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Abstract
The purpose of this article is to generalize the following results existing

respectively in ([5], [7]) and in [6] to the Riemannian foliations with dense leaves
on a compact manifold:
i) If F is a Lie G-foliation with dense leaves on a compact manifold, then

there exists a biunivocal correspondence between the Lie subalgebras of G =
Lie (G) and F extensions,
ii) if FH is an extension of a Lie G-foliation with dense leaves on a compact

manifold corresponding to a subalgebra H of G and `(M,FH) the Lie algebra
of FH−foliated transverse vectors fields then we have

`(M,FH) = {u ∈ H⊥/ [u, h] = 0 for every h ∈ H}.

Let G be a Lie simply connected group and let G = Lie (G) be the struc-
tural Lie algebra of a Riemannian foliation F with dense leaves on a compact
manifold.
This study show us that there exists a Lie discreet subgroup H0 of G such

as:
i) there exists a biunivocal correspondence between the Lie subalgebras of

G = Lie (G) invariant by Ada for every a ∈ H0 and extensions of F ,
ii) if FH is an extension of F corresponding to a subalgebra H of G then we

have

`(M,FH) = {u ∈ H⊥/∀h ∈ H, [u, h] = 0 and ∀a ∈ H0, Ada (u) = u}.

Keywords: Lie foliation, Riemannian foliation, foliation with dense leaves,
extension of a foliation.
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1 Introduction

The purpose of this article is to generalize the following results existing respec-
tively in ([5], [7]) and in [6] to the Riemannian foliations with dense leaves on a
compact manifold:
i) If F is a Lie G-foliation with dense leaves on a compact manifold, so it

exists a biunivocal correspondence between the Lie subalgebras of G = lie (G)
and F extensions,
ii) if FH is an extension of a Lie G-foliation with dense leaves on a compact

manifold corresponding to a subalgebra H of G and `(M,FH) the Lie algebra
of FH−foliated transverse vectors fields then we have

`(M,FH) = {u ∈ H⊥/ [u, h] = 0 for every h ∈ H}.

To achieve there, we first established that the closure of a leaf F \ of lifted
foliation F \ on the orthonormal transverse frame bundle M \ of a Riemannian
foliation F with dense leaves on a compact manifold is a covering of the manifold
M .
We note that the fact that F \ is a covering of the manifold M entails that

the dimension of the Lie structural algebra of a Riemannian foliation F on a
compact manifold which is less than or equal to the codimension of the foliation
F . And this allows us to say that we should limit the classification of Molino
in codimension 1, 2 and 3 of Riemannian foliation on a compact manifold [11]
to only a few cases of this classification.
We note by H0 the structure group of covering φ : F \ → M. And, H0 will

be called the discreet goup of Riemannian foliation F on a compact manifold
with dense leaves.
That said, we show in this paper that if G is the Lie structural algebra of a

Riemannian foliation with dense leaves (M,F) on a compact manifold M so:
i) there exists a biunivocal correspondence between the Lie subalgebras of

G = Lie (G) invariant by Ada for every a ∈ H0 and F extensions,
ii) an extension is a Lie foliation if the subalgebra corresponding is an ideal

of G,
iii) every extension F ′ of F is a Riemannian foliation and there exists a

common bundle-like metric for the foliations F and F ′,
iv) if FH is an extension of F corresponding to a subalgebra H of G then to

isomorphism nearly of Lie algebras we have

`(M,FH) = {u ∈ H⊥/ ∀h ∈ H, [u, h] = 0 et ∀a ∈ H0, Ada (u) = u }.

In particular

`(M,F) = {u ∈ G/∀a ∈ H0, Ada (u) = u}.

Our paper is divided into two parts:
-the first part is devoted to reminders on Riemannian foliations and on ex-

tensions of foliations,
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- the second part is devoted to the establishment of the already stated pri-
mary outcome.
In all that follows, the manifolds considered are supposed connected and

differentiability is C∞.

2 Definitions and Reminders

In this section, in the direction that is helpful, we reformulate some existing
definitions and theorems in ([3], [5], [6], [7], [9] [10], [11], [12]).

Definition 2.1 Let M be a manifold.
An extension of a codimension q foliation (M,F) is a codimension q′ fo-

liation (M,F ′) such that 0 < q′ < q and (M,F ′) leaves are (M,F) leaves
meetings ( it is noted F ⊂ F ′).

We show that if (M,F ′) is a simple extension of a simple foliation (M,F)
and if (M,F) and (M,F ′) are defined respectively by submersions π : M → T
and π′ :M → T ′, then there exists a submersion θ : T → T ′ such that π′ = θ◦π.
We say that the submersion θ is a bond between the foliation (M,F) and

its extension foliation (M,F ′) .
It is shown in [5] that if the foliation (M,F) and its extension (M,F ′) are

defined respectively by the cocycles (Ui , fi , T, γij )i∈I and (Ui , f
′
i
, T ′, γ′

ij
)i∈I then

we have
f ′i = θi ◦ fi and γ′ij ◦ θj = θi ◦ γij

where θs is a bond between the foliation (Us,F) and its extension foliation
(Us,F ′) .

Definition 2.2 Let Fq be a codimension q foliation on a manifold M.
A flag of extensions of Fq is a sequence DkFq = (Fq−1, Fq−2, ..., Fk) of

foliations on the manifold M such that Fq ⊂ Fq−1 ⊂ Fq−2 ⊂ ... ⊂ Fk and each
foliation Fs is a codimension s foliation.
For k = 1, the flag of extensions DkFq will be called complete and will be

denoted DFq .
If each foliation Fs is a Riemannian foliation, the flag of extensions DkFq

will be called flag of Riemannian extensions of Fq.

The following theorem is the biunivocal correspondence theorem between Lie
subalgebras of G =Lie (G) and the extensions of a Lie G−foliation with dense
leaves existing in [7].

