
HAL Id: hal-01337410
https://hal.science/hal-01337410v1

Submitted on 25 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Analysis of E-Cash Protocols
Jannik Dreier, Ali Kassem, Pascal Lafourcade

To cite this version:
Jannik Dreier, Ali Kassem, Pascal Lafourcade. Formal Analysis of E-Cash Protocols. 12th Inter-
national Conference on Security and Cryptography (SECRYPT 2015), Jul 2015, Colmar, France.
�10.5220/0005544500650075�. �hal-01337410�

https://hal.science/hal-01337410v1
https://hal.archives-ouvertes.fr


Formal Analysis of E-Cash Protocols∗

Jannik Dreier1, Ali Kassem2 Pascal Lafourcade3
1Institute of Information Security, Department of Computer Science, ETH Zurich, Switzerland

2 University Grenoble Alpes, VERIMAG, Grenoble, France
3University Clermont Auvergne, LIMOS, France

Keywords:
E-Cash, Formal Analysis, Double Spending, Exculpability, Privacy, Applied π-Calculus, ProVerif.

Abstract:
Electronic cash (e-cash) aims at achieving client privacy at payment, similar to real cash. Several
security protocols have been proposed to ensure privacy in e-cash, as well as the necessary unforgery
properties. In this paper, we propose a formal framework to define, analyze, and verify security
properties of e-cash systems. To this end, we model e-cash systems in the applied π-calculus,
and we define two client privacy properties and three properties to prevent forgery. Finally, we
apply our definitions to an e-cash protocol from the literature proposed by Chaum et al., which
has two variants and a real implementation based on it. Using ProVerif, we demonstrate that our
framework is suitable for an automated analysis of this protocol.

1 Introduction

Although current banking and electronic pay-
ment systems such as credit cards or, e.g., Pay-
Pal allow clients to transfer money around the
world in a fraction of a second, they do not fully
ensure the clients’ privacy. In such systems, no
transaction can be made in a completely anony-
mous way, since the bank or the payment provider
knows the details of the clients’ transactions. By
analyzing a client payments for, e.g., transporta-
tions, hotels, restaurants, movies, clothes, and so
on, the payment provider can typically deduce
the client’s whereabouts, and much information
about his lifestyle.

Physical cash provides better privacy: the
payments are difficult to trace as there is no
central authority that monitors all transactions,
in contrast to most electronic payment systems.
This property is the inspiration for “untraceable”
e-cash systems. The first such e-cash system
preserving the client’s anonymity was presented
by David Chaum in 1983 (Cha83): a client can
withdraw a coin anonymously from his bank and
spend it with a seller. The seller can then deposit
the coin at the bank, who will credit his account.

∗This research was conducted with the support of
the “Digital trust” Chair from the University of Au-
vergne Foundation.

In this protocol coins are non-transferable, i.e.,
the seller cannot spend a received coin again, but
has to deposit it at the bank. If he wants to
spend a coin in another shop, he has to withdraw
a new coin from his account, similar to the usual
payment using cheques. In contrast, there are
protocols where coins are also transferable, i.e.,
coins do not need to be deposited directly after
each spend, but can be used again, e.g., (OO89;
CGT08).

To be secure, an e-cash protocol should not
only ensure the client’s privacy, but must also en-
sure that a client cannot forge coins which were
not issued by the bank. Moreover, it must pro-
tect against double spending – otherwise a client
could try to use the same coin multiple times.
This can be achieved by using on-line payments,
i.e., a seller has to contact the bank at payment
before accepting the coin, however it is an expen-
sive solution. An alternative solution, which is
usually used to support off-line payments (i.e., a
seller can accept the payment without contacting
the bank), is revealing the client’s identity if he
spent a coin twice. Finally, exculpability ensures
that an attacker cannot forge a double spend, and
hence incorrectly blame an honest client for dou-
ble spending.

In the literature, many e-cash protocols have
been proposed (Cha83; CFN90; Dam90; DC94;



Cre94; Bra94; AF96; KO01; FHY13). For ex-
ample, Abe et al. (AF96) introduced a scheme
based on partial blind signature, which allows the
signer (the bank) to include certain information
in the blind signature of the coin, for example the
expiration date or the value of the coin. Kim et
al. (KO01) propose an e-cash system that sup-
ports coin refund and assigns them a value, based
again on partial blind signature.

At the same time, many attacks have been
found against various existing e-cash protocols:
for example Pfitzmann et al. (PW91; PSW95)
break the anonymity of (Dam90; DC94; Cre94).
Cheng et al. (CYS05) show that Brand’s proto-
col (Bra94) allows a client to spend a coin more
than once without being identified. Aboud et
al. (AA14) show that (FHY13) cannot ensure
the anonymity and unlinkability properties that
were claimed.

These numerous attacks triggered some first
work on formal analysis of e-cash protocols
in the computational (CG08) and symbolic
world (LCPD07; SK14). Canard et al. (CG08)
provide formal definitions for various privacy and
unforgeability properties in the computational
world, but only with manual proofs as their
framework is difficult to automate. In contrast,
Luo et al. (LCPD07) and Thandar et al. (SK14)
both rely on automatic tools (AVISPA2 and
ProVerif (Bla01), respectively). Yet, they only
consider a fraction of the essential security prop-
erties, and for some properties Thandar et al. only
perform a manual analysis. Moreover, much of
their reasoning is targeted on their respective case
studies, and cannot easily be transferred to other
protocols.

Contributions: This paper fills the gaps of
previous formal verification work. Inspired
by other domains such as e-voting (BHM08;
DKR09; DLL12), e-auctions (DLL13), and e-
exams (DGK+14), we propose a more general
formalization for non-transferable e-cash proto-
cols in the applied π-calculus (AF01). Our def-
initions are amenable to automatic verification
using ProVerif (Bla01), and cover all crucial pri-
vacy and unforgery properties: Weak Anonymity,
Strong Anonymity, Unforgeability, Double Spend-
ing Identification, and Exculpability. Finally, we
validate our approach by analyzing the on-line
protocol proposed by Chaum et al. (Cha83),
as well as, a real implementation based on

2www.avispa-project.org

it (Sch97). We also analyze the off-line variant
of this e-cash system (CFN90).

