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Abstract

The implementation of the experimental methodology by optical measurements of mechanical fields, the development of a test
bench, the specimen preparation, the experimental measurements, and the digital image correlation (DIC) method, havealready
been the object of research in the context of biological materials. Nevertheless, in the framework of the experimental identification
of a mesoscopic stochastic model of the random apparent elasticity field, measurements of one specimen is required at both the
macroscopic scale and the mesoscopic scale under one singleloading. The nature of the cortical bone induces some difficulties, as
no single speckled pattern technique is available for simultaneously obtaining the displacement at the macroscopic scale and at the
mesoscopic scale. In this paper, we present a multiscale experimental methodology based on (i) an experimental protocol for one
specimen of a cortical bone, (ii) its measuring bench, (iii)optical field measurements by DIC method, (iv) the experimental results,
and (v) the multiscale experimental identification by solving a statistical inverse problem.

Keywords: Multiscale measurements, Multiscale experiments, Optical imaging, DIC method, Digital image correlation method,
Multiscale identification, Heterogeneous microstructure, Random elasticity field, Mesoscale, Statistical inverse problem

Preambule

This paper is related to a work Nguyen (2013) devoted to the
multiscale identification of the elasticity field at mesoscale of a
cortical bone by solving a statistical inverse problem. Such a
work had required to develop two different and complementary
parts. The first one was relative to the development of a theo-
retical formulation for the statistical inverse problem that had
the capability to identify the elasticity random field of thehet-
erogeneous microstructure by using a multiscale digital image
correlation technique performed simultaneously at macroscale
and at mesoscale. This first part of the work was already pub-
lished in Nguyen et al. (2015). The second part was related to
the experimental part devoted to the cortical bone. This experi-
mental part has been extremely difficult to carry out in order to
obtain reliable experimental outcomes. This is the reason why
the authors publish this paper for explaining the experimental
procedure that has been followed for the experimental proto-
col, for the preparation of the cortical bone specimen, for the
test bench, and for the test procedure. This part has never been
published. Nevertheless, there are a few overlaps concerning
(i) the experimental results that have already been presented in
Nguyen et al. (2015) in order to illustrate the theory proposed
for the multiscale identification and (ii) the theory for themulti-
scale statistical inverse problem that is detailed in Nguyen et al.
(2015), and which is briefly summarized at the end of this paper
in order to give a self-contained overview to the reader.
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Email address:christian.soize@univ-paris-est.fr (Christian

Soize )

