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Abstract

The purpose of this article is to generalize the following results existing
respectively in ([6], [8]) and in [7] to Riemannian foliations with dense leaves on
a compact manifold:

i) If F is a Lie G-foliation with dense leaves on a compact manifold, then
there exists a biunivocal correspondence between the Lie subalgebras of G =
Lie (G) and F extensions,

it) if F is an extension of a Lie G-foliation with dense leaves on a compact
manifold corresponding to a subalgebra H of G and ¢(M, Fy) the Lie algebra
of Fj;—foliated transverse vectors fields then we have

(M, Fr)) = {u € H*/[u,h] =0 for every h € H}.

Let G be a Lie simply connected group and let G = Lie (G) be the struc-
tural Lie algebra of a Riemannian foliation F with dense leaves on a compact
manifold.

This study show us that there exists a discreet group Hy and a representation
p:Hy— Diff (V) where V is an open of G such as:

i) there exists a biunivocal correspondence between the Lie subalgebras of
G = Lie (G) invariant by Ad, (,))-1, for every (a,v) € Ho x V and extensions
of F,

it) if Fp is an extension of F corresponding to a subalgebra H of G then we
have

UM, Fr) = {u € H" /¥ (h,a,v) € HxHoxV, [u,h] =0 and Ad, (-1, (u) = u}.

Keywords: Lie foliation, Riemannian foliation, foliation with dense leaves,
extension of a foliation.



1 Introduction

The purpose of this article is to generalize the following results existing respec-
tively in ([6],[8]) and in [7] to Riemannian foliations with dense leaves on a
compact manifold:

i) If F is a Lie G-foliation with dense leaves on a compact manifold, so it
exists a biunivocal correspondence between the Lie subalgebras of G = lie (G)
and F extensions,

ii) if Fp is an extension of a Lie G-foliation with dense leaves on a compact
manifold corresponding to a subalgebra H of G and ¢(M, Fy) the Lie algebra
of Fp—foliated transverse vectors fields then we have

(M, Fr)) = {u € H*/[u,h] = 0 for every h € H}.

To achieve there, we first established that the closure of a leaf F? of lifted
foliation F? on the orthonormal transverse frame bundle M? of a Riemannian
foliation F with dense leaves on a compact manifold is a covering of the manifold
M.

We note that the fact that F¥ is a covering of the manifold M entails that
the dimension of the Lie structural algebra of a Riemannian foliation F on a
compact manifold which is less than or equal to the codimension of the foliation
F. And this allows us to say that we should limit the classification of Molino
in codimension 1, 2 and 3 of Riemannian foliation on a compact manifold [12]
to only a few cases of this classification. o

We note by Hy the structure group of covering ¢ : F4 — M. And, Hy will
be called the discreet goup of Riemannian foliation F on a compact manifold
with dense leaves. B

That said, we show in this paper that if G is the Lie structural algebra of a
Riemannian foliation with dense leaves (M, F) on a compact manifold M there
exists a representation p : Hy — Dif f (V') where V is an open of G such as:

i) there exists a biunivocal correspondence between the Lie subalgebras of
G = Lie (@) invariant by Ad, (,))-1., for every (a,v) € Hy x V and F exten-
sions,

i1) an extension is a Lie foliation if the subalgebra corresponding is an ideal
of G,

iii) every extension F' of F is a Riemannian foliation and there exists a
common bundle-like metric for the foliations F and F’,

i) if Fp is an extension of F corresponding to a subalgebra H of G then to
isomorphism nearly of Lie algebras we have

UM, Fre) = {u € H" /¥ (h,a,v) € HXHoxV, [u,h] =0 and Ad(, (-1, (u) =u}.
In particular
UM, F) ={ueG/V(a,v) € HoxV, Ad(, (,))-1., (u) =u}.

Our paper is divided into two parts:



-the first part is devoted to reminders on Riemannian foliations and on ex-
tensions of foliations,

- the second part is devoted to the establishment of the already stated pri-
mary outcome.

In all that follows, the manifolds considered are supposed connected and
differentiability is C°.

2 Definitions and Reminders

In this section, in the direction that is helpful, we reformulate some existing
definitions and theorems in ([4], [6], [7], [8],[10] [11], [12], [13]).

Definition 2.1 Let M be a manifold.

An extension of a codimension q foliation (M,F) is a codimension q' fo-
liation (M,F') such that 0 < ¢ < q and (M,F’) leaves are (M,F) leaves
meetings ( it is noted F C F').

We show that if (M,F’) is a simple extension of a simple foliation (M, F)
and if (M, F) and (M, F’) are defined respectively by submersions 7 : M — T
and 7' : M — T”, then there exists a submersion 6 : T' — T’ such that 7’ = fo.

We say that the submersion 6 is a bond between the foliation (M,F) and
its extension foliation (M, F’).

It is shown in [6] that if the foliation (M,F) and its extension (M,F’) are
defined respectively by the cocycles (U,, f;, 1,7, )ier and (U,, f/,T", 7, )ics then
we have

fl=0;0f; and ’yij 0f; = Gioyu

where 605 is a bond between the foliation (U,,F) and its extension foliation

(Us, F').

Definition 2.2 Let F; be a codimension q foliation on a manifold M.

