
publicly announced — only the winning bidder and the seller
know at the end who won. We can still assume that winBid
gives the index of the winning bid, although only the seller
and the winning bidder have access to it. We assume that
there is a “magical” function isReg that can check if a bid
was submitted by a registered bidder, however the absence
of registration and authentication means that we cannot im-
plement it.

4.2.3 Analysis

The protocol includes no authentication or registration,
hence there is no suitable test for rvs. An attacker may
hence submit bids on behalf of a bidder, which cannot be
detected using a verification test. Yet using the values pub-
lished on the bulletin board everybody can check if the val-
ues used for the computation were the previously submitted
bids, and as the winning index will be among them, we have
a test for 1vy,.

The author claims that the protocol is verifiable as the
parties have to provide zero-knowledge proofs for their com-
putations, however there are two problems.

Firstly a winning bidder cannot verify if he actually won.
To achieve privacy, the protocol hides all outputs of f; except
for the entry containing “1”. This is done by exponentiation
of all entries z; of the return vector x with random values,
i.e. by calculating :rlEJ I s one, this will still return
one, but a random value for any other value of . Yet these
random values r; may add up to zero (mod q), hence the
returned value will be 29 = 1 and the bidder will conclude
that he won (z; = 1), although he actually lost (x; # 1).
Hence simply verifying the proofs is not sufficient — such
a test ov,, would not be sound. For the same reason the
seller might observe two or more “1”-values even though all
proofs are correct, and will be unable to decide which bidder
actually won. He could even exploit such a situation to
his advantage: He can simply tell both bidders that they
won and take money from both, although there is only one
good to sell. If the bidders do not exchange additional data
there is no way for them to discover that something went
wrong, since the seller is the only party having access to all
values. The probability of the random values adding up to
zero is low, yet this means that there are cases where the
verifiability tests are not sound.

Secondly the author does not exactly specify the proofs
that have to be provided in the joint decryption phase. If
the bidders only prove that they use the same private key
on all decryptions (and not also that it is the one they used
to generate their public key), they may use a wrong one.
This will lead to a wrong decryption where with very high
probability no value is “1”, as they will be random. Hence
all bidders will think that they lost, thus allowing a ma-
licious bidder to block the whole auction, as no winner is
determined. Hence, if we assume that ov; consists in verify-
ing the proofs, a bidder trying to verify that he lost using
the proofs might perform the verification successfully, al-
though the result is incorrect and he actually won — since he
would have observed a “1” if the vector had been correctly

decrypted. This problem can be addressed by requiring the
bidders to also prove that they used the same private key as
in the key generation phase.

S. CONCLUSION

In this work, we identified the types of verifiability nec-
essary for the stakeholders in auctions. We then formalized
these requirements in a protocol-independent way, resulting
in tests rvs, TVw, 0V, 0V, 0Vs, Which together constitute a
general verifiability framework for auction protocols.

We illustrated the use of the proposed tests by two case
studies, that analyzed the auction protocols by Curtis et
al. [6] and by Brandt [3], respectively. The protocol by Cur-
tis et al. is correct only for a trusted Registration authority
— which runs contrary to the point of verification: that the
authorities no longer need to be trusted. Brandt’s protocol
does not have sound verifiability tests: it is technically pos-
sible for a losing bidder to conclude he won. Moreover, it
may also be possible for a bidder to prevent anyone from
winning by using a wrong decryption key. To prevent this,
bidders must prove that the private key matches the pre-
viously announced public key. Additionally, the protocol
does not provide sufficient registration and authentication
mechanisms to allow registration verifiability.

Future work. We are currently working on a full applica-
tion of these definitions to various auction protocols in both
the symbolic model and the computational model.

Looking further ahead, we are interested in the full rela-
tionship between fairness and verifiability in auctions. As il-
lustrated, there exist verifiability requirements without which
violations of fairness may occur. The exact relationship be-
tween fairness and verifiability however is an open question.

6. ACKNOWLEDGMENTS

This work was partly supported by the ANR project ProSe
(decision ANR-~2010-VERS-004-01).