1. Introduction

The experimental identification of microstructural morphol-
ogy by image analysis began in the 1980s Jeulin (1987, 1989,
2001), and has led to significant advances for the identifica-
tion of the elastic properties of materials at the macroscale
and/or mesoscale. Many works could be cited among which
Besnard et al. (2006); Bornert et al. (2009); Hild (2002);
Hild et al. (1999); Hild & Roux (2006, 2012); Kahnjetter et al.
(1994); Rethore et al. (2008); Roux & Hild (2008); Roux et al.
(2002, 2008); Vendroux & Knauss (1998a,b) for field measure-
ments using digital image correlation (DIC) (see for instance
Pan et al. (2009, 2006); Schreier et al. (2000); Sutton et al.
(2008)), including software developments, Bornert et al.
(2010); Hild et al. (2002) for multiscale field measure-
ments, Bonnet & Constantinescu (2005); Constantinescu
(1995); Geymonat et al. (2002); Geymonat & Pagano (2003)
for inverse problems in elasticity, Avril et al. (2008a);
Avril & Pierron (2007); Avril et al. (2008b); Calloch et al.
(2002); Chevalier et al. (2001); Madi et al. (2007) for iden-
tification methods from full-field measurements in linear
and nonlinear elasticity, and Baxter & Graham (2000);
Graham et al. (2003) for stochastic aspect of random media
using a moving-window technique.
In this paper, the heterogeneous material is made up of a corti-
cal bone for which the microstructure is very complex, random
and presents a hierarchical structure. At the macroscopic
scale, such a material is generally assumed to be deterministic
and homogeneous. Consequently, its elasticity tensor can
be identified using experimental measurements of the elastic
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displacement field at the macroscopic scale. Furthermore, at
the microscopic level, such a material is heterogeneous and
random, and cannot be described in terms of its constituents.
Therefore, a mesoscopic scale is introduced between the
macroscopic scale and the microscopic scale, for which the
apparent elasticity field of the microstructure is modeled by a
random field. The identification procedure of theprior stochas-
tic model of this apparent elasticity field is detailed in Nguyen
(2013); Nguyen et al. (2015) for which the measurements of
the displacement field are required both at the macroscopic
scale and at the mesoscopic scale.
The implementation of the experimental methodology by
optical measurements of mechanical fields, the developmentof
a measuring bench, the specimen preparation, the experimental
measurements, and the DIC method, have already been the
object of research in the context of biological materials
Bertolino et al. (2007); Bornert et al. (2010); Chauvet et al.
(2010); Gusachenko et al. (2012); Heripre et al. (2007);
Houssen et al. (2011); Kalouche et al. (2010); Yang et al.
(2012, 2010); Yamaguchi et al. (2011).
In this paper, new advances are proposed to circumvent the
difficulties induced by the complex nature of the cortical
bone and the need to observe for the same loading two very
different scales. A suitable protocol is required to apply the
external loads to the specimen, and to obtain images by optical
measurements of the displacement field in the lightened face
with a sufficient contrast at both the mesoscopic scale and
the macroscopic scale. Furthermore, the measurements of
the elastic displacement field at mesoscopic and macroscopic
scales have to be performed for a single loading applied to the
specimen.
We present (i) an experimental methodology based on optical
field measurements by the DIC method, (ii) an experimental
protocol for one specimen of cortical bone, (iii) its measuring
bench, and (iv) the experimental results.

2. Methodology for the elastic displacement-field measure-
ments by using the digital image correlation method

The field measurements by digital image correlation method
was introduced and has been developed in many works since
the early 1990’s (see the references given in Section 1). For
a given spatial resolution, the elastic displacement field of the
lightened face of the specimen, submitted to external loads, can
be obtained by comparing two images. The first image cor-
responds to the undeformed specimen (reference image) while
the second one corresponds to the deformed specimen under
the external load (deformed image). The comparison of these
two images relies on the digital image correlation under theas-
sumption that the contrast is locally preserved in the vicinity of
each point where the displacement is measured.
There exists a large number of approaches for obtaining the im-
ages. It depends on the nature of the contrast, the correlation
coefficient that is estimated using the digitalized images, and
which requires an optimization algorithm. Most of the imple-
mentations of the image correlation method rely on the use of