A flag of extensions of F, is a sequence Dﬁq = (Fg-1, Fg—2, -, Fr) of
foliations on the manifold M such that Fy C Fy—1 C Fy—2 C ... C F and each
foliation Fs is a codimension s foliation.

For k = 1, the flag of extensions Dﬁq will be called complete and will be
denoted D .

If each foliation Fs is a Riemannian foliation, the flag of extensions Dii_’q
will be called flag of Riemannian extensions of F.

The following theorem is the biunivocal correspondence theorem between Lie
subalgebras of G =Lie (G) and the extensions of a Lie G—foliation with dense
leaves existing in [8].

Theorem 2.3 [8] Let (M, F) be a Lie G-foliation with dense leaves on compact
connected manifold and let G be the Lie algebra of G.
Then:



1-There exists a biunivocal correspondence between the Lie subalgebras of G
(or if you prefer between the connected Lie subgroups of G) and extensions of
F.

2- An extension of F is a Riemannian %—foliatz’on having trivial normal
bundle and defined by a 1-form with values in %

3- An extension of F is transversely homogeneous (resp. Lie ) if and only
if the Lie subgroup of G corresponding is a closed subgroup (resp. Normal sub-

group) in G.

In [7] was calculated ¢(M, Fp) where Fy, is the extension of a Lie G—foliation
with dense leaves on a compact manifold corresponding to a Lie subalgebra H
of G. This calculation gave us the following result:

Theorem 2.4 [7] Let H be a Lie subalgebra of Lie algebra G of a Lie foliation
F with dense leaves on a compact manifold, let w be a 1-form of Fedida defining
F and let Fy be the extension of F corresponding to 'H.
Then:
i)
((M7 ]:H) = hQ’Hg(M’ .7:<h>)

where F<p> s the extension of F corresponding to the Lie subalgebra < h >
of G generated by h.

w (U(M, Fy)) C H*
where H* is the ortho-complementary of H in G by the transverse metric asso-

ciated with F.
i11) For h € G,

WM, Feps)) ={ue<h>t/ [u,h] =0 }.

iv)
w(l(M, Fr)) ={u € H/[u,h] =0 for every h € H}.

The theorem and the three following proposals allow us to give a generaliza-
tion of the previous two theorems for Riemannian foliations with dense leaves
on a compact manifold .

Theorem 2.5 [7] Let F be a Lie G—foliation with dense leaves on a compact
manifold M, let A be a metric on M which is bundle-like for F and which admits
A, as its associated transverse metric and let X be a F—transverse foliated
vectors field.

Then:

i) for every point a € M there exist an open F-distinguished Vy, of M contain-
ing the point a such that the restriction Xy, of X at 'V, is a local F-transverse
Killing vectors field,

i) any vectors field left invariant of G is a Killing vectors field for the F-
transverse metric A, left invariant,



iii) in the case where G is connected, the right translation R, associated with
the element a € G is an isometry for the metric A, left invariant.

Proposition 2.6 [7] Let F' be an extension of a Riemannian foliation F' on
a manifold M.
Then ¢(M,F") C £(M,F").

Proposition 2.7 [12] Let F be a codimension q Riemannian foliation on a
compact connected manifold M, let F% be the closure of a leaf F* of lifted foliation
Fb of F on the orthonormal transverse frame bundle M, let ¢:M" — M be the
projection which to a frame at x associates x.

Them: L

i) ¢ (F%) is a leaf of F and ¢ (Fh) = ¢ (FY),

i) the map ¢ : Fi— 10} (ﬁ) s a locally trivial fibration.

Proposition 2.8 [12] Let (M, \) be a Riemannian connected manifold and let
K (M, X) be a Lie algebra of Killing vectors field on (M, ).

Then the orbits of KK (M, X) having mazimal dimension form an open dense
m M.

3 Riemannian foliation with dense leaves on a
compact manifold

In what follows G is a Lie group of Lie algebra G, X" (resp. X' ) is the vectors
field on G right (resp. Left) invariant obtained from X € G and L, (resp. R, )
is the left (resp. right) translation associated with a € G.

Proposition 3.1 Let (M, \) be a Lie algebra of Killing vectors fields on a
Riemannian connected manifold (M, X), let iy, = {X € K(M,\) /X, =0} be
the isotropy of KL (M, \) at the point x € (M, ), let O, be the orbit at the point
x of KK (M, \) and let Oy, ) be the orbit at the point x € (M, \) of the isotropy
iz, where xo € (M, \).

If for x € (M, \), all orbits O, have the same dimension then Oy, ») = {x}
Jor every (zo,z) € (M, \)*.

Proof . Let z € (M, ). We have dimi, = dim K (M, \) — dim O,.

As all orbits O, have the same dimension then dimi, = dimi, for every
ye (M,N).

We note before continuing that i, is a Lie subalgebra of Killing vectors fields
of K (M, ).

Let xg € (M, \) and let i(,, ,) be the isotropy at the point = of is,.

We know [12] there exists an open neighborhood Uy, of 2 such as if 2’ € Uy,
then i, .1y = i, that is to say the isotropy at the point 2’ of i,, is equal to
the isotropy at the point 2’ of K (M, \) for every o’ € U,,. For proof we assume



that (ki ko, ve., by k) Ky ooy K
base of i,.