Theorem 2.3 [7] Let (M,F) be a Lie G-foliation with dense leaves on compact
connected manifold and let G be the Lie algebra of G.
Then:
1-There exists a biunivocal correspondence between the Lie subalgebras of G

(or if you prefer between the connected Lie subgroups of G) and extensions of
F .
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2- An extension of F is a Riemannian G
H -foliation having trivial normal

bundle and defined by a 1-form with values in GH .
3- An extension of F is transversely homogeneous (resp. Lie ) if and only

if the Lie subgroup of G corresponding is a closed subgroup (resp. Normal sub-
group) in G.

In [6] was calculated `(M,FH) where FH is the extension of a Lie G−foliation
with dense leaves on a compact manifold corresponding to a Lie subalgebra H
of G. This calculation gave us the following result:

Theorem 2.4 [6] Let H be a Lie subalgebra of Lie algebra G of a Lie foliation
F with dense leaves on a compact manifold, let ω be a 1-form of Fedida defining
F and let FH be the extension of F corresponding to H.

Then:
i)

`(M,FH) = ∩
h∈H

`(M,F<h>)

where F<h> is the extension of F corresponding to the Lie subalgebra < h >
of G generated by h.
ii)

ω (`(M,FH)) ⊂ H⊥

where H⊥ is the ortho-complementary of H in G by the transverse metric asso-
ciated with F .
iii) For h ∈ G,

ω (`(M,F<h>)) = {u ∈< h >⊥ / [u, h] = 0 }.

iv)
ω (`(M,FH)) = {u ∈ H⊥/ [u, h] = 0 for every h ∈ H}.

The theorem and the three following proposals allow us to give a generaliza-
tion of the previous two theorems for Riemannian foliations with dense leaves
on a compact manifold .

Theorem 2.5 [6] Let F be a Lie G−foliation with dense leaves on a compact
manifoldM, let λ be a metric onM which is bundle-like for F and which admits
λ
T
as its associated transverse metric and let X be a F−transverse foliated

vectors field.
Then:
i) for every point a ∈M there exist an open F-distinguished Va ofM contain-

ing the point a such that the restriction XVa of X at Va is a local F-transverse
Killing vectors field,
ii) any vectors field left invariant of G is a Killing vectors field for the F-

transverse metric λ
T
left invariant,

iii) in the case where G is connected, the right translation Ra associated with
the element a ∈ G is an isometry for the metric λ

T
left invariant.
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Proposition 2.6 [6] Let F ′′ be an extension of a Riemannian foliation F ′ on
a manifold M.
Then `(M,F ′′) ⊂ `(M,F ′).

Proposition 2.7 [11] Let F be a codimension q Riemannian foliation on a
compact connected manifoldM, let F \ be the closure of a leaf F \ of lifted foliation
F \ of F on the orthonormal transverse frame bundle M \, let φ:M \ →M be the
projection which to a frame at x associates x.
Them:
i) φ

(
F \
)
is a leaf of F and φ

(
F \
)
= φ (F \),

ii) the map φ : F \ → φ
(
F \
)
is a locally trivial fibration.

Proposition 2.8 [11] Let (M,λ) be a Riemannian connected manifold and let
K (M,λ) be a Lie algebra of Killing vectors field on (M,λ) .
Then the orbits of K (M,λ) having maximal dimension form an open dense

in M .

3 Riemannian foliation with dense leaves on a
compact manifold

In what follows G is a Lie group of Lie algebra G, Xr (resp. X l ) is the vectors
field on G right (resp. Left) invariant obtained from X ∈ G and La (resp. Ra )
is the left (resp. right) translation associated with a ∈ G.

Proposition 3.1 Let K (M,λ) be a Lie algebra of Killing vectors fields on a
Riemannian connected manifold (M,λ) , let ix = {X ∈ K (M,λ) /Xx = 0} be
the isotropy of K (M,λ) at the point x ∈ (M,λ), let Ox be the orbit at the point
x of K (M,λ) and let O(x0,x) be the orbit at the point x ∈ (M,λ) of the isotropy
ix0 where x0 ∈ (M,λ) .
If for x ∈ (M,λ) , all orbits Ox have the same dimension then O(x0,x) = {x}

for every (x0, x) ∈ (M,λ)
2
.

Proof . Let x ∈ (M,λ) . We have dim ix = dimK (M,λ)− dimOx.
As all orbits Ox have the same dimension then dim ix = dim iy for every

y ∈ (M,λ) .
We note before continuing that ix is a Lie subalgebra of Killing vectors fields

of K (M,λ) .
Let x0 ∈ (M,λ) and let i(x0,x) be the isotropy at the point x of ix0 .
We know [11] there exists an open neighborhood Ux0 of x0 such as if x

′ ∈ Ux0
then i(x0,x′) = ix′ that is to say the isotropy at the point x′ of ix0 is equal to
the isotropy at the point x′ of K (M,λ) for every x′ ∈ Ux0 . For proof we assume
that (k1, k2, ..., kr, k′1, k

′
2, ..., k

′
s) is a base of K (M,λ) such as (k1, k2, ..., kr) is a

base of ix0 .
For every j ∈ {1, ..., s} , k′j (x0) 6= 0. Hence there exists an open Ux0 contain-

ing x0 such as for every x′ ∈ Ux0 and for every j ∈ {1, ..., s} , k′j (x′) 6= 0.
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Let x ∈ Ux0 and let Y ∈ ix. there exists two finite sequences (yj)1≤j≤r and(
y′j
)
1≤j≤s of real numbers such that Y =

r∑
j=1

yj .kj +

s∑
j=1

y′j .k
′
j .

We have
r∑
j=1

yj .kj (x) +

s∑
j=1

y′j .k
′
j (x) = 0 because Y ∈ ix.

Quits to reorder the base of vectors fields (k1, k2, ..., kr) of ix0 we can assume
that there exists r′ ∈ {0, 1, ..., r} such as kj (x) 6= 0 for j ≤ r′ and kj (x) = 0 for
r′ + 1 ≤ j ≤ r.