Outline: In Section 2, we model e-cash proto-
cols in the applied pi-calculus. Then, we spec-
ify the security properties in Section 3. We vali-
date our framework by analyzing the on-line and
off-line e-cash systems by Chaum et al. (Cha83;
CFN90), and the implementation based on the
on-line protocol (Sch97) in Section 4. In Sec-
tion 5, we discuss our results and outline future
work.

2 Modeling E-cash Protocols

We model e-cash protocols in the applied π-
calculus, a process calculus designed for the verifi-
cation of cryptographic protocols. We refer to the
original paper (AF01) for a detailed description
of its syntax and semantics.

In the applied π-calculus, we have a Dolev-Yao
style attacker (DY83), which has a complete con-
trol to the network, except the private channels.
He can eavesdrop, remove, substitute, duplicate
and delay messages that the parties are sending
to one another, and even insert messages of his
choice on the public channels.

Parties other than the attacker can be either
honest or corrupted. Honest parties follow the
protocol’s specification, do not reveal their secret
data (e.g., account numbers, keys etc.) to the at-
tacker, and do not take malicious actions such as
double spending a coin or generating fake trans-
actions. Honest parties are modeled as processes
in the applied π-calculus. These processes can
exchange messages on public or private channels,
create fresh random values and perform tests and
cryptographic operations, which are modeled as
functions on terms with respect to an equational
theory describing their properties.

Corrupted parties are those that collude with
the attacker by revealing their secret data to him,
taking orders from him, and also making mali-
cious actions. We model corrupted parties as in
Definition 15 from (DKR09): if the process P is
an honest party, then the process P c is its cor-
rupted version. This is a variant of P which
shares with the attacker channels ch1 and ch2.
Through ch1, P c sends all its inputs and freshly
generated names (but not other channel names).
From ch2, P c receives messages that can influence
its behavior.

2



An e-cash system involves the following par-
ties: the client C who has an account at the bank,
the seller S who accepts electronic coins, and the
bank B, which certifies the electronic coins. E-
cash protocols typically run in three phases:

1. Withdrawal: the client withdraws an elec-
tronic coin from the bank, which debits the
client’s account.

2. Payment: the client spends the coin by exe-
cuting a transaction with a seller.

3. Deposit: the seller deposits the transaction
at the bank, which credits the seller’s account.

In addition to these three main phases, some sys-
tems allow the clients

(a) to return coins directly to the bank without
using them in a payment, for instance in case
of expiration, or to re-distribute the coins de-
nominations, and

(b) to restore coins that have been lost, for in-
stance due to a hard disk crash.

As these functionalities are not implemented by
all protocols, our model does not require them.
Moreover, we assume that the coins are neither
transferable nor divisible.

We define an e-cash protocol as a tuple of
processes each representing the role of a certain
party.

Definition 1 (E-cash protocol). An e-cash
protocol is a tuple (B,S,C, ñ), where B is the
process executed by the bank, S is the process ex-
ecuted by the sellers, C is the process executed by
the clients, and ñ is the set of the private channel
names used by the protocol.

To reason about privacy properties we use runs
of the protocol, called e-cash instances.

Definition 2 (E-cash instance). Given an e-
cash protocol, an e-cash instance is a closed plain
process:

CP =νñ′.(B|Sσids1 | . . . |Sσidsl |
(Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 )|

...

|(Cσidckσck1
σidsk1

| . . . |Cσidckσckpk
σidskpk

))

where ñ′ is the set of all restricted names which
includes the set of the protocol’s private channels
ñ; B is the process executed by the bank; Sσidsi is
the process executed by the seller whose identity is
specified by the substitution σidsi ; Cσidciσcijσidsij

is the process executed by the client whose identity
is specified by the substitution σidci , and which
spends the coin identified by the substitution σcij
to pay the seller with the identity specified by the
substitution σidsij . Note that idci can spend pi
coins.

To improve the readability of our definitions,
we introduce the notation of context CPI [ ]
to denote the process CP with “holes” for
all processes executed by the parties whose
identities are included in the set I. For ex-
ample, to enumerate all the sessions executed
by the Client idc1 without repeating the
entire e-cash instance, we can rewrite CP as
CP{idc1}[Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 ].

Finally, we use the notation Cw to denote a
client that withdraws a coin, but does not spend
it in a payment: Cw is a variant of the process C
that halts at the end of withdrawal phase, i.e.,
where the code corresponding to the payment
phase is removed.

3 Security Properties

We define three properties related to forgery:
Unforgeability, Double Spending Identification,
and Exculpability. Moreover, we formalize two
privacy properties: Weak Anonymity and Strong
Anonymity.

3.1 Forgery-Related Properties

In an e-cash protocol a client must not be able to
create a coin without involving the bank, result-
ing in a fake coin, or to double spend a valid coin
he withdrew from the Bank. This is ensured by
Unforgeability, which says that the clients cannot
spend more coins than they withdrew.

To define unforgeability we use the following
two events:

• withdraw(c): is an event emitted when the
coin c is withdrawn. This event is placed in-
side the bank process just after the bank out-
puts the coin’s certificate (e.g., a signature on
the coin).

• spend(c): is an event emitted when the coin c
is spent. This event is placed inside the seller
process just after he receives and accepts the
coin.

Events are annotations that mark important
steps in the protocol execution, but do otherwise
not change the behavior of processes.

3



Definition 3 (Unforgeability) An e-cash pro-
tocol ensures Unforgeability if, for every e-
cash instance CP, each occurrence of the event
spend(c) is preceded by a distinct occurrence of
the event withdraw(c) on every execution trace.

If a fake coin is successfully spent, the event spend
will be emitted without any matching event with-
draw, violating the property. Similarly, in the
case of a successful double spending the event
spend will be emitted twice, but these events
are preceded by only one occurrence of the event
withdraw.

In the rest of the paper, we illustrate all our
notions with the ”real cash” system (mainly coins
and banknotes) as a running example. We hope
that it helps the reader to understand the prop-
erties but also to feel the difference between real
cash and e-cash systems.