For every j € {1,...,s}, K} (x0) # 0. Hence there exists an open Uy, contain-
ing z¢ such as for every 2’ € U, and for every j € {1,...,s}, K} (z') # 0.

Let x € U, and let Y € i . there exists two finite sequences (yj)1<j<r and

) is a base of K (M, \) such as (ki, ks, ..., k) is a

T S
(y;)1gjgs of real numbers such that Y = Zyj.k'j + Zy;kg
=1 =1

We have Zyj.kj () + Zyjk; (z) = 0 because Y € 1.
=1 =1

Quits to reorder the base of vectors fields (k1, k2, ..., k) of i,, we can assume
that there exists ' € {0,1,...,r} such as k; (x) # 0 for j <" and k; (z) = 0 for
r+1<j5<r.

Thus, the fact that Y € i, implies that Zyj.kj () + Zyék; () =0 (x).

j=1 j=1

As kj(z) # 0 for j < r" and K} (x) # 0 and (ky, ko, ..., ks, ki, Ky, .. kL) is a
free system of vectors fields of I (M, ) then (k (z), ...,k (2), k] (z), ..., kL (x))
form a free system. Therefore the equality () shows that y; = 0 for j <" and
y; = 0 for every j.

It follows from this that the equality ¥ = Zyj.kj + Zyék:; implies that
j=1 j=1

Y = Z y;.k;. Therefore Y € iy, and iy C iy,.
Jj=r'+1

The constancy of the dimension of i, for all y € (M, \) implies that i = ig,.

Thus for any = € Uy, t(z9,0) = Iz = iz, and the orbit O, ) of iy, at the
point z is the point z.

We know that ([14],[12]) the orbits of Lie algebra of Killing vectors fields
on Riemannian connected manifold V' having maximal dimension form an open
dense in V. From where, the fact that the maximal dimension of the orbits of
iz, in the open Uy, is zero implies that Oy, o) = {z} for all z € (M, ). =

We note that this proposition means that when a Lie algebra of Killing
vectors fields K (M, \) on a connected Riemannian manifold (M, \) has his
orbits having the same dimension then the isotropy i, of K (M, \) at any point
x € (M, ) induces on (M, ) a null Lie algebra of Killing vectors fields.

That said, the previous proposition allows us to establish the following result:

Proposition 3.2 Let H be a closed Lie subgroup of a connected Lie group G,
let A be a metric on G left invariant, let G =Lie(G) and let H =Lie(H).

If X\ is invariant by right translations obtained from the elements of H then
the Lie subalgebra H is an ideal of G.

Proof . If the Lie group H is discreet, then H ={0}. And in this case H
is an ideal of G.
In what follows we assume that H is not discreet.



The Lie subgroup H is closed in the Lie group G. From where 7 : G — % is
a principal fibration having H for structure group. We note in passing that 7 is
a Riemannian submersion because the metric A left invariant on G is invariant
by right translations obtained from the elements of H.

Let « be the left Maurer Cartan form of G, let py; : G — H be the orthogonal
projection on H and let ayy = py o .

It is easy to see that ayy is a differential form on G with values in H.

Let a € H, let X € TG and let pyy. : G — H*L be the orthogonal projection
on H* where H* is the ortho-complementary of H in G.

‘We have

(Ryan) (X) = an (Re (X))
= proa(Ru (X))
= proAd,r (a(X))
= proAdy-1 (pr (@ (X)) +prr (@ (X))
= pu o Ady-1 0opy (a (X)) +pr o Ady-1 0 pyr (a (X))

We signal that for all a € H, H and H' are invariant by Ad,-1 because the left
invariant metric A is right invariant by translations obtained from elements of
H.

It follows from this that

proAdy-10py (a (X)) = Ady-10py (a (X)) and pyoAd,—10py (a (X)) =0.
Thus, we get that for all @ € H and for all X € TG,
(Riay) (X) = Ady-1 o pyy (@ (X)) = Ady-1 0 ag (X) .

And, this means that as is a connection on the principal bundle 7 : G — %

Let Fg.m be the foliation obtained by the left translations of H and let
(TFg.1)" be the orthogonal bundle of TF¢ p.

It is clear to see that (T.?’-"QH)l C keray. But dimkeray = dim & =
dim (T Fg.p) " so kerag, = (TFau)™

In what follows the transverse bundle V (Fg ) is identified to (T'Fg, ).

Above all, we note that H is not discreet then foliation F¢ g is not a foliation
by points.

Let G” be the Lie algebra of right invariant vectors fields of G and let H" be
the Lie subalgebra of right invariant vectors fields obtained from the vectors of
H.

Any vectors field u” € G" associated with the vector u € G commutes with
every vectors field left invariant. From where u” is a Fg g—foliated vectors
field.

As the submersion 7 : G — % defined the foliation Fg g then u” is projected
by 7 on % following a vectors field notes that u".

Let X (%) be the Lie algebra of vectors fields tangent to %, let X (G) be
the Lie algebra of vectors fields tangent to G, let w € X (%), let X € X (G),



let @ be the horizontal lift of w, let X" be the horizontal component of X and
let X" be the vertical component of X.
We have ([1],[13]) for wy € X (£) and wo € X (§),

T ([wr, wa]) = . ([ﬁlaﬁz]h)

= [m (1), 7. (w2)].

