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Abstract	This	 paper	 introduces	 a	 new	 hypothesis	 concerning	 the	 dissociated	 role	 of	 the	 basal	
ganglia	in	the	selection	and	the	evaluation	of	action	that	has	been	formulated	using	a	theoretical	
model	and	confirmed	experimentally	 in	monkeys.	To	do	so,	prior	to	 learning,	we	inactivated	the	
internal	part	of	 the	Globus	Pallidus	(GPi,	 the	main	output	structure	of	 the	BG)	with	 injections	of	
muscimol	and	we	tested	monkeys	on	a	variant	of	a	two-armed	bandit	task	where	two	stimuli	are	
associated	 with	 two	 distinct	 reward	 probabilities	 (0.25	 and	 0.75	 respectively).	 Unsurprisingly,	
performance	 in	 such	 condition	 are	 at	 the	 chance	 level	 because	 the	 output	 of	 basal	 ganglia	 is	
suppressed	and	they	cannot	influence	behaviour.	However,	the	theoretical	model	predicts	that	in	
the	meantime,	values	of	the	stimuli	are	nonetheless	covertly	evaluated	and	learned.	This	has	been	
tested	 and	 confirmed	 on	 the	 next	 day,	 when	muscimol	 has	 been	 replaced	 by	 a	 saline	 solution:	
monkeys	 instantly	 showed	 significantly	 improved	 performances	 (above	 chance	 level),	 hence	
demonstrating	they	have	covertly	learned	the	relative	value	of	the	two	stimuli.	This	tends	to	suggest	
a	competition	takes	place	in	the	Cortex-BG	loop	between	two	actors,	one	of	whom	being	sensitive	
to	criticism	and	the	other	not.	Ultimately,	the	actual	choice	is	valuated,	independently	of	the	origin	
of	the	decision.	
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Introduction	
	

The	now	classical	actor-critic	model	of	decision	making	elaborated	in	the	1980s	posits	that	
there	 are	 two	 separate	 components	 in	 order	 to	 explicitly	 represent	 the	 policy	
independently	of	the	value	function.	The	actor	is	in	charge	of	choosing	an	action	in	a	given	
state	(policy)	while	the	critic	is	in	charge	of	evaluating	(criticizing)	the	current	state	(value	
function).	 This	 classical	 view	has	 been	used	 extensively	 for	modelling	 the	 basal	 ganglia	
(Suri	and	Schultz,	1999;	Suri,	2002;	Doya,	2007;	Glimcher,	2011;	Doll	 et	 al.,	2012)	even	
though	the	precise	anatomical	mapping	of	these	two	components	is	still	subject	to	debate	
and	may	diverge	 from	one	model	 to	 the	other	 (Redgrave	et	al.,	2008;	Niv	and	Langdon,	
2016).	However,	all	these	models	share	the	implicit	assumption	that	the	actor	and	the	critic	
are	 acting	 in	 concert,	 i.e.	 the	 actor	 determines	 the	 policy	 exclusively	 from	 the	 values	
estimated	by	the	critic,	as	in	Q-Learning	or	SARSA.	Interestingly	enough,	(Sutton	and	Barto,	
1998)	 noted	 in	 their	 seminal	work	 that	one	 could	 imagine	 intermediate	 architectures	 in	
which	 both	 an	 action-value	 function	 and	 an	 independent	 policy	 would	 be	 learned.	 One	
legitimate	question	is	thus	to	wonder	whether	the	role	of	the	BG	critic	is	restricted	to	the	
exclusive	evaluation	of	the	BG	actor	or	if	this	role	might	be	considered	to	be	more	general.	
In	other	words,	can	the	BG	critic	role	extend	beyond	the	basal	ganglia	and	evaluate	any	
actor,	independently	on	its	origin?	