an optical CCD camera, equipped with an optical lens adapted
to the scale of the observed structure. At the macroscopic scale,
the displacement field (that has to be measured) varies between
a few millimeters and a few centimeters, or more. Such an
imaging method is usually free of any technical problem re-
lated to the lighting, the alignment or the field depth. Images
are then recorded by a computer equipped with a video card
(for which the frequency has been adapted to the measured
specimen), a data acquisition system, and a devoted process-
ing software. The images are analyzed by the image correlation
method in grey levels. For each pixel, the signal is represented
by a scalar corresponding to a grey level. The colored images
have not been used because the color induces two major dif-
ficulties. The first one is related to the definition of the gap
between two colors that are coded by a scalar indicator; con-
sequently, the definition of a correlation coefficient based on
a distance between two images remains an open problem for
images in color. The second one is related to the implementa-
tion of a usual color camera, which uses a color filter located
in front of its CCD sensor, implying that some pixels are sen-
sitive to blue, some others are sensitive to red, and others are
sensitive to green. In consequence, the signal is undersampled
with a factor four, which is detrimental to the performance of
the image correlation method.
It is also possible to obtain much smaller images with a macro-
photographic lens or with an optical microscope. The dimen-
sions of the observed area can then be less than one square mil-
limeter or even a tenth of a square millimeter. If the magnifica-
tion is increased, some difficulties appear due to the low amount
of available light, which requires strong enough lighting.An-
other problem concerns the field depth, which decreases as the
magnification grows. In order to obtain sharp images through-
out the observation area, it is then necessary to ensure the flat-
ness of the observed lightened face, which requests an adequate
polishing. However, cortical bone is delicate to polish as it is
very sensitive to chemical agents, temperature and is difficult to
handle. In addition, the alignment of the optical axis with the
normal to this face should be set carefully. Another difficulty
is the control of the working distance between the observation
system and the observed specimen. Indeed, a variation in this
distance will blur the image. Small variations will lead to an
artificial magnification, which generates unphysical strains (as-
sociated to a dilatation). Large variations lead to non-usable
images. The focus distance is fixed and the system focusses au-
tomatically by moving the full optical setup. In the framework
of the classical optics, the resolution limit of optical cameras is
related to the wavelength of the light used. In practice, fora
standard white sub-lighting, and for a high quality opticalsys-
tem, the lower limit of a pixel is approximatively 0.5× 10−6 m.
It is possible to have pixels associated to smaller lengths,lead-
ing to oversampling, but the adjacent pixels are then correlated.
A higher magnification can be reached with other imaging sys-
tems as the scanning electron microscopy (SEM) whose res-
olution can be 10−9 m with a field-emission scanning electron
microscope.
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3. Experimental protocol for the cortical bone and measur-
ing bench

In this section, the method for preparing a cortical bone spec-
imen, measuring bench, the test procedure and the difficulties
encountered are presented.

Figure 1: Beef cortical bone. Specimen before preparation (left) and after
preparation (right) (cube with dimensions 0.01× 0.01× 0.01m3)

3.1. Specimen preparation
Biological tissues are among the most difficult material to be

tested and to be modeled because of the high level of complex-
ity of their structure the microscopic scale. It is the case for the
cortical bone for which several scales have to be defined from
10−9 m to 10−3 m. The cortical bone is a porous heterogenous
anisotropic material that is very stiff and very resistant and for
which, at the microscale, osteons, lamellae and canals can be
identified. Cortical bone specimens coming from beef femurs
have been used. For the cortical-bone specimen the macro-
scopic scale is 10−2 m, the mesoscopic scale is 10−3 m, and the
scale of the microstructural heterogeneities is between 10−5 m
and 10−6 m.
The sample is extracted from a beef femur. The femur is ini-
tially cut into rough sections (see Fig. 1). Then the marrow,
the nerves, and the cartilage attached to the bone have been
removed. In a second step, the cleaned bone is cut with a di-
amond wire saw. The final shape of the specimen is a cube
with dimension 0.01× 0.01× 0.01m3. The maximum error on
the dimension of its edges is 5% (see Fig. 1). During all the
procedure, we kept track of the orientation of the sample with
respect to the initial bone, so that one face is parallel to the long
axis of the bone (associated with the direction of the osteons).
The third step consists in polishing the surfaces of the specimen
with a disk polisher in order to ensure a sufficient flatness. Dur-
ing the polishing, the specimen is fixed at a specimen carrierby
using a double sided adhesive tape. Then, parallel faces areob-
tained by pressing softly the specimen against the disk polisher.
The observed face of the specimen is perpendicular to the long
axis of the bone, so that we see the osteon.
In the last step, the observed face is covered with a speckled
pattern. It is important to obtain a high contrast for the digital
image correlation method. In the framework of the multiscale
experiments devoted to the proposed identification procedure
Nguyen (2013); Nguyen et al. (2015), it should be noted that
a single speckled pattern is used for the optical measurements
of the displacement fields both at the macroscopic and meso-
scopic scales for the specimen submitted to a single external

load. Three speckled pattern techniques have been tested for
this biological material, among which two of them (the two first
techniques presented hereinafter) failed to give a sufficient con-
trast. Experimental measurements presented in Section 4 have
been obtained with the third speckled pattern technique. The
first technique has consisted in spraying a black paint that yields
good results at macroscopic scale but the paint drops were too
big and the speckled pattern was not usable for the mesoscopic
scale.
A speckled pattern of microbeads (Polybead microspheres, di-