Furthermore, for all for all (uj,us) € G? as u] and uj are Fg g—foliated
vectors fields then [(u{)h , (u;)“] is a section of TF¢g g because (u})" and (u3)”

are sections of T'Fg p and
(D) (u5)"] = [, (u5)"] = ()", (u5)"].

It follows from the foregoing that =, ([ul,u}]) = [m« (u]),ms (u})] for all
(u1,u2) € G2 because

m (i ) = (
(

= ()" ) + e ([ @)]) + e ([ wp)])

= [me (u) , 7s (u3)]

The equality 7. ([u},u5]) = [7. (u]), 7 (ub)] for all (uy,us) € G show that
G" = 7. (G") is a Lie algebra because G" is a Lie algebra.

As the right invariant vectors fields u” for all u € G are Killing fields for
the metric A, then the fact that 7 is a Riemannian submersion implies that the
vectors fields u" are also Killings vectors fields. Thus G" is a Lie algebra of
Killing fields on %

We note that (u’")h is the Fg y—foliated transverse vectors field associated
with u" since keray = (’1’,7-"G7H)L and we have identified (TJ’:Gﬂ)L and the
transverse bundle V (Fg m).

We note also that the horizontal lift u" of u” = 7, (u”) checks

Let (w1, Ug...Us, Us41, ..., Ug) be an orthonormal base of G such as (us11, ..., Uq)
is a base of H and u] the right invariant vectors field obtained from w;.



It results from the equality u; = (uf)h that (uf)h is invariant by right transla-
tions obtained from the elements of H. Therefore, these right translations being

isometric, we have for alli < sand foralla € H, ((u’l")h (a), (W) (a), ..., ()" (a))

is an orthonormal base of (T, H)" and

@/ (a) = (u])" (a) = u (a).

Thus the fact that 7 is a riemannian submersion implies that
(y’l" (e‘z) , U ((’3) RN T ((‘3)) is an orthonormal base of T;% where ¢ is the class

of the identity element e of G in % And, this entails that G" is a Lie algebra
of Killing fields on % having dim (%) for maximal dimension of its orbits.

We know that ([14], [12]) the orbits of maximal dimension of a Lie algebra of
Killing fields on a connected manifold V' form an open dense in V. From where
there is an open U, of % dense in % and containing ¢ on which the orbits of gr
are the dimension of %

We note that there exists an open U/ C U, such as U/ is connected and
eeU.

We note also that % is connected because G is connected and the map
m:G— % is continuous.

According to the Proposition 3.1 the dimension of any orbit O(E,:%) of isotropy

is of G" at every point z of U/ is null. Now the the orbits of maximal dimen-
sion of the Lie algebra of Killing fields s on the manifold % form a dense open

of % From where the fact that O(; g.c) = {Z.E} for every T e U/ implies that
- . ° el
O(;,;) = {x} for every x € 7.

It is easy to see that H" = m. (H") is a Lie subalgebra of i,. Therefore the
fact that (9<; %) = {3.:} for every T e % shows us that H" = 7, (H") is null.

This means that any vector field right invariant obtained from the vectors of H
is tangent to the foliation Fg g.

Thus for every a € G, we have aH = Ha. In other words H is an ideal of G.
]

The following result is another consequence of the proposition 3.1. This
result is the basis of the generalization that we do in this paper. It allows us
to look Riemannian foliations with dense leaves on a compact manifold with a
new look. With this result we can for example associated with a Riemannian
foliation F with dense leaves on a compact manifold a finished group whose
properties depend on the nature of F.

Proposition 3.3 Let F be a riemannian foliation with dense leaves on a com-
pact connected manifold M and let F? be the closure of a leaf F' of lifted foliation
Fiof F on the orthonormal transverse frame bundle M?.

Then F% is a compact covering of M.



Proof . Let F be a riemannian foliation with dense leaves on a compact
connected manifold M, let ¢ : F& — M be the projection which to a frame at x
associates z, let f : U — U be a Riemannian submersion defining Riemannian
foliation F on a distinguished connected open U and let f%: ¢~ (U) — E" (U)
be the projection of ¢~ (U) on the orthonormal frame bundle of the local F-
quotient manifold U. o

We know that [12] ¢ : F& — M is a prln(;lpal fibration and the submersion
fh defined the lifted foliation F% on ¢ ' (U) and there exists a submersion
¢:EN (U ( ) — U making the diagram

fh

o (U) = E*(U)
ol 1 ¢
v LT

commutative because ¢ sends the fibers of f % on the fibers of f. According to
Molino [12] ¢ : E" (U ) — U is the orthonormal transverse frame bundle above

the local F-quotient manifold U.

Let X be a Killing vector fields on U.

We recall that if ( )I Hl<e is the local 1 parameter group associated to X
then the local 1 parameter group (got ) ox? where z? € Ef (U ( ) defined a vectors
field X% on E° (U) that we call the lifted vectors field of X on E* (U) [12]. This
lifted vectors field commutes with the canonical parallelism [12] of E* (U) .