We	support	this	latter	hypothesis	based	on	a	decision-making	model	that	is	grounded	on	
anatomical	and	physiological	data	and	that	identify	the	cortex-basal	ganglia	(CBG)	loop	as	
the	actor.	The	critic	—	of	which	the	Substantia	Nigra	pars	compacta	(SNc)	and	the	Ventral	
Tegmental	 Area	 (VTA)	 are	 essential	 components	 —	 interacts	 through	 dopamine	
projections	 to	 the	 striatum	 (Leblois	 et	 al.,	 2006).	 Decision	 is	 generated	 by	 symmetry	
breaking	mechanism	 that	 emerges	 from	 competitions	 processes	 between	 positives	 and	
negatives	 feedback	 loop	encompassing	 the	 full	CBG	network	 (Guthrie	 et	 al.,	 2013).	This	
model	captured	faithfully	behavioural,	electrophysiological	and	pharmacological	data	we	
obtained	in	primates	using	implicit	variant	of	two-armed	bandit	tasks	—	that	assessed	both	
learning	and	decision	making	—	but	was	less	consistent	with	the	explicit	version	(i.e.	when	
values	are	known	from	the	beginning	of	the	task)	that	focus	on	the	decision	process	only.		
We	 therefore	 upgraded	 this	 model	 by	 adding	 a	 cortical	 module	 that	 is	 granted	 with	 a	
competition	mechanism	and	Hebbian	learning	(Doya,	2000).	This	improved	version	of	the	
model	predicts	that	the	whole	CBG	loop	is	actually	necessary	for	the	implicit	version	of	the	
task,	however,	when	the	basal	ganglia	feedback	to	cortex	is	disconnected,	the	system	is	still	
able	to	choose	in	the	explicit	version	of	the	task.	Our	experimental	data	fully	confirmed	this	
prediction	 (Piron	 et	 al.,	 2016)	 and	 allowed	 to	 solve	 an	 old	 conundrum	 concerning	 the	
pathophysiology	 of	 the	 BG	 which	 was	 that	 lesion	 or	 jamming	 of	 the	 output	 of	 the	 BG	
improve	parkinsonian	patient	motor	symptoms	while	it	affects	marginally	their	cognitive	
and	psychomotor	performances.	

An	interesting	prediction	of	this	generalized	actor-critic	architecture	is	that	the	valuation	
of	 options	 and	 the	 behavioural	 outcome	 are	 segregated.	 In	 the	 computational	model,	 it	
implies	that	if	we	block	the	output	of	the	basal	ganglia	in	a	two-armed	bandit	task	before	
learning,	 and	 because	 reinforcement	 learning	 occurred	 at	 the	 striatal	 level	 under	
dopaminergic	 control,	 this	 should	 induce	 covert	 learning	 when	 the	 model	 chooses	
randomly.	The	goal	of	this	study	is	thus	twofold:	i)	to	present	a	comprehensive	description	
of	the	model	in	order	to	provide	the	framework	for	an	experimental	paradigm	that	allow	to	
objectivize	covert	learning	and	ii)	to	test	this	prediction	in	monkeys.	
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Material	and	methods	

Behavioral	experiments	
Experimental	procedures	were	performed	in	accordance	with	the	Council	Directive	of	20	
October	2010	(2010/63/UE)	of	the	European	Community.	This	project	was	approved	by	
the	French	Ethic	Comity	for	Animal	Experimentation	(#50120111-A).	Data	were	obtained	
from	 two	 female	 macaque	 monkeys	 that	 were	 previously	 used	 in	 a	 related	 set	 of	
experiments.	 All	 the	 details	 concerning	 animal	 care,	 experimental	 setup,	 surgical	
procedure,	bilateral	inactivation	of	the	GPi	and	histology	can	be	found	in	(Piron	et	al.,	2016).	
Raw	data	is	available	from	(Kase	and	Boraud,	2017)	

Computational	modeling		
Code	and	statistical	analysis	are	available	from	(Rougier	and	Topalidou,	2017).	