7. REFERENCES

[1] M. Abe and K. Suzuki. Receipt-free sealed-bid
auction. In Proc. 5th Conference on Information
Security, volume 2433 of LNCS, pages 191-199.
Springer, 2002.

[2] J. Benaloh and D. Tuinstra. Receipt-free secret-ballot
elections (extended abstract). In Proc. 26th
Symposium on Theory of Computing, STOC ’94, pages
544-553, New York, NY, USA, 1994. ACM.

[3] F. Brandt. How to obtain full privacy in auctions.
International Journal of Information Security,
5:201-216, 2006.

[4] C. Cachin. Efficient private bidding and auctions with
an oblivious third party. In Proc. 6th Conference on
Computer and Communications Security (CCS’99),
pages 120-127. ACM Press, 1999.

[5] X. Chen, B. Lee, and K. Kim. Receipt-free electronic
auction schemes using homomorphic encryption. In
Proc. 6th Conference on Information Security and
Cryptology, volume 2971 of LNCS, pages 259-273.
Springer, 2003.

[6] B. Curtis, J. Pieprzyk, and J. Seruga. An efficient
eAuction protocol. In Proc. 7th Conference on
Availability, Reliability and Security (ARES’07), pages
417-421. IEEE Computer Society, 2007.

[7] N. Dong, H. L. Jonker, and J. Pang. Analysis of a
receipt-free auction protocol in the applied pi calculus.
In Proc. 7th Workshop on Formal Aspects in Security
and Trust (FAST’10), volume 6561 of LNCS, pages
223-238. Springer-Verlag, 2011.

[8] J. Dreier, P. Lafourcade, and Y. Lakhnech. Formal
verification of e-auction protocols. In Principles of
Security and Trust (POST), 2013. To appear.

[9] A. Fujioka, T. Okamoto, and K. Ohta. A practical
secret voting scheme for large scale elections. In
J. Seberry and Y. Zheng, editors, Advances in
Cryptology — AUSCRYPT 92, volume 718 of LNCS,
pages 244-251. Springer Berlin / Heidelberg, 1992.

[10] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic
auctions with private bids. In Proc. 8rd USENIX
Workshop on Electronic Commerce. Usenix, 1998.

[11] M. Hirt and K. Sako. Efficient receipt-free voting
based on homomorphic encryption. In Proc. 19th
Annual Conference on the Theory andApplications of
Cryptographic Techniques: Advances inCryptology
(EUROCRYPT), volume 1807 of LNCS, pages
539-556. Springer, 2000.

[12] S. Kremer, M. D. Ryan, and B. Smyth. Election
verifiability in electronic voting protocols. In Proc.
15th European Symposium on Research in Computer
Security (ESORICS 2010), volume 6345 of LNCS,
pages 389-404. Springer, 2010.

[13] R. Kiisters, T. Truderung, and A. Vogt.
Accountability: definition and relationship to
verifiability. In Proc. 17th Conference on Computer
and Communications Security (CCS’10), CCS ’10,
pages 526-535. ACM, 2010.

[14] H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey
auctions without threshold trust. In Proc. 6th
Conference on Financial Cryptography, volume 2357
of LNCS, pages 87-101. Springer, 2003.

[15] M. Naor, B. Pinkas, and R. Sumner. Privacy
preserving auctions and mechanism design. In Proc.
1st Conference on Electronic Commerce, pages
129-139. ACM Press, 1999.

[16] K. Omote and A. Miyaji. A practical english auction
with one-time registration. In Proc. 6th Australasian
Conference on Information Security and Privacy,
volume 2119 of LNCS, pages 221-234. Springer, 2001.

[17] T. E. Rockoff and M. Groves. Design of an
internet-based system for remote dutch auctions.
Internet Research, 5:10-16, 1995.

[18] K. Sako and J. Kilian. Receipt-free mix-type voting
scheme - A practicalsolution to the implementation of
a voting booth. In Proc. 14th Conference on the
Theory andApplications of Cryptographic Techniques:
Advances inCryptology (EUROCRYPT’95), volume
921 of LNCS, pages 393—-403. Springer, 1995.