We also recall that [12] any vectors field Y? of E* (U) coincides in a neigh-
borhood of each point of E* (U) with the lift of a local Killing vectors field on
U if and only if Y commutes with the canonical parallelism of E* (ﬁ) .

That said, as F is a Riemannian foliation with dense leaves then the Lie
algebra G” of right invariant vectors fields obtained from the structural Lie
algebra G of F is a Lie algebra of Killing vectors fields operating transitively [12]
respectively on each connected component of E% (U ( ) and on U. To be specific
it is the Lie algebra of Killing fields ¢, (G") isomorphic ([12],[11]) to G" which
operates transitively on U and the lifted Lie algebra of ¢, (G") on E* (U ( ) isg".

Let 2y € U. According to Proposition 3.1 the dimension of any orbit O (g,2)

of the isotropy i, of @, (G") at every point z of U is null.
Thus, the isotropy i, of ¢, (G") for every x € U is null.
As
dimi, = dim (¢, (")) — dim O, = dim (¢, (G")) — dim U

where O, is the orbit at the point € U of ¢, (G") then
dim G =dim G"=dim (a* (Qr)) =dimU = codim F.
Let H be the structure group of the prln(:lpal bundle ¢ : F' Fi — M.

Using the fact that the restriction .7-'7 of F¥ at F7 is a Lie G-foliation with
dense leaves is obtained that:

dim M + dim H = dim F? = dim F+ dim G = dim F+co dim F = dim M.
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And, equality dim M + dim H = dim M show that dim H = 0. Which means
that H is discreet. o

It follows from the foregoing that the principal bundle ¢ : F& — M is a
covering.

Before concluding, we signal that H is finished because it is a structure group
of a compact covering. m

We note that this proposition allows us to say that the dimension of the Lie
structural algebra of a Riemannian foliation on a compact connected manifold
is lower or equal to the codimension of this foliation.

Corollary 3.4 All Riemannian foliation F with dense leaves on a compact con-
nected simply connected manifold M is an abelian G-foliation with dense leaves.

Proof. Let F be a Riemannian foliation with dense leaves on a compact
connected simply connected manifold M and let F% be the closure of a leaf F*
of lifted foliation F% of F on the orthonormal transverse frame bundle M b,

According to the previous proposition F is a covering of M. As M is a
simply connected manifold then M is diffeomorphic to F%. And, that implies
that F is a Lie G-foliation with dense leaves.

As the Lie structural algebra of a Riemannian foliation on a simply connected
compact connected manifold is an abelian Lie algebra [12] then we obtain that
F is an abelian Lie G-foliation with dense leaves. m

The following theorem is the main result of this article. This is a general-
ization of theorems 2.3 and 2.4 to Riemannian foliations with dense leaves on a
compact manifold. o

In what follows the structure group of covering ¢ : F'" — M will be noted
Hy and we will call it the discreet goup of Riemannian foliation F with dense
leaves.

Theorem 3.5 Let G = Lie (G) be the Lie structural algebra of a Riemannian
foliation with dense leaves (M,F) on a compact manifold M, let Hy be the
discreet group of F and let A be a metric on M which is bundle-like for F and
which admits A\, as its associated transverse metric.

Then there exists a representation p : Hy — Diff (V) where V is an open
of G such as:

i) there exists a biunivocal correspondence between the Lie subalgebras of G =
Lie (G) invariant by Ad(pa(v))—l.v for every (a,v) € Hy x V and F extensions,

it) an extension is a Lie foliation if the subalgebra corresponding is an ideal
of G,

iii) every extension F' of F is a Riemannian foliation and there exists a
common bundle-like metric for the foliations F and F’,

i) if Fy is an extension of F corresponding to a subalgebra H of G then to
Lie algebra isomorphism nearly we have

UM, Fre) = {u € H" /¥ (h,a,v) € HXHoxV, [u,h] =0 and Ad, -1, (u)=u}.

11



In particular
UM, F) ={ueG/V(a,v) € HyxV, Ad(, (,))-1., W) =u}.

Proof. Let F be a Riemannian foliation on a compact connected manifold
M, let F% be the closure of a leaf F“&flifted foliation 7 of F on the orthonormal
transverse frame bundle M, let ¢:F% — M be the projection which to a frame
at x associates x and let .7-'% be the restriction of F? at F¥.

We now that ¢ : F& — M is a covering having Hy for structure goup ( cf.
Proposition 3.3).

In what follows (U,, f,, T, ’Yij)ie 1 denotes a foliated cocycle defining the Rie-
mannian foliation F such as open U, are open of local trivialization of covering
¢ : F* — M and f4 ¢ 1 (U,) — E* (U,) denotes the projection of o (U)
on the orthonormal transverse frame bundle ¢, : E% (U,) — U, above the local
F-quotient manifold U, of U,.

We note that the fact that ¢ : F# — M is a covering of M implies that for
every open U, of foliated cocycle (U,, f,, T, ’Yij)iej of F there are open Ui“a of

F% where a € Hy such that:
-t U, = esz‘{ Ufa and ¢ : Ufa — U. is a local difféeomorphism,
a€Hy

- for every (a,b) € Hyx Hy, th) (Ui) = Ufab where Ri is the right translation
on F% associated to b. And, (Uiha)(i,a)eIxHo B

According to Molino [12], each submersion f? : ¢~ " (U,) — E* (U,) defined
the Lie G—foliation f% on ¢~ ' (U,). Thus E* (U,) C G.

is an open cover of F4.