Thus, the fact that Y ∈ ix implies that
r′∑
j=1

yj .kj (x) +

s∑
j=1

y′j .k
′
j (x) = 0 (∗) .

As kj (x) 6= 0 for j ≤ r′ and k′j (x) 6= 0 and (k1, k2, ..., kr′ , k′1, k′2, ..., k′s) is a
free system of vectors fields of K (M,λ) then (k1 (x) , ..., kr′ (x) , k′1 (x) , ..., k

′
s (x))

form a free system. Therefore the equality (∗) shows that yj = 0 for j ≤ r′ and
y′j = 0 for every j.

It follows from this that the equality Y =

r∑
j=1

yj .kj +

s∑
j=1

y′j .k
′
j implies that

Y =

r∑
j=r′+1

yj .kj . Therefore Y ∈ ix0 and ix ⊂ ix0 .

The constancy of the dimension of iy for all y ∈ (M,λ) implies that ix = ix0 .
Thus for any x ∈ Ux0 , i(x0,x) = ix = ix0 and the orbit O(x0,x) of ix0 at the

point x is the point x.
We know that ([13], [11]) the orbits of Lie algebra of Killing vectors fields

on Riemannian connected manifold V having maximal dimension form an open
dense in V. From where, the fact that the maximal dimension of the orbits of
ix0 in the open Ux0 is zero implies that O(x0,x) = {x} for all x ∈ (M,λ).
We note that this proposition means that when a Lie algebra of Killing

vectors fields K (M,λ) on a connected Riemannian manifold (M,λ) has his
orbits having the same dimension then the isotropy ix of K (M,λ) at any point
x ∈ (M,λ) induces on (M,λ) a null Lie algebra of Killing vectors fields.

That said, the previous proposition allows us to establish the following result:

Proposition 3.2 Let H be a closed Lie subgroup of a connected Lie group G,
let λ be a metric on G left invariant, let G =Lie(G) and let H =Lie(H) .
If λ is invariant by right translations obtained from the elements of H then

the Lie subalgebra H is an ideal of G.

Proof . If the Lie group H is discreet, then H = {0} . And in this case H
is an ideal of G.
In what follows we assume that H is not discreet.
The Lie subgroup H is closed in the Lie group G. From where π : G→ G

H is
a principal fibration having H for structure group. We note in passing that π is
a Riemannian submersion because the metric λ left invariant on G is invariant
by right translations obtained from the elements of H.
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Let α be the left Maurer Cartan form of G, let pH : G → H be the orthogonal
projection on H and let αH = pH ◦ α.
It is easy to see that αH is a differential form on G with values in H.
Let a ∈ H, let X ∈ TG and let pH⊥ : G → H⊥ be the orthogonal projection

on H⊥ where H⊥ is the ortho-complementary of H in G.
We have

(R∗aαH) (X) = αH (Ra∗ (X))

= pH ◦ α (Ra∗ (X))
= pH ◦Ada (α (X))
= pH ◦Ada (pH (α (X)) + pH⊥ (α (X)))
= pH ◦Ada ◦ pH (α (X)) + pH ◦Ada ◦ pH⊥ (α (X)) .

We signal that for all a ∈ H, H and H⊥ are invariant by Ada because the left
invariant metric λ is right invariant by translations obtained from elements of
H.
It follows from this that

pH ◦Ada ◦ pH (α (X)) = Ada ◦ pH (α (X)) and pH ◦Ada ◦ pH⊥ (α (X)) = 0.

Thus, we get that for all a ∈ H and for all X ∈ TG,

(R∗aαH) (X) = Ada ◦ pH (α (X)) = Ada ◦ αH (X) .

And, this means that αH is a connection on the principal bundle π : G→ G
H .

Let FG,H be the foliation obtained by the left translations of H and let
(TFG,H)⊥ be the orthogonal bundle of TFG,H .
It is clear to see that (TFG,H)⊥ ⊂ kerαH. But dimkerαH = dim G

H =

dim (TFG,H)⊥ so kerαH = (TFG,H)⊥ .
In what follows the transverse bundle V (FG,H) is identified to (TFG,H)⊥ .
Above all, we note thatH is not discreet then foliation FG,H is not a foliation

by points.
Let Gr be the Lie algebra of right invariant vectors fields of G and let Hr be

the Lie subalgebra of right invariant vectors fields obtained from the vectors of
H.
Any vectors field ur ∈ Gr associated with the vector u ∈ G commutes with

every vectors field left invariant. From where ur is a FG,H−foliated vectors
field.
As the submersion π : G→ G

H defined the foliation FG,H then ur is projected
by π on G

H following a vectors field notes that ur.
Let X

(
G
H

)
be the Lie algebra of vectors fields tangent to G

H , let X (G) be
the Lie algebra of vectors fields tangent to G, let w ∈ X

(
G
H

)
, let X ∈ X (G),

let w̃ be the horizontal lift of w, let Xh be the horizontal component of X and
let Xv be the vertical component of X.
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We have [12] for w1 ∈ X
(
G
H

)
and w2 ∈ X

(
G
H

)
,

π∗ ([w̃1, w̃2]) = π∗

(
[w̃1, w̃2]

h
)

= π∗

(
˜[w1, w2]

)
= [w1, w2]

= [π∗ (w̃1) , π∗ (w̃2)] .

Furthermore, for all for all (u1, u2) ∈ G2 as ur1 and ur2 are FG,H−foliated
vectors fields then

[
(ur1)

h
, (ur2)

v
]
is a section of TFG,H because (ur1)

v and (ur2)
v

are sections of TFG,H and[
(ur1)

h
, (ur2)

v
]
= [ur1, (u

r
2)
v
]− [(ur1)

v
, (ur2)

v
] .