Architecture		

The	model	is	an	extension	of	previously	published	models	(Leblois	et	al.,	2006;	Guthrie	et	
al.,	2013).	The	model	by	(Leblois	et	al.,	2006)	introduced	an	action	selection	mechanism	
which	 derives	 from	 the	 competition	 between	 a	 positive	 feedback	 through	 the	 direct	
pathway	and	a	negative	feedback	through	the	hyper-direct	pathway	in	the	cortico-basal-
thalamic	loop.	The	model	has	been	extended	in	(Guthrie	et	al.,	2013)	in	order	to	explore	the	
parallel	organization	of	circuits	in	the	BG.	This	model	includes	all	the	major	nuclei	of	the	
basal	ganglia	(but	GPe)	and	is	organized	along	three	segregated	loops	(motor,	associative	
and	cognitive)	that	spread	over	the	cortex,	the	basal	ganglia	and	the	thalamus	(Alexander	
et	al.,	1986;	Albin	et	al.,	1989;	Alexander	and	Crutcher,	1990;	Parent	and	Hazrati,	1995).	It	
incorporates	a	two-level	decision	making	with	a	cognitive	level	selection	(lateral	prefrontal	
cortex,	LPFC)	based	on	cue	shape	and	a	motor	level	selection	(supplementary	motor	area,	
SMA,	and	primary	motor	cortex,	PMC)	based	on	cue	position	(see	figure	2).	In	this	latter	
model	 (Rougier	and	Topalidou,	2017),	 the	 cortex	was	mostly	an	 input/output	 structure	
under	the	direct	influence	of	both	the	task	input	and	the	thalamic	output	resulting	from	the	
basal	ganglia	computations.	Consequently,	this	cortex	could	not	take	a	decision	of	its	own.	
In	the	present	work,	and	to	cope	with	our	main	hypothesis,	we	added	a	lateral	competition	
mechanism	 in	 all	 three	 cortices	 (motor,	 cognitive,	 associative)	 based	 on	 short	 range	
excitation	and	long	range	inhibition	and	connections	(Coombes	et	al.,	2014)	between	the	
associative	cortex	and	cognitive	(resp.	motor	ones)	to	allow	for	the	cross	talking	of	these	
structures.	 This	 competition	 results	 in	 the	 capacity	 for	 the	 cortex	 to	 make	 a	 decision,	
although	with	a	slower	dynamic	when	compared	to	the	BG.		

Dynamics		

The	dynamic	of	a	decision	in	the	model	is	illustrated	on	the	bottom	part	of	figure	3	before	
any	 learning	 has	 occurred.	 The	 left	 panel	 shows	 the	 dynamics	 of	 the	 unlesioned	model	
where	a	decision	occurs	a	few	milliseconds	after	stimulus	onset.	However,	in	the	lesioned	
model	 (right	 panel),	 the	 suppression	 of	 the	 GPi	 output	 slows	 down	 considerably	 the	
decision	process	 compared	 to	 the	 intact	model.	This	means	 that	 the	decision	 is	 initially	
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driven	by	the	basal	ganglia	as	it	has	been	suggested	in	(Pasupathy	and	Miller,	2005;	Turner	
and	Desmurget,	2014)	

Learning		

Dopamine	modulates	 learning	using	 reinforcement	 learning	 (RL)	between	 the	 cognitive	
cortex	and	the	cognitive	striatum	such	that	the	decision	made	at	the	cognitive	level	can	be	
used	to	bias	the	decision	at	the	motor	level.	Hebbian	learning	(HL)	occurs	just	after	a	motor	
action	has	been	selected	and	carried	out	and	modifies	the	connections	(LTP)	between	the	
cognitive	cortex	and	the	associative	cortex.	It	does	not	depend	on	reward	but	only	on	the	
actual	cognitive	and	motor	choices.	It	 is	to	be	noted	that	the	cortical	selection	(resulting	
from	lateral	competition	in	the	cortex)	is	slower	than	the	cortico-basal	selection	such	that	
the	 cortex	 is	 initially	 driven	by	 the	 basal	 ganglia	 output	 (GPi),	 hence	 it	 learns	 from	 the	
statistics	provided	by	the	BG	selection.		

Lesion		

Lesion	in	the	model	is	made	through	the	removal	of	all	the	connections	between	the	motor	
(resp.	cognitive)	GPi	and	the	motor	(resp.	cognitive)	thalamus	(red	crosses	on	figure	3).	
This	prevents	any	communication	from	the	basal	ganglia	to	the	model	but	keeps	intact	the	
communication	from	the	cortex	to	the	basal	ganglia.		

Statistical	Analysis		

Theoretical	 and	 experimental	 data	 were	 analyzed	 using	 Kruskal-Wallis	 rank	 sum	 test	
between	the	two	conditions	(muscimol	or	control)	for	the	6	samples	(10	first	trials	of	D0	
(control),	10	last	trials	of	D0	(control),	10	first	trials	of	D1;	10	last	trials	of	D1;	10	first	trails	
of	 D2;	 10	 last	 trials	 of	 D2)	 with	 posthoc	 pairwise	 comparisons	 using	 Dunn's-test	 for	
multiple	comparisons	of	independent	samples.	P-values	have	been	adjusted	according	to	
the	 false	discovery	rate	(FDR)	procedure	of	Benjamini-Hochberg.	Results	were	obtained	
from	raw	data	using	the	PMCMR	R	package	(Pohlert,	2014).	Significance	level	was	set	at	P<	
0.01.	