We note also that according to Molino [12] for all @ € Hy and all zf €
¢~ ' (U,) we have
[io R (%) = py o f ()
where p, is a diffeomorphism on the open V' = E" (U;) of G induce by R}
because }"% is invariant by R .
We easily verify that p : Hy — Dif f (V) is a representation and p (Hy) = H

Let A be a F—bundle-like metric on M. B
As ¢ : F" — M is a covering and ]:Lu = ¢*F then the metric A\ = ¢™\ is
F

a th—bundle—like metric on ¢ : F4 — M and the right translation R} on F?
F

associated to a € Hy is an isometry for the metric X
The equality ff oRi =p,o0 fih implies that p, is an isometry because R, is

i

an isometry and ff is a riemannian submersion defining .7-"% on ¢~ (U)).
Before finishing these remarks we signal that [12] for all ¢ € I the diagram

o~ (Uh) E (U;)
¢ | | ¢;
u, LT,

S
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is commutative and the fl,tl oRi =p,o0 fih implies again that ¢, : E" (U) — U,
is a covering having p (Hy) = H, for structure group.

That said, as F is a Riemannian foliation with dense leaves then the Lie
algebra G” of right invariant vectors fields obtained from the structural Lie
algebra G of F is a Lie algebra of Killing vectors fields operating transitively

[12] on each connected component of E* (U) and for each X" € G, (¢i)* (X7)
is a vector fields on U then for all (v,a) € E* (U,) x Hy and for all X" € G",

(pa)* (X:;) = X;a(v) = R’zfl.pa(v) (X:;) .

We note that the fact G operate transitively [12] on each connected com-
ponent of E? (U) implies that for all (v, X,) € E* (UZ) x T,E" (U) there exists
X" € G such as X, = X].

Thus for all (v,2%a) € B (T,) x 6" (U3) x Ho and for all (X,,Y}) ¢
T,E* (U) x Tpag™ " (Uy),

(pa)* (Xy) = Rv—l.pa(v) (Xy) = Rv—l.pa(v) (Xo)

and

(FoB), (YE) = (b0 £5). (Y2) = Burrpuiw ((£9). (Y2)) forv=f% (o).

In what follows we will designated by w’ the 1-form of Fedida of Lie G—foliation
F2_ whose restriction w’ at each open U? = ¢~ (U,) is such that

Fh
wi = (1% a

where «; is the restriction of left Maurer—Cartan form « of G at F* (U ) .

i

For all (2% a) € ¢~ (U;) x Hy and for all Y;fu € T.¢~ " (U;) we have

(B) " (v2) = wio(Ri), (V2)
= a((fferi), (V1))
= i (0. (7). (v2)))
= ai (R, (7)., (YE))) forv= 72 (af)
= Adg, ()1 0 (an) :

i) Let F’ be an extension of F and let ¢*F’ be the inverse image of F’.
We easily verify that fLu C ¢*F'. This implies that (cf. theoreme 2.3) there
F

exists a Lie subalgebra of G =Lie (G) corresponding to ¢*F’. It will be noted
Grr.
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_ We know that [6] ¢"F" is defined by the differential system P defined on
Ft by
PF (a) = T 5 _aev,s (G5 )

where g 7 is the Lie algebra of }' t —fohated transverse vectors fields associated

to G and evgy (Xh) Xh for every Xt e g]:,
Let a € Hy. The fohatlon ¢*F' is invariant by the right translation Ri on

F7 associated to a. Hence the differential system z? — P! (xh) is invariant by
R
As T]-'hT and the differential system z? — P8 (ash) are invariant by the
F

isometry Rf and as the ortho-complementary of Tmu]:tLh in P* (:rh) is ev,y (gﬁm)
F
then for all zf € ¢~ (U;),

) o (65)) e (62).
But [6] for all 2% € ¢~ (U;)

i e (03)) =7

so for all v = f% (2%) € E* (U,) we have

gr = w

( ),
= (B, ((F),) (evs: (93)))
= Adgy g0 (7). (e (65)))
= Adgy, 0 () ) (evis (03))
= Ady, ()1 OWE (evmu (95@))
= Ad, (v))-1.0 (GF)

Reciprocally, suppose there is a Lie subalgebra G’ of G such as Ad(pa(v))_l.v (G) =
G for all v = f? (xh) € E* (U,) and for all a € Hy.
As Ad, ())-1.,(G") = G for all a € Ho and for all v = f7(2%) € E5 (U,)

then the differential system S defined on F# by S” (z%) = ev,s (G%) where G
is the Lie algebra of ]-'Lh—foliated transverse vectors fields associated to G’, is
F

invariant by R for all a € H,.
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Indeed for a € Hy we have:

w'g (eng(wh) (Q’h)) = ¢
= Adg, ()1, (G) forv=fF(a")
= Ad(, (vt o (eves (G7%))
= (R“) wi (ev,: (G"))