It follows from the foregoing that π∗ ([ur1, u
r
2]) = [π∗ (u

r
1) , π∗ (u

r
2)] for all

(u1, u2) ∈ G2 because

π∗ ([u
r
1, u

r
2]) = π∗

([
(ur1)

v
+ (ur1)

h
, (ur2)

v
+ (ur2)

h
])

= π∗ ([(u
r
1)
v
, ur2]) + π∗

([
(ur1)

h
, (ur2)

v
])
+ π∗

([
(ur1)

h
, (ur2)

h
])

= π∗

([
(ur1)

h
, (ur2)

h
])

= π∗

([
π̃∗ (ur1), π̃∗ (u

r
2)
])

=
[
π∗

(
π̃∗ (ur1)

)
, π∗

(
π̃∗ (ur2)

)]
= [π∗ (u

r
1) , π∗ (u

r
2)]

The equality π∗ ([ur1, u
r
2]) = [π∗ (u

r
1) , π∗ (u

r
2)] for all (u1, u2) ∈ G2 show that

Gr = π∗ (Gr) is a Lie algebra because Gr is a Lie algebra.
As the right invariant vectors fields ur for all u ∈ G are Killing fields for

the metric λ, then the fact that π is a Riemannian submersion implies that the
vectors fields ur are also Killings vectors fields. Thus Gr is a Lie algebra of
Killing fields on G

H .

We note that (ur)h is the FG,H−foliated transverse vectors field associated
with ur since kerαH = (TFG,H)⊥ and we have identified (TFG,H)⊥ and the
transverse bundle V (FG,H).
We note also that the horizontal lift ũr of ur = π∗ (u

r) checks

ũr = (ur)
h
.

Let (u1, u2...us, us+1, ..., uq) be an orthonormal base of G such as (us+1, ..., uq)
is a base of H and uri the right invariant vectors field obtained from ui.

It results from the equality ũri = (u
r
i )
h that (uri )

h is invariant by right transla-
tions obtained from the elements of H. Therefore, these right translations being
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isometric, we have for all i ≤ s and for all a ∈ H,
(
(ur1)

h
(a) , (ur2)

h
(a) , ..., (urs)

h
(a)
)

is an orthonormal base of (TaH)
⊥ and

ũri (a) = (u
r
i )
h
(a) = uri (a) .

Thus the fact that π is a riemannian submersion implies that(
ur1

(•
e
)
, ur2

(•
e
)
, ..., urs

(•
e
))

is an orthonormal base of T•
e
G
H where

•
e is the class

of the identity element e of G in G
H . And, this entails that G

r is a Lie algebra
of Killing fields on G

H having dim
(
G
H

)
for maximal dimension of its orbits.

We know that ([13], [11]) the orbits of maximal dimension of a Lie algebra of
Killing fields on a connected manifold V form an open dense in V. From where
there is an open Ur of GH dense in G

H and containing
•
e on which the orbits of Gr

are the dimension of GH .
We note that there exists an open U ′r ⊂ Ur such as U ′r is connected and

•
e ∈ U ′r.
We note also that G

H is connected because G is connected and the map
π : G→ G

H is continuous.
According to the Proposition 3.1 the dimension of any orbitO(•

e,
•
x
) of isotropy

i•
e
of Gr at every point •x of U ′r is null. Now the the orbits of maximal dimen-

sion of the Lie algebra of Killing fields i•
e
on the manifold G

H form a dense open

of G
H . From where the fact that O(•

e,
•
x
) = {•x} for every •x ∈ U ′r implies that

O(•
e,
•
x
) = {•x} for every •x ∈ G

H .

It is easy to see that Hr = π∗ (Hr) is a Lie subalgebra of i•e. Therefore the
fact that O(•

e,
•
x
) = {•x} for every •x ∈ G

H shows us that Hr = π∗ (Hr) is null.
This means that any vector field right invariant obtained from the vectors of H
is tangent to the foliation FG,H .
Thus for every a ∈ G, we have aH = Ha. In other words H is an ideal of G.

The following result is another consequence of the proposition 3.1. This
result is the basis of the generalization that we do in this paper. It allows us
to look Riemannian foliations with dense leaves on a compact manifold with a
new look. With this result we can for example associated with a Riemannian
foliation F with dense leaves on a compact manifold a finished group whose
properties depend on the nature of F .

Proposition 3.3 Let F be a riemannian foliation with dense leaves on a com-
pact connected manifoldM and let F \ be the closure of a leaf F \ of lifted foliation
F \ of F on the orthonormal transverse frame bundle M \.
Then F \ is a compact covering of M.

Proof . Let F be a riemannian foliation with dense leaves on a compact
connected manifold M, let φ : F \ →M be the projection which to a frame at x
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associates x, let f : U → U be a Riemannian submersion defining Riemannian
foliation F on a distinguished open U and let f \ : φ−1 (U) → E\

(
U
)
be the

projection of φ−1 (U) on the orthonormal frame bundle of the local F-quotient
manifold U.

We know that [11] φ : F \ → M is a principal fibration and the submersion
f \ defined the lifted foliation F \ on φ−1 (U) and there exists a submersion
φ : E\

(
U
)
→ U making the diagram

φ−1 (U)
f\→ E\

(
U
)

φ ↓ ↓ φ
U

f→ U

commutative because φ sends the fibers of f \ on the fibers of f. According to
Molino [11] φ : E\

(
U
)
→ U is the orthonormal transverse frame bundle above

the local F-quotient manifold U.
Let X be a Killing vector fields on U.
We recall that if

(
ϕXt
)
|t|<ε is the local 1 parameter group associated to X

then the local 1 parameter group
(
ϕXt
)
∗◦x

\ where x\ ∈ E\
(
U
)
defined a vectors

field X\ on E\
(
U
)
that we call the lifted vectors field of X on E\

(
U
)
[11]. This

lifted vectors field commutes with the canonical parallelism [11] of E\
(
U
)
.