Example 1 (Real cash) In real cash, unforge-
ability is ensured by physical measures that make
forging or copying coins and banknotes difficult,
for example by adding serial numbers, using spe-
cial paper, ultraviolet ink, holograms and so on.

Since a malicious client might be interested to
create fake coins or double spend a coin, it is par-
ticularly interesting to study Unforgeability with
an honest bank and corrupted clients. A partially
corrupted seller, which e.g., gives some informa-
tion to the attacker but still emits the event spend
correctly, could also be considered to check if a
seller colluding with the client and the attacker
can results in a coin forging. Note that if the
seller is totally corrupted then Unforgeability will
be trivially violated, since a corrupted seller can
simply emit the event spend for a forged coin,
although there was no transaction.

In case of double spending, the bank should
be able to identify the responsible client. This is
ensured by Double Spending Identification, which
says that a client cannot double spend a coin
without revealing his identity.

To deposit a coin at the bank the seller has to
present a transaction which contains, in addition
to the coin, some information certifying that he
received the coin in a payment. A valid transac-
tion is a transaction which could be accepted by
the bank, i.e., it contains a correct proof that the
coin is received in a correct payment. The bank
accepts a valid transaction if it does not contain
a coin that is already deposited using the same or
a different transaction.

In the following, we denote by TR the set of all
transactions, and we define the function transId

which takes a transaction tr ∈ TR and returns
a pair (s, c), where s identifies tr and c is the
coin involved in tr. Such a pair can usually be
computed from a transaction. We also denote
by ID the set of all client identities, and by D a
special data set that includes the data known to
the bank after the protocol execution, e.g., the
data presents in the bank’s database.

Definition 4 (Double Spending Identification)

An e-cash protocol ensures Double Spend-
ing Identification if there exists a test
TDSI : TR × TR × D 7→ ID ∪ {⊥} satis-
fying: for any two valid transactions tr1
and tr2 that are different but involve the
same coin ( i.e., transId(tr1) = (s1, c),
and transId(tr2) = (s2, c) for some coin c
with s1 6= s2), there exists p ∈ D such that
TDSI(tr1, tr2, p) outputs (idc, e) ∈ ID× D, where e
is an evidence that idc withdrew the coin c.

Double Spending Identification allows the
bank to identify the double spender by running
a test TDSI on two different transactions that in-
volves the same coin. For example, consider a
protocol where after a successful transaction the
seller gets x = m.id + r where id is the identity
of the client (e.g., his secret key), r is a random
value (identifies the coin) chosen by the client at
withdrawal, and m is the challenge of the seller.
So, if the client double spends the same coin then
the bank can compute id and r using the two
equations: x1 = m1.id + r and x2 = m2.id + r.
The data p could be some information necessary
to identify the double spender or to construct the
evidence e. This data is usually presented to the
bank at withdrawal or at deposit. The required
evidence depends on the protocol. Note that e is
an evidence from the point of view of the bank,
and not necessarily a proof for an outer judge.
Thus, the goal of Double Spending Identification
is to preserve the security of the bank so that he
can detect and identify the responsible of dou-
ble spending when happens. Note that, if a client
withdraws a coin and gives it to an attacker which
double spends it, then the test returns the iden-
tity of the client and not the attacker’s identity.

Example 2 (Real cash) In real cash, double
spending is prevented by ensuring that notes can-
not be copied. However, Double Spending Identi-
fication is not ensured: even if a central bank is
able to identify copied banknotes using, e.g., their
serial numbers, this does not allow it to identify
the person responsible for creating the counterfeit
notes.

4



Double Spending Identification gives rise to a
potential problem: what if the client is honest
and spends the coin only once, but the attacker
(e.g., a corrupted seller) is able to forge a sec-
ond spend, or what if a corrupted bank is able to
simulate a coin withdrawal and payment i.e., to
forge a coin withdrawal and payment that seems
to be made by a certain client. For instance, in
the example mentioned above, the two equations
are enough evidence for the bank. However, if the
bank knows id he can generate the two equations
himself and blame the client for double spending.
So, to convince a judge, an additional evidence is
needed, e.g., the client’s signature.

If any of the two situations mentioned above
is possible, then a honest client could be falsely
blamed for double spending, and also it gives raise
to a corrupted client which is responsible of dou-
ble spending to deny it. To solve this problem we
define Exculpability, which says that the attacker,
even when colluding with the bank and the seller,
cannot forge a double spend by a certain client
in order to blame him. More precisely, provided
a transaction executed by a client idc, the at-
tacker cannot provide two different valid transac-
tions which involves the same coin, and the data
p necessary for the test TDSI to output the iden-
tity idc with an evidence. Note that Exculpability
is only relevant if Double Spending Identification
holds: otherwise a client cannot be blamed re-
gardless of the ability to forge a second spend or
to simulate a coin withdrawal and payment, as
his identity cannot be revealed.

Definition 5 (Exculpability) Assume that we
have a test TDSI as specified in Def. 4, i.e., Double
Spending Identification holds, and that the bank
is corrupted. Let idc be a honest client (in par-
ticular he does not double spend a coin), and ids
be a corrupted seller. Then, Exculpability is en-
sured if, after observing a transaction made by
idc with ids, the attacker cannot provide two valid
transactions tr1, tr2 ∈ T that are different but in-
volve the same coin c, and some data p such that
TDSI(tr1, tr2, p) outputs (idc, e) where e is an evi-
dence that idc withdrew the coin c.

The intuition is: if the attacker can provide two
transactions tr1, tr2 such that TDSI(tr1, tr2) re-
turns a client’s identity (that is, the two different
valid transactions involve same coin), then it was
able to forge (at least) one transaction since the
honest client performs (at most) one transaction
per coin.

If after observing a transaction executed by
a client idc, the attacker can provide a different

valid transaction which involves the same coin,
and the required data p, then the test will re-
turn the identity idc with the necessary evidence,
thus the property will be violated. Similarly, in
the case where the attacker can forge a coin with-
drawal and payment seems to be made by a client
idc, then the attacker can obtain to transactions
satisfying the required conditions, together with
the necessary data p, so that the test will return
the identity idc with an evidence.

Note that, Double Spending Identification and
Exculpability are only relevant in case of off-line
e-cash systems where double spending might be
possible.