= Wi ((BY), (evss (7)) -

i
The fact that w? : (TRh (ih)}'LJ — G is an isomorphism, because th is a
a I F

G—Lie foliation with dense leaves, implies that

(BS)..pe (ev,s (%)) = (evgs ey (6))

for all @ € Hy and z¢ € F.
It follows from the foregoing that the extension .7-' i of F hu corresponding to

G’ is invariant by the right translation of the elements of Hy because ([6], [8])

Tmufg/ = xuf%@evxu (glh)

for all 2% € F¥ and T.?’-'t'T is invariante by RY for all a € Hy.
F

Thus ]—"g, is projected by ¢ into an extension F’ of F.

ii) Let 7’ be an extension of Lie of Riemannian foliation (M, F) with dense
leaves on a compact manifold M, let ¢"F’ be the lifted foliation of F’ on the
covering ¢ : 't — M, let £(M,F') be the Lie algebra of F'—foliated transverse
vectors fields and let £%(M, F') be the lifted of £(M,F’) on the covering F'.

For all X? € (4(M, F') and for all Y € X (ﬁ, ¢*f’) where X (ﬁ, ¢*f’)
is the Lie algebra of vectors fields tangent to ¢*F’, we have V (i,a) € I X Hy,

o (17,) = b () (3] 0

We note that V(i,a) € I x Ho, |6, (X* o )0 (¥
because ¢, (Xﬁm ) is F'—foliated and ¢, (Y/h
from this that ¢, ([X Y ]/U? ) is tangent to F’ for all (i,a) € I x Hy. Which
causes that [X*, Y?] is tangent to ¢ F".

Thus all vectors fields of £5(M, F') is ¢* F'—foliated.

Using the fact that for any (i,a) € I x Hy, ¢ : Ufa — U; is an isometry (
relatively to the metrics A and A ), it is easily verified that all vectors field of
(5(M, F') is ¢* F'—tranverse since we identify the orthogonal bundle (Tqb*}")J'
of T¢*F' and the transverse bundle V (¢* F').

ot )] is tangent to F’

) is tangent to F'. It follows
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We note that ¢1(M, F') is stable for the Lie bracket of two vectors fields.

Indeed for all X% € ¢3(M,F') and Y% € £5(M, F'), there exists X € £(M,F’)
and Y € ((M,F') such as ¢, (X*) = X and ¢, (Yh) =Y.

The lifted vectors fields X% and Y? are invariant by the right translations
obtained from the elements of Hy. It follows from this that [X h, Yh] is invariant
by the right translations obtained from elements of Hy.

Thus [X h,Yﬂ is projected by ¢ along a vectors field on M. And we have
for all (i,a) € I x H,

(6, ([X5Y9) = o (X7, )

i

i

= [XaY}/U :

i

The above shows that ¢, ([Xh, Yh]) =[X,Y].

As[X,Y] € (M, F') then [X*,Y*] € (%(M, F'). Which means that ¢*(M, F')
is stable for the Lie bracket.

It follows from the above that ¢3(M,F’) is a Lie algebra of ¢*F'—foliated
transverse vectors fields.

We note that ¢°(M, F’) has the same dimension as (M, F').

The fact that ¢* F’ is an extension of the Lie foliation .7:% ensures by Proposi-

tion 2.6 that ¢(M, F') is a Lie algebra of vectors fields fiT—foliated transverse.
Let gh}-, be the Lie algebra of f%ffoliated transverse vectors field associated
to the Lie subalgebra Gz corresponding of the extension ¢*F’ of .7-'%.
We signal that ¢%(M, F’) is ortho- complementary to gﬁr, in ((F®, f%)
Indeed dim (¢*(M, F')) = dim ({(M,F")) = codim (¢*F’) and [6]

dim (g“f,) = codim (.7-'%) —codim (¢*F') = dim (e(ﬁ, ]-'%)) —dim (£(M, "))

and ¢(M, F') is orthogonal to gh}-, because ¢* (M, F') is a Lie algebra of ¢* F'—foliated
transverse vectors fields. o
For X% € (8(M,F') and Y* € G%, we have [X%,Y?] € é(Fh,J-'Lh) and the
F

equality (xx) show us that [Xh, Yh] is tangent to ¢*F’ that is to say [Xh, Yh] €
X (ﬁ, ¢*f’) .
Thus for all X! € Kt'(M, F') and Y € gh}-, we have [Xh,Yh] € gh}-, because
(6]
UFEF) N X (Fo'F') = G5
Fh
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It results from the above that gh}-, is an ideal of ¢(F1, ]:Lh) And this implies
that Gz is an ideal of G. "

iii) Let ' be an extension of F and let A be a F-bundle-like metric on M.

Quits to reduce the size of opens U;, we can assume distinguished both for
F and F’ each open Uj.