We also recall that [11] any vectors field Y \ of E\
(
U
)
coincides in a neigh-

borhood of each point of E\
(
U
)
with the lift of a local Killing vectors field on

U if and only if Y \ commutes with the canonical parallelism of E\
(
U
)
.

That said, as F is a Riemannian foliation with dense leaves then the Lie
algebra Gr of right invariant vectors fields obtained from the structural Lie
algebra G of F is a Lie algebra of Killing vectors fields operating transitively
[11] respectively on E\

(
U
)
and on U. To be specific it is the Lie algebra of

Killing fields φ∗ (Gr) isomorphic ([11], [10]) to Gr which operates transitively on
U and the lifted Lie algebra of φ∗ (Gr) on E\

(
U
)
is Gr.

Let x0 ∈ U. According to Proposition 3.1 the dimension of any orbit O(x0,x)
of the isotropy ix0 of φ∗ (Gr) at every point x of U is null.
Thus, the isotropy ix of φ∗ (Gr) for every x ∈ U is null.
As

dim ix = dim
(
φ∗ (Gr)

)
− dimOx = dim

(
φ∗ (Gr)

)
−dimU

where Ox is the orbit at the point x ∈ U of φ∗ (Gr) then

dimG =dimGr=dim
(
φ∗ (Gr)

)
=dimU = codimF .

Let H be the structure group of the principal bundle φ : F \ →M.
Using the fact that the restriction F \

F \
of F \ at F \ is a Lie G-foliation with

dense leaves is obtained that:

dimM + dimH = dimF \ = dimF+dimG =dimF+codimF =dimM.

10



And, equality dimM + dimH = dimM show that dimH = 0. Which means
that H is discreet.
It follows from the foregoing that the principal bundle φ : F \ → M is a

covering.
Before concluding, we signal thatH is finished because it is a structure group

of a compact covering.
We note that this proposition allows us to say that the dimension of the Lie

structural algebra of a Riemannian foliation on a compact connected manifold
is lower or equal to the codimension of this foliation.

Corollary 3.4 All Riemannian foliation F with dense leaves on a compact con-
nected simply connected manifold M is an abelian G-foliation with dense leaves.

Proof. Let F be a Riemannian foliation with dense leaves on a compact
connected simply connected manifold M and let F \ be the closure of a leaf F \

of lifted foliation F \ of F on the orthonormal transverse frame bundle M \.
According to the previous proposition F \ is a covering of M . As M is a

simply connected manifold then M is diffeomorphic to F \. And, that implies
that F is a Lie G-foliation with dense leaves.
As the Lie structural algebra of a Riemannian foliation on a simply connected

compact connected manifold is an abelian Lie algebra [11] then we obtain that
F is an abelian Lie G-foliation with dense leaves.

The following theorem is the main result of this article. This is a general-
ization of theorems 2.3 and 2.4 to Riemannian foliations with dense leaves on a
compact manifold.
In what follows the structure group of covering φ : F \ → M will be noted

H0 and we will call it the discreet goup of Riemannian foliation F with dense
leaves.

Theorem 3.5 Let G be the Lie structural algebra of a Riemannian foliation
with dense leaves (M,F) on a compact manifold M , let H0 be the discreet group
of F and let λ be a metric on M which is bundle-like for F and which admits
λ
T
as its associated transverse metric.
Then:
i) there exists a biunivocal correspondence between the Lie subalgebras of

G = Lie (G) invariant by Ada for every a ∈ H0 and F extensions,
ii) an extension is a Lie foliation if the subalgebra corresponding is an ideal

of G,
iii) every extension F ′ of F is a Riemannian foliation and there exists a

common bundle-like metric for the foliations F and F ′,
iv) if FH is an extension of F corresponding to a subalgebra H of G then to

Lie algebra isomorphism nearly we have

`(M,FH) = {u ∈ H⊥/ ∀h ∈ H, [u, h] = 0 and ∀a ∈ H0, Ada (u) = u }.

In particular
`(M,F) = {u ∈ G/∀a ∈ H0, Ada (u) = u}.

11



Proof. Let F be a Riemannian foliation on a compact connected manifold
M, let F \ be the closure of a leaf F \ of lifted foliation F \ of F on the orthonormal
transverse frame bundle M \, let φ:F \ →M be the projection which to a frame
at x associates x and let F \

F\
be the restriction of F \ at F \.

We now that φ : F \ → M is a covering having H0 for structure goup ( cf.
Proposition 3.3).
In what follows (Ui , fi , T, γij )i∈I denotes a foliated cocycle defining the Rie-

mannian foliation F such as open U
i
are open of local trivialization of covering

φ : F \ → M and f \
i
: φ−1 (U

i
) → E\

(
U
i

)
denotes the projection of φ−1 (U

i
)

on the orthonormal transverse frame bundle φi : E
\
(
U
i

)
→ U

i
above the local

F-quotient manifold U
i
of U

i
.

We note that the fact that φ : F \ → M is a covering of M implies that for
every open U

i
of foliated cocycle (U

i
, f

i
, T, γ

ij
)i∈I of F there are open U \

ia
of

F \ where a ∈ H0 such that:
- φ−1 (U

i
) = ∪

a∈H0

U \
ia
and φ : U \

ia
→ U

i
is a local difféomorphism,

- for every (a, b) ∈ H0×H0, R
\
b

(
U \
ia

)
= U \

iab
where R\b is the right translation

on F \ associated to b. And,
(
U \
ia

)
(i,a)∈I×H0

is an open cover of F \.
We note also that for all i ∈ I the diagram

φ−1 (Ui)
f\i→ E\

(
U i
)

φ ↓ ↓ φi
Ui

fi→ U i

is commutative. This fact implies that for all i ∈ I, φi : E
\
(
U
i

)
→ U

i
is a

covering having H0 for structure goup.
According to Molino [11], each submersion f \

i
: φ−1 (Ui)→ E\

(
U i

)
defined

the Lie G−foliation F \
F \
on φ−1 (U

i
) .