Example 3 (Real cash) As Double Spending
Identification is not ensured in real cash, excul-
pability is not relevant: any client that posses a
counterfeit banknote can plausibly deny that he
produced this note.

3.2 Privacy Properties

We express our privacy properties as observa-
tional equivalence, a standard choice for such
kind of properties. We use the labeled bisimilar-
ity (≈l) to express the equivalence between two
processes (AF01). Informally, two processes are
equivalent if an attacker interacting with them
observer has no way to tell them apart.

To ensure the privacy of the client, the follow-
ing two notions have been introduced by cryp-
tographers and are standard in the literature
e.g., (CG08; Fer94; Sch97).

1. Weak Anonymity : the attacker cannot link a
client to a spend, i.e., he cannot distinguish
which client makes the payment.

2. Strong Anonymity : additionally to weak
anonymity, the attacker should not be able to
decide if two spends were done by the same
client, or not.

In (CG08), Weak Anonymity is defined as the fol-
lowing game: two honest clients each withdraw a
coin from the bank. Then one of them (randomly
chosen) spends his coin to the adversary. The ad-
versary already knows the identities of these two
clients, and also the secret key of the bank. It
wins the game if it guesses correctly which client
spends the coin. Inspired by this definition, we
define Weak Anonymity in the applied π-calculus
as follows:

Definition 6 (Weak Anonymity) An e-cash
protocol ensures Weak Anonymity if for any
e-cash instance CP, any two honest Clients idc1,

5



idc2, any corrupted Seller ids, we have that:
CPI [Cσidc1σc1σids|Cwσidc2σc2 |Scσids|Bc] ≈l

CPI [Cwσidc1σc1 |Cσidc2σc2σids|Scσids|Bc], where
c1, c2 are any two coins (not previously known
to the attacker) withdrawn by idc1 and idc2
respectively, I = {idc1, idc2, ids, idB}, idB is the
bank’s identity, and Cw is a variant of C that
halts at the end of the withdrawal phase.

Weak anonymity ensures that a process in which
the client idc1 spends the coin c1 to the corrupted
seller ids1, is equivalent to a process in which the
client idc2 spends the coin c2 to the corrupted
seller ids1. We assume a corrupted bank repre-
sented by Bc. Note that the client that does not
spend his coin still withdraws it. This is neces-
sary since otherwise the attacker could likely dis-
tinguish both sides during the withdrawal phase,
as the bank is corrupted and typically the client
reveals his identity to the bank at withdrawal so
that his account can be charged. We also note
that we do not necessarily consider other cor-
rupted clients, however this can easily be done
by replacing some honest clients from the con-
text CPI (i.e., other than idc1 and idc2) with
corrupted ones.

Example 4 (Real cash) Real coins ensure
weak anonymity as two coins (assuming the
same value and production year) are indistin-
guishable. However, banknotes do not ensure
weak anonymity according to our definition,
as they include serial numbers. Since the two
clients withdraw a note each, the notes hence
have different serial numbers which the bank can
identify. In reality this is used by central banks
to trace notes and detect suspicious activities
that, e.g., could hint at money laundering. Note
however that banknotes ensure a weaker form of
anonymity: if two different clients use the same
note, one cannot distinguish them.

Strong Anonymity is defined in (CG08) using
the same game as for Weak Anonymity, with the
difference that the adversary may have previously
seen some coins being spent by the two honest
clients explicitly mentioned in the definition. We
define Strong Anonymity as follows:

Definition 7 (Strong Anonymity) An e-cash
protocol ensures Strong Anonymity if for any e-
cash instance CP, any two honest clients idc1,

idc2, any corrupted seller ids, we have that:

CPI [|0≤i≤m1
Cσidc1σci1σids|0≤i≤m2

Cσidc2σci2σids|
Cσidc1σc1σids|Cwσidc2σc2 |Scσids|Bc] ≈l

CPI [|0≤i≤m1Cσidc1σci1σids|0≤i≤m2Cσidc2σci2σids|
Cwσidc1σc1 |Cσidc2σc2σids|Scσids|Bc]

where c1 and c11 . . . c
m1
1 are any coins withdrawn

by idc1, c2 and c12 . . . c
m2
2 are any coins with-

drawn by idc2, I = {idc1, idc2, ids, idB}, idB is
the bank’s identity, and Cw is a variant of C that
halts at the end of the withdrawal phase.

Strong Anonymity ensures that the process in
which the the client idc1 spends m1 + 1 coins,
while idc2 spends m2 coins and additionally with-
draws another coin without spending it, is equiva-
lent to the process in which the client idc1 spends
m1 coins and withdraws an additional coin, while
idc2 spends m2 + 1 coins. The definition assumes
that the bank is corrupted, and that the seller
receiving the coins from the two clients idc1 and
idc2 is also corrupted. Note that, we consider Cw

to avoid distinguishing from the number of with-
drawals by each client.

Again, we can replace some honest clients
from CPI by corrupted ones.

Example 5 (Real cash) Again, real coins en-
sure strong anonymity as, assuming the same
value and production year, two coins are indis-
tinguishable. Yet, for the same reason as in
weak anonymity, banknotes do not ensure strong
anonymity according to our definition: the serial
numbers allow an attacker to identify the different
clients.

We note that any protocol satisfying Strong
Anonymity also satisfies Weak Anonymity, as
Weak Anonymity is a special case of Strong
Anonymity for m1 = m2 = 0, i.e. when the two
honest clients do not make any previous spends.

4 Case Study: Chaum’s Protocol

David Chaum proposed the first (on-line) e-
cash system in (Cha83) based on blind signatures,
and an off-line variant of the protocol is proposed
in (CFN90). A real implementation based on
these two variants, allowing users to make pur-
chases over open networks such as the Internet,
was put in service by DigiCash Inc. The corpora-
tion declared bankruptcy in 1998, and was sold to
Blucora3 (formerly Infospace Inc.). The on-line

3http://www.blucora.com/

6



protocol implemented by DigiCash is presented
in (Sch97).