Figure 2: Observed face of the specimen, at the macroscopic scale: speckled
pattern with black paint (left figure) and scratches (right figure)

ameter 4.5×10−6 m) was tested as a second technique. With this
technique, the microbeads were placed in a colored ink solution
and then deposited through a pipette on the observed face. After
drying of the ink solution, the specimen was ready for perform-
ing the measurements but, the obtained pattern was too much
heterogeneous, and it did not yield sufficient contrast for opti-
cal imaging (despite that good results could be obtained with
SEM). For the last technique, a polishing paper with grit#800
has been used to scratch the observed face in two perpendicular
directions. Then, after coating the observed face with black ink,
it is wiped such that the black ink mostly fills the pores and the
scratches. Fig. 2 displays the resulting speckled patternsfor the
black paint (left) and for the scratches (right).

3.2. Test bench
The test bench is shown in Fig. 3.

The prepared specimen is placed inside a home-made vertical

Figure 3: Photography of the optical setup in front of the compression machine.

uniaxial compression machine. The displacement of the top
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head of the machine is controlled, the bottom one being
fixed. The force is recorded through a 10, 000N load cell. The
sample is placed between two metallic cylinders inside the
heads of the machine. The boundary conditions are thus not
obvious to define. For the model, the following assumptions
are used. The normal displacements of the face that is pressing
against the lower fixed side of the UCM are locked while the
corresponding tangential displacements are free. It is assumed
that a constant surface-force field is applied to the opposite
face that is pressing against the actuator of the machine. The
tangential displacements are assumed to be free. The four other
vertical faces of the specimen are free.
The sample is loaded at constant speed (10−6 m/s) up to
9, 000N: preliminary experiments have shown that this force
allows for staying in the linear elasticity domain. A lighting
source is placed inside the test bench, pointing out in the
direction of the observed face. The images acquisition is
performed by a single CCD camera (Pike F505, Allied Vision
Technology, Germany) equipped with a x5 microscope lens
(Mitutoyo, Japan), located in front the specimen. The pixel
size is (0.69× 10−6) × (0.69× 10−6) m2 with 2, 452× 2, 054
pixels on the CCD sensor. This leads to an oversampled image,
favorable for the DIC as soon as the correlation domain is still
larger than the optical resolution.
The same setup is used for the acquisition of the images at
microscale and at macroscale. The full surface is imaged by
moving along the horizontal and the vertical directions. This
can be done since the camera and its objective are installed
on three motorized stages (horizontal movements: LS-110;
vertical movements: ES-100, Micos, Germany): two motors
are used to scan the surface, while the last one is use for the
automatic focus. Nine images are taken along the horizontal
direction, and ten images along the vertical one, insuring an
overlap of at least 34%. Each one of these 90 images defines
a mesoscopic subdomain. The macroscopic image is built by
combining the 90 mesoscopic images, using ImageJ stitching
plugin Rasband (2013).

3.3. Test procedure
The test procedure is described as follows.

1. First, the maximal compression force that can be applied
to the specimen is estimated in order to stay in the linear
elastic domain. For that, several loading and unloading cases
are applied to 4 dedicated specimens. As a result, the value
9, 000N is chosen.

2. Each one of the 90 images is acquired with 2, 452× 2, 054
pixels for the specimen at rest (no applied load).

3. At macroscopic scale, a reference image is built in
combining these 90 images (mosaic image) by using the
softwareImageJ. In addition, the image number 42 (located
at the middle of the lightened face) is taken as the reference
image for the mesoscopic scale.

4. The specimen is loaded at a speed of 10−6 m/s up to the
final value 9, 000N. The displacement is then fixed and the
acquisition of the 90 images is performed for the deformed
specimen (deformed images). It should be noted that a very
small relaxation of about 7% of the force has been observed
during the test.