Let xi ∈ Ui and let gi ∈ φ−1 (xi) ⊂ E\
(
U
i

)
⊂ G.

For all i ∈ I the diagram

E\
(
U i
) L

g
−1
i→ g−1i .E\

(
U i
)

φi ↓ ↓ φi ◦ Lgi
U i

Id→ U i

is commutative. Consequently the fact that φi : E
\
(
U i

)
→ U i is a covering

having H0 for structure goup implies that φi ◦ Lgi : g−1i .E\
(
U i
)
→ U i is a

covering having H0 for structure goup and H0 = g−1i .φ−1 (xi). Thus H0 ⊂ G.
In what follows we will designated by ω\ the 1-form of Fedida of LieG−foliation

F \
F\
whose restriction ω\i at each open U

\
i = φ−1 (U

i
) is such that

ω\i =
(
f \
i

)∗
αi

12



where αi is the restriction of left Maurer—Cartan form α of G at E\
(
U i

)
.

Let λ be a F−bundle-like metric on M .
As φ : F \ → M is a covering and F \

F\
= φ∗F then the metric λ̃ = φ∗λ is

a F \
F\
−bundle-like metric on φ : F \ → M and the right translation R\a on F \

associated to a ∈ H0 is an isometry for the metric λ̃.
Before finishing these remarks we signal that according to Molino [11] for all

a ∈ H0 and all x\ ∈ φ−1 (Ui) we have

f \
i
◦R\a

(
x\
)
= Ra ◦ f \i

(
x\
)

where Ra is the right translation on G associated to a ∈ H0.
The equality f \

i
◦R\a = Ra ◦ f \i implies that Ra is an isometry because R

\
a is

an isometry and f \
i
is a riemannian submersion defining F \

F \
on φ−1 (U

i
).

We note that the fact that Ra is an isometry is also established by the
theorem 2.5.
i) Let F ′ be an extension of F and let φ∗F ′ be the inverse image of F ′.
We easily verify that F \

F\
⊂ φ∗F ′. This implies that (cf. theoreme 2.3 ) there

exists a Lie subalgebra of G =Lie (G) corresponding to φ∗F ′. It will be noted
GF ′ .
We know that [5] φ∗F ′ is defined by the differential system P\ defined on

F \ by

P\
(
x\
)
= Tx\F \

F\
⊕evx\

(
G\F ′
)

where G\F ′ is the Lie algebra of F \
F\
−foliated transverse vectors fields associated

to GF ′ and evx\
(
X\
)
= X\

x\
for every X\ ∈ G\F ′ .

Let a ∈ H0. The foliation φ
∗F ′ is invariant by the right translation R\a on

F \ associated to a. Hence the differential system x\ 7→ P\
(
x\
)
is invariant by

R\a.
As TF \

F\
and the differential system x\ 7→ P\

(
x\
)
are invariant by the

isometry R\a and as the ortho-complementary of Tx\F \
F\
in P\

(
x\
)
is evx\

(
G\F ′
)

then for x ∈M,

G\(x,F ′) = ∪
x\∈φ−1(x)

evx\
(
G\F ′
)

is invariant by R\a.
But [5]

ω\i

(
G\(x,F ′)

)
= GF ′

so the invariance of G\(x,F ′) by right translations R\a for any a ∈ H0 implies that
for a ∈ H0,

13



GF ′ = ω\i

(
G\(x,F ′)

)
= ω\i

(
R\a∗

(
G\(x,F ′)

))
=

(
f \
i

)∗
αi

(
R\a∗

(
G\(x,F ′)

))
= α

((
f \
i

)
∗ ◦R

\
a∗

(
G\(x,F ′)

))
= α

(
Ra∗ ◦

(
f \
i

)
∗

(
G\(x,F ′)

))
= Ada ◦ α

((
f \
i

)
∗

(
G\(x,F ′)

))
= Ada ◦

((
f \
i

)∗
αi

)(
G\(x,F ′)

)
= Ada ◦ ω\i

(
G\(x,F ′)

)
= Ada (GF ′)

Reciprocally, suppose there is a Lie subalgebra G′ of G such as Ada (G′) = G′
for all a ∈ H0.
As Ada (G′) = G′ for all a ∈ H0 then the differential system S\ defined on F \

by S\
(
x\
)
= evx\

(
G′\
)
where G′\ is the Lie algebra of F \

F\
−foliated transverse

vectors fields associated to G′, is invariant by R\a for all a ∈ H0.
Indeed for a ∈ H0 we have(
f \
i

)
∗R\a(x\)

((
R\a
)
∗x\
(
evx\

(
G′\
)))

= (Ra)∗f\i (x\)
((
f \
i

)
∗x\
(
evx\

(
G′\
)))

= (Ra)∗f\i (x\)

((
Lf\i (x\)

)
∗e
(G′)

)
=

(
Ra ◦ Lf\i (x\)

)
∗e
(G′)

=
(
Lf\i (x\)

◦Ra
)
∗e
(G′)

=
(
Lf\i (x\)

)
∗a
((Ra)∗e (G

′))

=
(
Lf\i (x\)

)
∗a
((La)∗e (G

′))

=
(
LRa◦f\i (x\)

)
∗e
(G′)

=
(
Lf\i ◦R

\
a(x\)

)
∗e
(G′)

=
(
f \
i

)
∗R\a(x\)

((
evR\a(x\)

(
G′\
)))

.

The fact that
(
f \
i

)
∗R\a(x\)

:
(
TR\a(x\)F

\

F\

)⊥
→ Tf\i ◦R

\
a(x\)

G is an isometry

implies that
(
R\a
)
∗x\
(
evx\

(
G′\
))
=
(
evR\a(x\)

(
G′\
))
for all a ∈ H0 and x\ ∈ F \.
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It follows from the foregoing that the extension F \
G′
of F \

F\
corresponding to

G′ is invariant by the right translation of the elements of H0 because ([5], [7])

Tx\F \G′ = Tx\F \
F\
⊕evx\

(
G′\
)

for all x\ ∈ F \ and TF \
F\
is invariante by R\a for all a ∈ H0.