In the following, we describe and analyze both
the on-line and the off-line variants of the proto-
col, as well as, the on-line protocol implemented
by DigiCash. For this we use ProVerif an auto-
matic tool that verifies cryptographic protocols.
All the verification presented in the paper are car-
ried out on a standard PC (Intel(R) Pentium(R)
D CPU 3.00GHz, 2GB RAM).

4.1 Chaum’s On-line Protocol

The Chaum On-line Protocol was proposed
in (Cha83) and detailed in (CFN90). It allows a
client to withdraw a coin blindly from the bank,
and then spend it later in a payment without be-
ing traced even by the bank. The protocol is “on-
line” in the sense that the seller does not accept
the payment before contacting the bank to verify
that the coin has not been deposited before, to
prevent double spending. We start by giving a
description of the protocol.

Withdrawal Phase: To obtain an electronic
coin, the client communicates with the bank using
the following protocol:

1. The client randomly chooses a value x, and a
coefficient r, the client then sends to the bank
his identity u and the value b = blind(x, r),
where blind is a blinding function.

2. The bank signs the blinded value b using a
signing function sign and his secret key skB,
then sends the signature bs = sign(b, skB) to
the client. The bank also debits the amount
of the coin from the client’s account.

3. The client verifies the signature and removes
the blinding to obtain the bank’s signature
s = sign(x, skB) on x. The coin consists of
the pair (x, sign(x, skB)).

Payment (and deposit) Phases: To spend
the coin

1. The client sends the pair (x, sign(x, skB)) to
the seller.

2. After checking the bank’s signature, the seller
sends the coin (x, sign(x, skB)) to the bank
to verify that it is not deposited before.

3. The bank verifies the signature s, and that
the coin is not in the list of deposited coins.
If these checks succeed the bank credits the
seller’s account with the amount of the coin

and informs him of acceptance. Otherwise,
the payment is rejected.

Modeling in ProVerif We use ProVerif to
perform the automatic protocol verification.
ProVerif uses a process description based on the
applied π-Calculus, but has syntactical exten-
sions and is enriched by events to check reach-
ability and correspondence properties. Besides,
it can check equivalence properties. As explained
above, we model privacy properties as equivalence
properties, and we use events to verify the other
properties.

The equational theory depicted in Table 1
models the cryptographic primitives used within
Chaum on-line protocol. It includes well-
known model for digital signature (functions
sign, getmess, and checksign). The functions
blind/unblind are used to blind/unblind a mes-
sage using a random value. We also include the
possibility of unblinding a signed blinded mes-
sage, so that we obtain the signature of the mes-
sage – the key feature of blind signatures.

getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), k), r) = sign(m, k)

Table 1: Equational theory

Analysis The result of the analysis is summa-
rized in Table 2.

We model Unforgeability as an injective corre-
spondence between the two events withdraw and
spend, they are placed in their appropriate posi-
tion, according to the Def. 3, inside the bank and
seller processes respectively. We consider a hon-
est bank and honest seller but corrupted client.
We assume that the bank sends an authenticated
message through private channel to inform the
seller about a coin acceptance. Otherwise, the at-
tacker can forge a message which leads the seller
to accepting an already deposited coin. However,
ProVerif still finds an attack against Unforgeabil-
ity when two copies of the same coin spent at
the same time. In this case the bank makes two
parallel database lookups to check if the coin was
deposited before. If the parallel deposit was not
finished yet and thus the coin is not yet inserted
in the database, then each lookup confirms that
the coin was not deposited before which results in
acceptance of two spends of the same coin. This
attack may be avoided with some synchronization

7



Property Result Time

Unforgeability × < 1s

Weak Anonymity X < 1s

Strong Anonymity X < 1s

Table 2: Analysis of the Chaum on-line protocol.
A X indicates that the property holds. A × indi-
cates that it fails (ProVerif shows an attack).

like locking the table when a coin deposit is ini-
tiated and then unlocking it when the operation
is finished. ProVerif does not support such an
feature. Protocols that rely on state could be an-
alyzed using the Tamarin Prover4 thanks to the
SAPIC5 tool (we keep this for future work.).

Note that corrupted clients cannot create a
fake coin as the correspondence holds without in-
jectivity.

Double Spending Identification and Exculpa-
bility are not relevant in the case of on-line pro-
tocols as their countermeasure against double
spending is the on-line calling of the bank at pay-
ment, and thus they do not have any kind of test
to identify double spenders.

For privacy properties, we assume a corrupted
bank and a corrupted seller, but honest clients.
ProVerif confirms that the privacy of the client is
preserved, as both Weak Anonymity, and Strong
Anonymity are satisfied. This due to the fact that
the coin is signed blindly during the withdrawal
phase, and thus cannot be traced later by the
attacker even when colludes with the bank and
the seller. Note that, for Strong Anonymity, we
consider an unbounded number of spends by each
client and one spend that is made by either the
first client or by the second one.

4.2 DigiCash On-line Protocol

The on-line protocol implemented by DigiCash
Inc. is outlined in (Sch97). It has the same with-
drawal phase as Chaum on-line protocol, except
that the client sends an authenticated coin to be
signed by the bank, however the paper does not
specify the way of authentication. We ignore this
authentication as its purpose is to ensure that the
bank debits the correct client account. Hence, we
believe that it does not effect the privacy and un-
forgeability properties (analysis confirms that as
we can see in Table 2). The payment and deposit

4http://www.infsec.ethz.ch/research/software/
tamarin.html

5http://sapic.gforge.inria.fr/

Property Result Time

Unforgeability × < 1s

Weak Anonymity X < 1s

Strong Anonymity X < 1s

Table 3: Analysis of DigiCash on-line protocol.
A X indicates that the property holds. A × indi-
cates that it fails (ProVerif shows an attack).

phases are different from those of Chaum on-line
protocol. They are summarized as follows:

Payment (and deposit) Phases in DigiCash:

1. The client sends to the seller pay =
enc((ids, h(pay-spec), x, sign(x, skB)), pkB)
which is the encryption, using the public key
of the bank pkB , of the seller’s identity ids,
hash of the payment specification pay-spec
(specification of the sold object, price etc),
and the coin (x, sign(x, skB)).