Results	
We	designed	a	simple	two-armed	bandit	task	where	two	stimuli	A	and	B	are	associated	with	
different	reward	probability	as	explained	on	figure	1.	The	goal	for	the	subject	is	to	choose	
the	stimulus	associated	with	the	highest	reward	probability,	independently	of	its	position.	
The	protocol	is	split	over	two	days.	On	the	first	day,	a	novel	set	of	stimuli	(with	respective	
reward	probability	0.25	and	0.75)	is	used	while	the	GPi	output	is	suppressed	and	a	session	
is	made	of	60	consecutive	trials.	On	the	second	day,	GPi	suppression	is	removed	and	the	
same	set	of	stimuli	from	day	1	is	used	for	another	60	consecutive	trials.	A	control	has	been	
performed	using	a	different	set	of	stimuli	to	check	for	the	learning	curve	in	saline	condition.	
Note	that	control	and	two-days	session	uses	a	different	set	of	stimuli.	

Theoretical	 results.	 We	 tested	 our	 hypothesis	 on	 a	 computational	 model	 using	 12	
different	sessions	(corresponding	to	12	different	initializations	of	the	model).	The	upper	
part	 of	 figure	 3B	 shows	 individual	 trials	 for	 all	 the	 different	 sessions.	 On	 day	 1,	 we	
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suppressed	the	GPi	output	by	cutting	the	connections	between	the	GPi	and	the	thalamus.	
When	the	GPi	output	is	suppressed	on	day	1,	the	performance	is	random	at	the	beginning	
as	shown	by	the	average	probability	of	choosing	the	best	option	(expressed	in	mean±SD)	
in	 the	 first	 10	 trials	 (0.408	 ±0.161)	 and	 remain	 so	 until	 the	 end	 of	 the	 session	 (0.525	
±0.164).	Statistical	analysis	revealed	no	significant	difference	between	the	10	first	and	the	
10	last	trials.	On	day	2,	we	re-established	connections	between	the	GPi	and	the	thalamus	
and	the	model	has	to	perform	the	exact	same	task	as	for	day	1	using	the	same	set	of	stimuli.	
Results	 shows	 a	 significant	 change	 in	 behavior:	 the	model	 starts	with	 an	 above-chance	
performance	on	the	first	10	trials	(0.717	±0.241)	and	this	change	is	significant	as	compared	
to	the	beginning	of	D1	and	as	compared	to	the	end	of	D1,	confirming	our	hypothesis	that	
the	BG	have	previously	learned	the	value	of	stimuli	even	though	they	were	unable	to	alter	
behavior.	

Experimental	results.	We	tested	the	prediction	on	two	female	macaque	monkeys	which	
have	been	implanted	with	two	cannula	guides	into	the	left	and	right	GPi	(see	Materials	and	
Methods	 section	 for	 details).	 In	 order	 to	 inhibit	 the	GPi,	we	 injected	 bilaterally	 a	GABA	
agonist	(muscimol,	1µg)	15	minutes	before	working	session	(see	Materials	&	Methods)	on	
day	1.	The	two	monkeys	were	trained	for	7	and	5	sessions	respectively,	each	session	using	
the	same	set	of	stimuli.	Results	on	day	1	shows	that	animals	were	unable	to	choose	the	best	
stimulus	in	such	condition	from	the	start	(0.433	±0.236)	to	the	end	(0.492	±0.250)	of	the	
session.	Statistical	analysis	revealed	no	significant	difference	between	the	10	first	and	the	
10	last	trials	on	day	1.	On	day	2,	we	inject	bilaterally	a	saline	solution	15	minutes	before	
working	session	and	animals	have	to	perform	the	exact	same	protocol	as	for	day	1.	Results	
shows	a	significant	change	in	behavior:	animals	start	with	an	above-chance	performance	
on	the	first	10	trials	(P=0.667	±0.213,	as	compared	to	the	beginning	of	D1,	as	compared	to	
the	end	of	D1),	confirming	our	hypothesis	that	the	BG	have	previously	learned	the	value	of	
stimuli.		