Thus F \
G′
is projected by φ into an extension F ′ of F .

ii) Let F ′ be an extension of Lie of Riemannian foliation (M,F) with dense
leaves on a compact manifold M, let φ∗F ′ be the lifted foliation of F ′ on the
covering φ : F \ →M, let `(M,F ′) be the Lie algebra of F ′−foliated transverse
vectors fields and let `\(M,F ′) be the lifted of `(M,F ′) on the covering F \.

For all X\ ∈ `\(M,F ′) and for all Y \ ∈ X
(
F \, φ∗F ′

)
where X

(
F \, φ∗F ′

)
is the Lie algebra of vectors fields tangent to φ∗F ′, we have ∀ (i, a) ∈ I ×H0,

φ∗

([
X\, Y \

]
/U\ia

)
=
[
φ∗

(
X\

/U\ia

)
, φ∗

(
Y \
/U\ia

)]
(∗∗) .

We note that ∀ (i, a) ∈ I × H0,
[
φ∗

(
X\

/U\ia

)
, φ∗

(
Y \
/U\ia

)]
is tangent to F ′

because φ∗
(
X\

/U\ia

)
is F ′−foliated and φ∗

(
Y \
/U\ia

)
is tangent to F ′. It follows

from this that φ∗
([
X\, Y \

]
/U\ia

)
is tangent to F ′ for all (i, a) ∈ I ×H0. Which

causes that
[
X\, Y \

]
is tangent to φ∗F ′.

Thus all vectors fields of `\(M,F ′) is φ∗F ′−foliated.
Using the fact that for any (i, a) ∈ I × H0, φ : U

\
ia → Ui is an isometry (

relatively to the metrics λ and λ̃ ), it is easily verified that all vectors field of
`\(M,F ′) is φ∗F ′−tranverse since we identify the orthogonal bundle (Tφ∗F ′)⊥
of Tφ∗F ′ and the transverse bundle V (φ∗F ′) .
We note that `\(M,F ′) is stable for the Lie bracket of two vectors fields.
Indeed for all X\ ∈ `\(M,F ′) and Y \ ∈ `\(M,F ′), there exists X ∈ `(M,F ′)

and Y ∈ `(M,F ′) such as φ∗
(
X\
)
= X and φ∗

(
Y \
)
= Y.

The lifted vectors fields X\ and Y \ are invariant by the right translations
obtained from the elements of H0. It follows from this that

[
X\, Y \

]
is invariant

by the right translations obtained from elements of H0.
Thus

[
X\, Y \

]
is projected by φ along a vectors field on M . And we have

for all (i, a) ∈ I ×H0,(
φ∗
([
X\, Y \

]))
/U

i

= φ∗

([
X\, Y \

]
/U\ia

)
=

[
φ∗

(
X\

/U\ia

)
, φ∗

(
Y \
/U\ia

)]
=

[(
φ∗
(
X\
))
/U

i

,
(
φ∗
(
Y \
))
/U

i

]
=

([(
φ∗
(
X\
))
,
(
φ∗
(
Y \
))])

/U
i

= [X,Y ]/U
i
.
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The above shows that φ∗
([
X\, Y \

])
= [X,Y ] .

As [X,Y ] ∈ `(M,F ′) then
[
X\, Y \

]
∈ `\(M,F ′).Which means that `\(M,F ′)

is stable for the Lie bracket.
It follows from the above that `\(M,F ′) is a Lie algebra of φ∗F ′−foliated

transverse vectors fields.
We note that `\(M,F ′) has the same dimension as `(M,F ′).
The fact that φ∗F ′ is an extension of the Lie foliation F \

F\
ensures by Proposi-

tion 2.6 that `\(M,F ′) is a Lie algebra of vectors fields F \
F\
−foliated transverse.

Let G\F ′ be the Lie algebra of F \
F\
−foliated transverse vectors field associated

to the Lie subalgebra GF ′ corresponding of the extension φ∗F ′ of F \
F\
.

We signal that `\(M,F ′) is ortho- complementary to G\F ′ in `(F \,F \
F\
).

Indeed dim
(
`\(M,F ′)

)
= dim (`(M,F ′)) = codim (φ∗F ′) and [5]

dim
(
G\F ′
)
= codim

(
F \
F\

)
−codim (φ∗F ′) = dim

(
`(F \,F \

F\
)
)
−dim

(
`\(M,F ′)

)
and `\(M,F ′) is orthogonal to G\F ′ because `\(M,F ′) is a Lie algebra of φ∗F ′−foliated
transverse vectors fields.
For X\ ∈ `\(M,F ′) and Y \ ∈ G\F ′ we have

[
X\, Y \

]
∈ `(F \,F \

F\
) and the

equality (∗∗) show us that
[
X\, Y \

]
is tangent to φ∗F ′ that is to say

[
X\, Y \

]
∈

X
(
F \, φ∗F ′

)
.

Thus for all X\ ∈ `\(M,F ′) and Y \ ∈ G\F ′ we have
[
X\, Y \

]
∈ G\F ′ because

[5]

`(F \,F \
F\
) ∩ X

(
F \, φ∗F ′

)
= G\F ′ .

It results from the above that G\F ′ is an ideal of `(F \,F \
F\
). And this implies

that GF ′ is an ideal of G.
iii) Let F ′ be an extension of F and let λ be a F-bundle-like metric on M.
Quits to reduce the size of opens Ui, we can assume distinguished both for

F and F ′ each open Ui.
The local isometry φ : U \ia → Ui sends the leaves of

(
U \ia,F \

F\

)
on leaves of

(Ui,F) and leaves of
(
U \ia, φ

∗F ′
)
on leaves of (Ui,F ′) for all (i, a) ∈ I ×H0.