2. The seller signs (h(pay-spec), pay) and sends
it along with his identity ids to the bank.

3. The bank verifies the signature, decrypts pay
then verifies the value of h(pay-spec) and that
the coin is valid and not deposited before. If
so it informs the seller to accept the coin, and
to reject it otherwise.

Modeling in ProVerif Additionally to the
equational theory of the Chaum on-line protocol
(Table 1), the equational theory of DigiCash on-
line protocol includes well-known model of the
public key encryption represented by the follow-
ing equation: dec(enc(m, pk(k)), k) = m.

Analysis The result of analysis of DigiCash on-
line protocol using ProVerif is summarized in Ta-
ble 3. ProVerif shows the same results as obtained
for Chaum on-line protocol. Namely, it shows
that Weak Anonymity, and Strong Anonymity
are satisfied, and it outputs the same attack
presented in Section 4.1 against Unforgeability.
Again Double Spending Identification and Excul-
pability are not relevant.

Note that, obtaining the same result for the
two protocols, even that they have different pay-
ment and deposit phases, confirms that the blind-
ing signature used during the withdrawal phase
plays the key role in preserving the privacy of the
client, as claimed by David Chaum.

8



4.3 Chaum’s Off-line Protocol

The off-line variant of the Chaum protocol is pro-
posed in (CFN90). It removes the requirement
that the seller must contact the bank during ev-
ery payment. This introduces the risk of double
spending a coin by a client.

Withdrawal Phase: to obtain an electronic
coin, the client randomly chooses a, c and d,
and calculates the pair H = (h(a, c), h(a⊕ u, d)),
where u is the client identity and h is a hash func-
tion. The client then proceed as in the Chaum
on-line protocol but with x (the potential coin)
replaced by the pair H. Namely, the client blinds
the pair H and sends it to the bank. Then the
bank signs and returns it to the client. The main
difference from the Chaum on-line protocol is that
the coin has to be of the following form

(h(a, c), h(a⊕ u, d))

where the client identity is masked inside it. This
aims to reveal the identity if the client later dou-
ble spends the coin. In order for the bank to be
sure that the client provides a message of the ap-
propriate form, Chaum et al. used in (CFN90)
the well known “cut-and-choose” technique. Pre-
cisely, the client computes n such a pair H where
n is the system security parameter. The bank
then selects half of them and asks the client to
reveal their corresponding parameters (a, b, c and
r). If n is large enough the client can cheats with
a low probability.

At the end of this phase the client holds the
electronic coin composed of the pair H, and the
bank’s signature S = sign(H, skB). The client
also has to keep the random values a, c, d which
are used later to spend the coin.

Payment Phase:

1. To make the payment, the client presents the
pair H and the bank’s signature S to the
seller. The seller checks the signature, if it is
correct then he chooses and sends a random
binary bit y, a challenge, to the client. The
client returns to the seller:

• The values a and c if y is 0.

• The values a⊕ u and d if y is 1.

2. The seller checks the compliance of the values
sent with the pair H. If everything (the sig-
nature and the values) is correct, the payment
is accepted.

At the end of the payment phase, the seller holds
the pair H, the signature S, the values of either
(a, c) or (a⊕ u, d), and the challenge y. All these
data together compose the transaction the seller
has to present to the bank at deposit.

Note, in case where n pairs are used for the
coin, the challenge y will be n bit string and for
each bit either the corresponding values of (a, c)
or (a⊕ u, d) are revealed to the seller.

Deposit Phase:

1. The seller contacts the bank and provides it
with the transaction (H, S, y, (a, c)) or (H,
S, y, (a⊕ u, d)).

2. The bank checks the signature and also
whether the values (a, c) or (a ⊕ u, d) corre-
spond to their hash value in H. If any of these
values is incorrect, the fault is on the seller’s
part, as he was able to independently check
the regularity of the coin at payment. If the
coin is correct, the bank checks its database to
see whether the same coin had been used be-
fore. If it has not, the bank credits the seller’s
account with the appropriate amount. Other-
wise, the bank rejects the transaction.

Chaum off-line protocol does not prevent double
spending, however it preserve client’s anonymity
only if he spend a coin once.

Note that, a double spender can be identified
when the coin has the form (h(a, c), h(a ⊕ u, d)).
However, the bank can simulate the coin with-
drawal and payment (as the bank knows the iden-
tities of all the clients), thus the bank can blame
a honest client for double spending. As a coun-
termeasure, the authors propose to concatenate
two values z and z′ with u inside the pair H to
have (h(a, c), h(a ⊕ (u, z, z′), d)) and provide to
the bank, at withdrawal, additionally the client’s
signature on h(z, z′).

Modeling in ProVerif To mode the Chaum
off-line protocol in ProVerif, in addition to the
equational theory used for the Chaum on-line pro-
tocol (Table 1), we use the function xor to repre-
sent the exclusive or (⊕) of two values. Given the
first value, the second value can be obtained using
the function unxor . Such an – admittedly limited
– modeling for ⊕ operator is sufficient to catch
the functional properties of the scheme required
by Chaum off-line protocol, but does not catch
all algebraic properties of this operator. How-
ever, there are currently no tools that support
observational equivalence – which we need for the

9



anonymity properties – and all algebraic proper-
ties of ⊕. Kuesters et al. (KT11) proposed a way
to extend ProVerif with ⊕. Their tool translates
a model of the protocol to a ProVerif input where
all ⊕ are ground terms to enable automated rea-
soning. However, this tool can only deal with se-
crecy and authentication properties, and does not
support equivalence properties. The xor function
is only used to hide the client’s identity u us-
ing a random value a (a ⊕ u), which we model
as xor(a, u). The bank then uses a to reveal the
client’s identity u if he double spends a coin. This
is modeled by the following two equations

unxor(xor(a, u), a) = u

unxor(a, xor(a, u)) = u

which represents the various ways: ((a⊕u)⊕a) =
u, or (a ⊕ (a ⊕ u)) = u. We always assume that
identity is the second value, and this is how we
model it inside honest processes.

Analysis As expected ProVerif confirms that
Unforgeability is not satisfied, a corrupted client
can double spend a coin. In fact the seller cannot
know whether a certain coin is already spent or
not, he accepts any coin that is certified by the
bank. However, a collusion between the client
and the attacker cannot lead to forging a coin.