5. At macroscopic scale, the deformed image is built in
combining these 90 deformed images (mosaic image). As
previously, the image number 42 is taken as the deformed
image for the mesoscopic scale.

6. At the macroscopic scale and at the mesoscopic scale, the
displacement fields are calculated by the digital image correla-
tion method. A spatial resolution of 10×10 - points grid is used
for the macroscopic scale, which corresponds to 10×10 grid on
the image obtained by stitching together the 90 images, while a
100× 100 - points grid is used for the mesoscopic scale. The
analysis has been carried out using theCorrel Manusoftware.
Taking into account the dimension of the specimen, the spatial
resolution is 10−5 m in each direction at the mesoscale.

4. Experimental results

Results at the macroscopic scale.
At the macroscopic scale, the displacement field is displayed

in Fig. 4 for the horizontal component along directionx1 that
is perpendicular to the axis of the actuator (left figure) andfor
the vertical component along directionx2 that is parallel to the
axis of the actuator (right figure). The images are presentedon
a 10× 10 - points grid. The components 11, 22, and 12 of the
strain tensor are displayed in Figs. 5 and 6. It should be noted
that the strain field is not homogeneous at the macroscopic
scale that is due to the boundary conditions effects. In addition,
in Fig. 4, it can be observed a slight loss of symmetry with
respect to the median vertical line of the image. The loss of
symmetry is explained by a misaligned loading. Consequently,
the horizontal component of the resulting surface-force field
applied by the actuator is non zero. It induces a shear strainbut
also a small horizontal slip of the specimen.
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Figure 4: The horizontal axis isx1 and the vertical axis isx2. Component along
directionx1 of the displacement field (left figure) and along directionx2 (right
figure), at the macroscopic scale.

Results at the mesoscopic scale.
At the mesoscopic scale, the two components of the displace-

ment field are displayed in Fig. 7 for directionx1 (left figure)
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Figure 5: The horizontal axis isx1 and the vertical axis isx2. Component 11
(left figure) and component 22 (right figure) of the strain tensor at the macro-
scopic scale.
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Figure 6: The horizontal axis isx1 and the vertical axis isx2. Component 12
(shear) of the strain tensor at the macroscopic scale.

and for directionx2 (right figure). The images are presented
with a 100× 100 - points grid. The components 11, 22, and 12
of the strain tensor are displayed in Figs. 8 and 9. Similarlyto
the macroscopic scale, a slight loss of symmetry is observed,
which can be explained with the same reasons. Furthermore, in
Fig 7, despite the vertical components of the displacement field
is continue, an important gradient can be observed, which isnot
due to a crack.
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Figure 7: The horizontal axis isx1 and the vertical axis isx2. Component along
directionx1 of the displacement field (left figure) and along directionx2 (right
figure), at the mesoscopic scale (for image 42).
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Figure 8: The horizontal axis isx1 and the vertical axis isx2. Component 11
(left figure) and component 22 (right figure) of the strain tensor at the meso-
scopic scale(for image 42).
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Figure 9: The horizontal axis isx1 and the vertical axis isx2. Component 12
(shear) of the strain tensor at the mesoscopic scale(for image 42).

5. Brief summary of the statistical inverse problem

The identification procedure proposed is based on the fact
that the random apparent elasticity field at mesoscale of the
microstructure cannot completely be identified by using only
the measured displacement field at mesoscale. An additional
information at macroscale is required. This is the reason why
the identification at macroscale is introduced and consequently,
two scales are simultaneously measured and used in the
statistical inverse problem.
In this section, the identification procedure for solving the sta-
tistical inverse problem is briefly presented. Figure 10 presents
an overview of the methodology that is detailed in Nguyen
(2013); Nguyen et al. (2015). The experimental displacement
field umacro

exp is constructed using a finite element interpolation
of the experimental values of the displacement obtained on the
10× 10 points correlation grid over the macroscopic domain.
The strain field associated withumacro

exp is denoted byεmacro
exp .