As the metric λ̃ = φ∗λ is bundle-like for
(
U \ia,F \

F\

)
and

(
U \ia, φ

∗F ′
)
then

the metric λ is bundle-like for (Ui,F) and (Ui,F ′) . And, this implies that the
metric λ is a common bundle-like metric for the foliations F and F ′.

iv) Let FH be the extension of F corresponding to a Lie subalgebra H of
G, let F \H be the extension of F \

F\
corresponding to H, let `(F \,F \H) be the Lie

algebra of F \H−foliated transverse vectors fields and let `inv(F \,F
\
H) be the Lie

subalgebra of `(F \,F \H) of right invariant vectors fields by the right translations
obtained from H0 elements.
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One checks easily through the equality

F \H = φ∗FH

and thanks to the fact that ∀ (i, a) ∈ I ×H0, φ : U
\
ia → Ui is a local isometry

that φ∗ : `inv(F \,F
\
H)→ `(M,FH) is an isomorphism of Lie algebras.

Using the theorem 2.4 and the fact that(
R\a
)∗
ω\ = Ada ◦ ω\

for all a ∈ H0 one easily gets that

ω\
(
`inv(F \,F \H)

)
= {u ∈ H⊥/∀h ∈ H, [u, h] = 0 et ∀a ∈ H0, Ada (u) = u}.

But ω\ : `(F \,F \
F\
) → G is an isomorphism of Lie algebras because the Lie

foliation F \
F\
has leaves that are dense, so

ω\◦(φ∗)
−1
: `(M,FH)→ {u ∈ H⊥/∀h ∈ H, [u, h] = 0 and ∀a ∈ H0, Ada (u) = u}

is an isomorphism of Lie algebras.

Corollary 3.6 Let G be the structural Lie algebra of a Riemannian foliation
with dense leaves F on a compact manifold M.

Then F admits a complete flag of extensions if and only if F is an abelian
Lie G− foliation with dense leaves.

Proof. Let q be the codimension of F and let λ be a F-bundle-like metric
on M.
We suppose that F admits a complete flag of extensions

DF = (Fq−1, Fq−2, ..., F1).
It is easily verified for i ∈ {1, 2, ..., q } that the dimension of the bundle

(TFi)⊥ ∩ TFi−1 is 1. We denote by Xi the unified field that orients (TFi)⊥ ∩
TFi−1.
We note in passing that the foliation F0 has one leaf and this leaf is the

manifold M. We note also that

TFi−1 = TFi⊕ (TFi)⊥ ∩ TFi−1
= TFi⊕ < Xi >

That said, we can say that Xi is a Fi−foliated transverse vectors field.
Indeed F is a Riemannian foliation with dense leaves then according to the

theorem 3.7, DF is a complete flag of Riemannian extensions and the metric λ
is a common bundle-like metric for the foliations Fi.

As Xi is tangent to (TFi)⊥ then we have for all Y ∈ X (Fi) ,

0 = Y λ (Xi, Xi) = 2λ ([Y,Xi] , Xi) .
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Therefore [Y,Xi] is orthogonal to Xi. But [Y,Xi] ∈ X (Fi−1) and
TFi−1 = TFi⊕ < Xi >

so [Y,Xi] is tangent to TFi. Which implies that Xi ∈ `(M,Fi) because Xi is
tangent to (TFi)⊥ .
In what follows we denote F by Fq.
According to the proposition 2.6 for all i and j such as 1 ≤ i < j ≤ q we

have `(M,Fi)⊂`(M,Fj).
It follows that for all i ≤ j we have Xi ∈ `(M,Fj).
The fact that the unified vectors fields Xi are orthogonal two by two implies

that Fj is a Lie Gj−foliation for all j and
`(M,Fj) =< Xj , Xj−1, ...X1 > .

Indeed for all j the codimension of Fj is j and the leaves of Fj are dense.
Let U be a Fq−distinguished open, let f : U → U be a Riemannian submer-

sion defining Fq on U , let ωq be a Fedida 1-forme of Fq such as ωq/U = (f)∗ αq
where αq is the left Maurer Cartan form of Gq, let ωq (Xi) = Xi and let
Gq = Lie (Gq) .
We note in passing that ωq:`(M,Fq)→ Gq is an isomorphism of Lie algebra

because Fq is a Lie Gq−foliation with dense leaves.
It is easily verified using the equality ωq/U = (f)

∗
αq and the fact that the

unified vectors fields Xi are orthogonal two by two that
(
Xq, Xq−1, ...X1

)
is an

orthonormal base for Gq.
Let Hj be the Lie subalgebra of Gq corresponding to the extension Fj of Fq.
We note [5] that dim (Hj) = q − j. And that implies that dim

(
(Hj)⊥

)
= j.

According to the Theorem 2.4 we have ωq (`(M,Fj)) ⊂ (Hj)⊥ .
Consequently the fact that dim

(
(Hj)⊥

)
= j and

ωq (`(M,Fj)) = ωq (< Xj , Xj−1, ...X1 >) =< Xj , Xj−1, ...X1 >

implies that
(Hj)⊥ =< Xj , Xj−1, ...X1 > .

Thus we have
Hj =< Xq, Xq−1, ...Xj+1 > .

As

ωq (`(M,Fj)) =< Xj , Xj−1, ...X1 > and Hj =< Xq, Xq−1, ...Xj+1 >

then according to the theorem 2.4 for all i and k such as 1 ≤ i ≤ j < k ≤ q we
have

[
Xi, Xk

]
= 0.

Is thus obtained for all i and k such that i < k,
[
Xi, Xk

]
= 0. And this

implies that Gq is an abelian Lie algebra. Consequently F is an abelian Lie
G−foliation because G = Gq.
Reciprocally we suppose that F is an abelian Lie G−foliation.
In this case the theorem 2.3 show us that F admits a complete flag of ex-

tensions.
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