In case of double spending, the bank
may receive two transactions of the form
tr1 = (h, hx, sign((h, hx), skB), 0, a, c) and tr1 =
(h, hx, sign((h, hx), skB), 1, xor(a, u), d). The
bank can apply a test to obtain the identity
u. This is done using the unxor function as
unxor(xor(a, u), a) = u. The evidence here is
showing that the identity of the client is masked
inside the coin. This can be done thanks to
the values of (a, c, xor(a, u), d) which are initially
known only to the client. Spending the coin only
once reveals either (a, c) or (xor(a, u), d) which
does not allow to obtain the identity u. Note
that, if the two sellers provide the same challenge,
the two transactions will be exactly equal. In
this case no double spending is detected, and the
second transaction will be rejected by the bank
which considers it as a second copy of the first
transaction. In practice this can be avoided with
high probability if n pairs coin is used and thus
n bits challenge. Note that ProVerif consider all
the possibilities.

We model the output of an identity and an ev-
idence of the test TDSI by an emission of the event
OK, and event KO otherwise. To say that Double
Spending Identification is satisfied we should have

Property Result Time

Unforgeability × <1s

Double Spending Identif. × <2s

Double Spending Identif.∗ X <2s

Exculpability∗ × < 6s

Exculpability† X < 6s

Weak Anonymity X <1s

Strong Anonymity X <1s

Table 4: Analysis of Chaum off-line protocol.
A X indicates that the property holds. A × indi-
cates that it fails (ProVerif shows an attack).
(∗) Only coins with the appropriate form are con-
sidered. (†) After applying the countermeasure.

that the test TDSI does not emit the event KO for
every two valid transactions tr1, tr2 that are dif-
ferent but involves the same coin, i.e., it always
emits event OK for such transactions. ProVerif
shows that the test can emit the event KO for
certain two transactions satisfy the required con-
ditions. Actually, a corrupted client can with-
draw a coin that does not have the appropriate
form (e.g., client’s identity is not masked inside
it), thus the bank cannot obtain the identity in
case of double spending. Note that, if the bank
only certifies coins with the appropriate form at
withdrawal (i.e., of the form (h(a, c), h(a⊕u, d))),
then the property holds, ProVerif confirms that.
Again, in practice applying the “cut-and-choose”
technique can guarantee with high probability
that the coin is in the appropriate form. How-
ever, applying this technique using Proverif does
not make any difference since ProVerif works un-
der symbolic world which deals with possibilities
and not with probabilities. For instance, the at-
tacker still can guess the pairs that the bank will
request to reveal and construct them in the ap-
propriate form, but cheat with the others which
will compose the coin. We analyze Exculpabil-
ity in case where only coins of appropriate forms
are considered i.e., the case where Double Spend-
ing Identification holds. ProVerif confirms that a
corrupted bank can blame a honest client. The
bank can simulate the withdrawal and the pay-
ment since the bank knows the identity of the
client. Thus it can obtain two transactions satis-
fying the required conditions. This is due to the
fact that the evidence obtained by the test, which
is showing that the client’s identity is masked in-
side the coin, is not strong enough to act as a
proof. However, the attacker cannot re-spend a
coin withdrawn and spent by a honest client.

10



After applying the countermeasure that is in-
cluding some terms z and z′ so that the client
signs h(z, z′), ProVerif confirms that Exculpability
holds. Applying the countermeasure results in a
new test which takes, in addition to the two trans-
actions, the client’s signature on h(z, z′). The test
shows, in case of double spending, that the iden-
tity u and the preimage (z, z′) of the hash signed
by the client are masked inside the coin. This rep-
resents a stronger evidence which acts as a proof
that the client withdrew the coin since the bank
cannot forge the client’s signature.

We note that, Ogiela et al. (OS14) show an at-
tack on Chaum’s off-line protocol: when a client
double spends a coin, the sellers can forge ad-
ditional transactions involving the same coin, so
that the bank cannot know how many transac-
tions are actually result from spends made by
the client and how many are forged by the sell-
ers. In such a case, according to our definition,
Unforgeability does not hold since the client has
to spend the coin at least twice. Yet, corrupted
sellers can blame a corrupted client who double
spends a coin for further spends. Moreover the
bank can still identify the client and punish him
as the bank can be sure that he at least spend the
coin twice.

Concerning privacy properties, ProVerif shows
that Chaum off-line protocol still satisfies both
Weak Anonymity and Strong Anonymity.

To sum up, ProVerif confirms the claim about
preserving client’s anonymity. ProVerif also was
able to show that a client can double spend a
withdrawn coin but cannot forge a coin, and that
the bank can identify the double spender if the
coin is in the appropriate form. ProVerif also
shows, in case of coin with appropriate form, that
the bank can simulate a withdrawal and pay-
ment, and thus can blame him for double spend-
ing. After applying the countermeasure no attack
against Exculpability is found.

5 Conclusion

E-cash protocols can offer anonymous elec-
tronic payment services. Numerous protocols
have been proposed in the literature, and mul-
tiple flaws were discovered. To avoid further bad
surprises, formal verification can be used to im-
prove confidence in e-cash protocols. In this pa-
per we developed a formal framework to auto-
matically verify e-cash protocols with respect to
multiple essential privacy and forgery properties.

Our framework relies on the applied π-calculus
and uses ProVerif as the verification tool. As a
case study, we analyzed the on-line protocol pro-
posed by Chaum et al. , as well as, a real im-
plementation based on it. We also analyze the
off-line variant of this system. We confirm some
claims and known weaknesses. We also identified
that some synchronization is necessary in case of
on-line protocols to prevent double spending.

As future work, we would like to investigate
further case studies and to extend our model to
cover transferable protocols with divisible coins.
Also we would like to use the tool SAPIC based
on Tamarin, in order to see how it can help to
analyze e-cash protocols.

REFERENCES

Sattar J. Aboud and Ammar Agoun. Analysis of
a known offline e-coin system. International
Journal of Computer Applications, 2014.