The local isometry ¢ : Uiha — U, sends the leaves of (U ]

(U;, F) and leaves of (Uiha,gb*}"/) on leaves of (U;, F') for all (4,a) € I x Hy.
As the metric A = ¢*A is bundle-like for (U-n ]—'Lﬁ) and (Uh qb*]-") then

wa’ I a?
the metric A is bundle-like for (U;, F) and (U;, F’). And, this implies that the
metric A is a common bundle-like metric for the foliations F and F’.

iv) Let Fp be the extension of F corresponding to a Lie subalgebra H of

g, let ]—'E{ be the extension of .7-"“7 corresponding to H, let E(ﬁ, .ﬂh{) be the Lie
F

algebra of f%—foliated transverse vectors fields and let £;,,, (ﬁ, .7-"5{) be the Lie

subalgebra of £(FF, ]-"51) of invariant vectors fields by the right translations R
for all a € Hy .
One checks easily through the equality

fL) on leaves of
Fh

Fiy= 0" Fu

and thanks to the fact that V(i,a) € I x Hy, ¢ : Ufa — U; is a local isometry
that ¢, : £ine (Fh,}"?h_t) — £(M, Fy) is an isomorphism of Lie algebras.
Using the theorem 2.4 and the fact that for all a € Hy and ij e To H (Uy)

* n\ _ i —
(RE) o' (an) = Ad(,, ()~ 0 & (Ymn> for v = f7 (2)
one easily gets equality between w® (Zim, (F, ‘7-'72)) and
{ueH/VYheH, [u,h) =0 and ¥ (a,v) € Hy x V, Ad, ()1, (W) =u}.

But w? : ((F¥, .7-'“7) — @G is an isomorphism of Lie algebras because the Lie
F

—1

foliation ]—"Lh has leaves that are dense, so w? o (¢,) " is an isomorphism of Lie

algebras beFtween (M, Fp) and
{ue H*/Vh€H, [u,h) =0 and V¥ (a,v) € Hy x V, Ad, ()10 (W) =u }.
[

Corollary 3.6 Let G be the structural Lie algebra of a Riemannian foliation
with dense leaves F on a compact manifold M.

Then F admits a complete flag of extensions if and only if F is an abelian
Lie G— foliation with dense leaves.
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Proof. Let ¢ be the codimension of F and let A be a F-bundle-like metric
on M.

We suppose that F admits a complete flag of extensions
D, = (Fy-1, Fg-2, -y F1).

It is easily verified for i € {1,2,...,q } that the dimension of the bundle
(Tfi)J‘ NTF;_1is 1. We denote by X; the unified field that orients (T]:i)J‘ N
TF;, 1.

We note in passing that the foliation Fy has one leaf and this leaf is the
manifold M. We note also that

TFi1 = TF®TF) NTF_,
TF® < X; >

That said, we can say that X; is a F;—foliated transverse vectors field.

Indeed F is a Riemannian foliation with dense leaves then according to the
theorem 3.7, D, is a complete flag of Riemannian extensions and the metric A
is a common bundle-like metric for the foliations F;.

As X, is tangent to (T.7-"i)L then we have for all Y € X (F;),

0=Y\(X;,X;) =2\([V, X;],X;).
Therefore [Y, X;] is orthogonal to X;. But [Y, X;] € X (F;_1) and
TF,_1=TF® < X; >

so [Y, X;] is tangent to T F;. Which implies that X; € ¢(M,F;) because X; is
tangent to (TF;)" .

In what follows we denote F by F,.

According to the proposition 2.6 for all ¢ and j such as 1 < i < j < g we
have Z(M, ]—])CE(M, .7:])

It follows that for all ¢ < j we have X; € ¢{(M, F;).

The fact that the unified vectors fields X; are orthogonal two by two implies
that F; is a Lie Gj—foliation for all j and

E(M“}-j) =< X;, X;_q,..X1 >.

Indeed for all j the codimension of F; is j and the leaves of F; are dense.

Let U be a F,—distinguished open, let f : U — U be a Riemannian submer-
sion defining F, on U, let w, be a Fedida 1-forme of F, such as w,,u = (f)" g
where ay is the left Maurer Cartan form of G, let w, (X;) = X; and let
G, = Lie (Gy).

We note in passing that wq:¢(M, F,) — G, is an isomorphism of Lie algebra
because Fy is a Lie G,—foliation with dense leaves.

It is easily verified using the equality w,/y = (f)" og and the fact that the
unified vectors fields X; are orthogonal two by two that (Yq,yq,l, Yl) is an
orthonormal base for G,.

Let H; be the Lie subalgebra of G, corresponding to the extension F; of F.
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We note [6] that dim (;) = ¢ — j. And that implies that dim ((Hj)J'> =J.
According to the Theorem 2.4 we have w, (¢(M, F;)) C (Hj)l .
Consequently the fact that dim ((Hj)l) = j and

Wq (E(M,fj)) = Wy (< X, X51,..X, >) =< Yj,Xj_l, yl >

implies that

(7‘[]‘)L =< Yj,yj‘_l,...yl >

Thus we have

Hj =< yq,Xq,h...YjJrl > .
As

Wq (E(M,fj)) =< yj;yjfh Yl > and Hj =< ytpyq,l, ...Yj+1 >

then according to the theorem 2.4 for all ¢ and k such as 1 <7 < j <k < g we
have [Xl-,Xk] =0.

Is thus obtained for all ¢ and k& such that i < k, Wuyk] = 0. And this

implies that G, is an abelian Lie algebra. Consequently F is an abelian Lie
G—foliation because G = g,,.

Reciprocally we suppose that F is an abelian Lie G—foliation.
In this case the theorem 2.3 show us that F admits a complete flag of ex-

tensions. m
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