At macroscale, a deterministic boundary value problem is
introduced for a three-dimensional linear elastic medium,
which models the specimen in its experimental configuration
(geometry, surface forces and Dirichlet conditions). The
constitutive equation involves aprior deterministic model for
the fourth-order elasticity tensorCmacro(a) that is parameterized
by a vectora. The tensor-valued strain field associated with
this boundary value problem is denoted byεmacro(a) and
also depends ona. Moreover, the experimental mesoscopic
displacement fieldumeso

exp is constructed in using a finite element
interpolation of the experimental values of the displacement
obtained on the 100× 100 points correlation grid over the
mesoscopic domain. The strain field associated withumeso

exp is
denoted byεmeso

exp . At mesoscale, a stochastic boundary value
problem is introduced for a linear elastic medium in 2D plane
stress with Dirichlet conditions defined by the values of the
experimental displacements on the boundary of the mesoscopic
correlation grid.

The apparent elasticity field is modeled as aprior tensor-
valued random field and is considered as the restriction to
subdomainΩmeso of a statistically homogeneous random
field {Cmeso(x; b), x ∈ R

3} in which b is the vector of the
parameters. In using the Voigt notation, for allx fixed in
Ωmeso, the random fourth-order elasticity tensorCmeso(x) can
be represented by a (6× 6) real random matrix [Cmeso(x)],
which is the inverse matrix of a random compliance matrix
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Figure 10: Overview of the methodology for the identification of a stochastic
model of the apparent elasticity random field at mesoscopic scale.

[Smeso(x)]. Nevertheless, we will keep the same notation for
the strain fields and their matrix representations. For the case
of 2D plane stresses, theprior stochastic model of [Cmeso(x)]
is constructed in choosing [Smeso] = {[Smeso(x)] , x ∈ Ωmeso}
in the set SFE+ (defined in Soize (2006, 2008, 2012)) of
the non-Gaussian second-order stochastic fields with values
in the set of all the positive-definite symmetric (6× 6) real
matrices. Hence, for a transverse anisotropic material in 2D
plane stresses, we haveb = (δ, ℓ,ET , νT) where ET and νT
are the Young modulus and the Poisson coefficient that are
independent ofx, and which parameterize the statistical mean
value of the compliance matrix for the transverse isotropic
material at the mesoscale (this statistical mean compliance
matrix is independent ofx because the elasticity random field
is statistically homogeneous at the mesoscale). It should be
noted that the identified valuesEmeso

T andνmeso
T of ET andνT do

not represent statistical mean values of these Young modulus
and Poisson coefficient because the mean compliance matrix
is a nonlinear mapping ofET and νT . The parameterδ of
the stochastic model allows for controlling the level of the
statistical fluctuations of the elasticity field at the mesoscale
(for δ = 0 the statistical fluctuations are zero). The parameterℓ

is a length that characterizes the spatial correlation lengths of
the elasticity random field at the mesoscale, which are assumed
to be the same in the two directions.

In order to identifya and b, three numerical indicators,
I1(a), I2(b), I3(a, b), are introduced. The distance between
εmacro

exp andεmacro(a) is quantified by the first numerical indica-
tor I1(a). The numerical indicatorI2(b) quantifies the dif-
ference between the spatial fluctuations of the experimental
strain field at mesoscale (around its volume average3

meso
exp )

and the statistical fluctuations of the random strain field of
the stochastic boundary value problem (around its mean value
3
meso) at mesoscale. Finally, the numerical indicatorI3(a, b)

quantifies the distance between the effective elasticity matrix
[Cmacro(a)] used in the deterministic boundary value problem at

macroscale, and the effective elasticity matrix [Ceff(b)] calcu-
lated by homogenization of the mesoscale stochastic model in
subdomainΩmesowith the assumption that it is a REV. We then
have

I1(a) = ||| εmacro
exp − εmacro(a) |||2 , (1)

I2(b) =
∫

Ωmeso
(δmeso(x; b) − δmeso

exp )2 dx , (2)