Masayuki Abe and Eiichiro Fujisaki. How to date
blind signatures. In Advances in Cryptology
- ASIACRYPT ’96, Korea, November 3-7,
1996, Proceedings, volume 1163, pages 244–
251. Springer, 1996.

Mart́ın Abadi and Cédric Fournet. Mobile values,
new names, and secure communication. In
The 28th Symposium on Principles of Pro-
gramming Languages, ACM, UK, 2001.

M. Backes, C. Hritcu, and M. Maffei. Automated
verification of remote electronic voting pro-
tocols in the applied pi-calculus. In CSF,
2008.

Bruno Blanchet. An efficient cryptographic pro-
tocol verifier based on prolog rules. In 14th
IEEE Computer Security Foundations Work-
shop (CSFW-14), Canada, 2001.

Stefan Brands. Untraceable off-line cash in wal-
lets with observers (extended abstract). In
Proceedings of the 13th Annual International
Cryptology Conference on Advances in Cryp-
tology, CRYPTO ’93, pages 302–318, Lon-
don, UK, UK, 1994. Springer-Verlag.

David Chaum, Amos Fiat, and Moni Naor. Un-
traceable electronic cash. In Advances in
Cryptology: Proceedings of CRYPTO ’88,
pages 319–327. Springer New York, 1990.

Sébastien Canard and Aline Gouget. Anonymity
in transferable e-cash. In Applied Cryptog-
raphy and Network Security, ACNS, USA,
pages 207–223, 2008.

11



Sébastien Canard, Aline Gouget, and Jacques
Traoré. Improvement of efficiency in (uncon-
ditional) anonymous transferable e-cash. In
Financial Cryptography and Data Security,
12th International Conference, FC, Mexico.
Springer, 2008.

David Chaum. Blind signatures for untraceable
payments. In Advances in Cryptology: Pro-
ceedings of CRYPTO ’82. Springer US, 1983.

Giovanni Di Crescenzo. A non-interactive elec-
tronic cash system. In Algorithms and Com-
plexity, Second Italian Conference, Italy, vol-
ume 778 of Lecture Notes in Computer Sci-
ence, pages 109–124. Springer, 1994.

Chang Yu Cheng, Jasmy Yunus, and Kamaruz-
zaman Seman. Estimations on the secu-
rity aspect of brand’s electronic cash scheme.
In 19th International Conference on Ad-
vanced Information Networking and Applica-
tions AINA, Taiwan, 2005.

I. B. Damg̊ard. Payment systems and cre-
dential mechanisms with provable security
against abuse by individuals. In Proceedings
on Advances in Cryptology, pages 328–335.
Springer-Verlag, 1990.

Stefano D’Amiano and Giovanni Di Crescenzo.
Methodology for digital money based on gen-
eral cryptographic tools. In Advances in
Cryptology - EUROCRYPT ’94, Workshop
on the Theory and Application of Crypto-
graphic Techniques, Italy. Springer, 1994.

Jannik Dreier, Rosario Giustolisi, Ali Kassem,
Pascal Lafourcade, Gabriele Lenzini, and Pe-
ter Y. A. Ryan. Formal analysis of electronic
exams. In SECRYPT, Austria, 2014, pages
101–112, 2014.

S. Delaune, S. Kremer, and M.D. Ryan. Verify-
ing privacy-type properties of electronic vot-
ing protocols. Journal of Computer Security,
17(4):435–487, jul 2009.

J. Dreier, P. Lafourcade, and Y. Lakhnech. A for-
mal taxonomy of privacy in voting protocols.
In ICC, pages 6710–6715, 2012.

Jannik Dreier, Pascal Lafourcade, and Yassine
Lakhnech. Formal verification of e-auction
protocols. In Principles of Security and
Trust, POST, pages 247–266. Springer, 2013.

D. Dolev and Andrew C. Yao. On the security
of public key protocols. Information Theory,
IEEE Transactions on, 29(2):198–208, 1983.

Niels Ferguson. Single term off-line coins. In Ad-
vances in Cryptology, Lecture Notes in Com-

puter Science - EUROCRYPT ’93, volume
765, pages 318–328. Springer-Verlag, 1994.

Chun-I Fan, Vincent Shi-Ming Huang, and Yao-
Chun Yu. User efficient recoverable off-line
e-cash scheme with fast anonymity revok-
ing. Mathematical and Computer Modelling,
2013.

Sangjin Kim and Heekuck Oh. Making electronic
refunds reusable, 2001.

Ralf Küsters and Tomasz Truderung. Reducing
protocol analysis with xor to the xor-free case
in the horn theory based approach. Journal
of Automated Reasoning, 2011.

Zhengqin Luo, Xiaojuan Cai, Jun Pang, and
Yuxin Deng. Analyzing an electronic cash
protocol using applied pi calculus. In Applied
Cryptography and Network Security, 5th In-
ternational Conference, ACNS, China, 2007.

Tatsuaki Okamoto and Kazuo Ohta. Dis-
posable zero-knowledge authentications and
their applications to untraceable electronic
cash. In Proceedings on Advances in Cryptol-
ogy, CRYPTO ’89, pages 481–496. Springer-
Verlag New York, Inc., 1989.

Marek R. Ogiela and Piotr Sulkowski. Improved
cryptographic protocol for digital coin ex-
change. In Soft Computing and Intelligent
Systems (SCIS), pages 1148–1151, 2014.

Birgit Pfitzmann, Matthias Schunter, and
Michael Waidner. How to break another
provably secure payment system. In EU-
ROCRYPT ’95, International Conference on
the Theory and Application of Cryptographic
Techniques, France, pages 121–132, 1995.

Birgit Pfitzmann and Michael Waidner. How to
break and repair A ”provably secure” un-
traceable payment system. In CRYPTO ’91,
11th Annual International Cryptology Con-
ference, USA, pages 338–350, 1991.

Berry Schoenmakers. Basic security of the
ecash payment system. In In Applied
Cryptography, Course on Computer Security
and Industrial Cryptography, pages 201–231.
Springer-Verlag, LNCS, 1997.

Aye Thandar Swe and Khin Khat Khat Kyaw.
Formal analysis of secure e-cash transaction
protocol. In International Conference on Ad-
vances in Engineering and Technology, Sin-
gapore, 2014.

12