I3(a, b) = ‖ [Cmacro(a)] − E{[Ceff(b)]} ‖2F . (3)

in which ‖ · ‖F is the Frobenius norm of a matrix,

||| εmacro
exp −εmacro(a) |||2=

∫

Ωmacro
‖ εmacro

exp (x)−εmacro(x; a) ‖2F dx . (4)

δ
meso(x; b) =

√
Vmeso(x; b)
‖ 3

meso(b)‖F
and δ

meso
exp =

√

Vmeso
exp

‖ 3
meso
exp ‖F

, (5)

and where

3
meso(b) =

1
|Ωmeso|

∫

Ωmeso
3
meso(x; b) dx , (6)

3
meso
exp =

1
|Ωmeso|

∫

Ωmeso
3
meso
exp (x) dx , (7)

Vmeso(x; b) = E{‖ 3
meso(x; b) − 3

meso(b) ‖2F } , (8)

Vmeso
exp =

1
|Ωmeso|

∫

Ωmeso
‖ 3

meso
exp (x) − 3

meso
exp ‖

2
F dx (9)

The identification of parametersa andb is obtained by solving
a multi-objective optimization problem for the three indicators
I1(a), I2(b), andI3(a, b). A genetic algorithm is used in
order (1) to construct the Pareto front and (2) to find the
global optimal valuesamacro and bmeso of the multi-objective
optimization problem.

The value ofamacro is almost unchanged through the iter-
ations when the multi-objective problem is solved. Conse-
quently, we found that the optimal value ofa = (Emacro

T , νmacro
T )

is amacro = (6.74× 109 Pa, 0.32). Less than 100 generations
have been enough for solving the multi-objective optimization
problem. Its optimal components areℓmeso = 5.06× 10−5 m,
δmeso = 0.28, Emeso

T = 6.96 × 109 Pa, νmeso
T = 0.37. This

optimal solution yields a spatial correlation length equalto
5.06× 10−5 m, which has to be compared to the spatial resolu-
tion that is 10−5 m, and which is in agreement with the assump-
tion introduced concerning the separation of the scales. This
length is also of the same order of magnitude than the distance
between adjacent lamellae or osteons in cortical bovine femur.

6. Conclusion

In the framework of a multiscale identification of the
apparent elasticity field at the mesoscopic scale for a complex
elastic microstructure, the measurements of the deformation
of a specimen submitted to a single external loading must
simultaneously be carried out for both the mesoscopic scale
and the macroscopic scale. In this paper, an innovative

6



experimental protocol has been presented for the multiscale
measurements of a cortical bone specimen. A test bench, made
up of a unique optical lens, has been developed, and uses a
single imaging at the two scales. The specimen is a centimetric
cube of cortical bone. Some difficulties have been induced by
the nature of the cortical bone for which no existing speckled
pattern technique was available for imaging the displacement
field, simultaneously at the macroscopic scale and at the
mesoscopic scale by the DIC method. The difficulties have
been circumvented thanks to the development of an adapted
experimental procedure. The presented experimental results
are coherent and satisfying, and the use of these results have
been used for a multiscale identification of a stochastic model
of the apparent elasticity random field at mesoscopic scale.
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comportement de matériaux solides: utilisation d’essaiset de calculs.Tech-
nologies et Formations, 100, 36–41.

Chauvet, D., Carpentier, A., & Allain, J.-M. (2010). Histological and biome-
chanical study of dura mater applied to the technique of durasplitting de-
compression in chiari type i malformation.Neurosurgical Review, 33, 287–
294.

Chevalier, L., Calloch, S., Hild, F., & Marco, Y. (2001). Digital image correla-
tion used to analyze the multiaxial behavior of rubber-likematerials.Euro-
pean Journal of Mechanics A-Solids, 20, 169–187.

Constantinescu, A. (1995). On the identification of elasticmoduli from
displacement-force boundary measurements.Inverse Problems in Engineer-
ing, 1, 293–315.

Geymonat, G., Hild, F., & Pagano, S. (2002). Identification of elastic parame-
ters by displacement field measurement.Comptes Rendus Mécanique, 330,
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