Discussion	
These	results	reinforce	the	classical	idea	that	the	basal	ganglia	architecture	is	based	on	an	
actor	critic	architecture	where	the	dopamine	serves	as	a	reinforcement	signal.	However,	
the	proposed	model	goes	beyond	this	classical	hypothesis	and	propose	a	more	general	view	
on	the	role	of	the	BG	in	behaviour	and	the	entanglement	with	the	cortex.	Our	results,	both	
theoretical	and	experimental,	suggest	that	the	critic	part	of	the	BG	extends	its	role	beyond	
the	basal	ganglia	and	makes	it	de	facto	a	central	component	in	behavior	that	can	evaluate	
any	action,	independently	of	their	origin.	This	hypothesis	is	very	congruent	with	the	results	
introduced	in	(Charlesworth	et	al.,	2012)	where	authors	show	that	the	anterior	forebrain	
pathway	in	Bengalese	finches	contributes	to	skill	learning	even	when	it	is	blocked	and	does	
not	 participate	 in	 the	 behavioural	 performance.	 To	 understand	 such	 hypothesis,	 it	 is	
important	 to	 reconsider	 how	 the	 basal	 ganglia	 forms	 a	 series	 of	 parallel	 loops	 (motor,	
associative,	 limbic)	with	the	cortex	and	the	thalamus.	In	higher	order	mammals,	such	as	
primates,	the	overall	process	starts	in	the	sensory	cortex,	where	stimuli	are	encoded,	and	
ends	 up	 preferentially	 in	 the	 motor	 cortex	 from	 where	 an	 actual	 action	 is	 sent	 to	 the	
medullar	motor	neurons.	Accordingly,	in	the	previous	versions	of	our	model,	the	cortex	was	
considered	as	a	single	input/output	excitatory	layer	without	intrinsic	dynamic	properties	
other	 than	 the	 I/O	 function	 of	 the	 populations.	 We	 then	 added	 a	 thalamic	 loop	 which	
allowed	positive	feedback	but	the	different	channels/populations	were	still	independent.	
This	 limited	 autonomy	 is	 reasonable	 to	mimic	 non-mammal	 vertebrate	 3-layers	 dorsal	



6 

mantle	(aka	pallium),	but	it	is	too	rudimentary	for	the	more	complex	architecture	of	the	6-
layers	mammal	cortex.	The	latter	is	remarkable	for	its	organization	in	functional	columns	
that	are	able	to	provide	themselves	positive	feedback	and	to	exert	lateral	inhibition	on	their	
neighbors.	This	architecture	grants	the	cortex	with	dynamic	properties	that	are	far	beyond	
what	we	were	able	to	capture	with	our	previous	versions	of	the	model:	the	balance	between	
activation	 and	 inhibition	 allowed	 to	 toggle	 into	 various	 states	 that	 could	 be	 segregated	
enough	 to	 trigger	 different	 decisions.	 We	 therefore	 decided	 to	 add	 a	 cortical	 module	
encompassing	 these	 properties.	We	 also	 grant	 it	with	 the	 capacity	 to	 perform	Hebbian	
learning	based	on	the	consensual	hypothesis	that	this	property	 is	shared	by	most	of	the	
cortical	structures.	This	new	model	captures	the	very	essence	of	animal	behavior	 in	our	
two-armed	bandit	like	task	and	provides	a	non-intuitive	prediction	about	the	occurring	of	
covert	learning	in	the	striatum	while	the	output	of	the	BG	is	disrupted.	It	also	reinforces	the	
idea	we	proposed	in	(Piron	et	al.,	2016)	that	a	behavioral	decision	results	from	both	the	
cooperation	(acquisition)	and	the	competition	(expression)	of	two	distinct	but	entangled	
actors	under	the	evaluation	of	a	single	critic.	However,	if	the	theoretical	model	proposes	
the	cortex	to	be	a	potential	actor,	we	have	no	experimental	evidence	yet	that	this	is	the	case	
for	 the	 monkeys.	 From	 the	 experiments,	 we	 conducted,	 we	 can	 only	 deduce	 that	 the	
monkeys	are	able	to	initiate	random	choices	following	injection	of	muscimol	in	the	internal	
part	 of	 the	 Globus	 Pallidus	 and	 that	 they	 learn	 the	 value	 of	 the	 different	 stimuli	 in	 the	
meantime.	 If	 the	 theoretical	model	proposes	 that	 the	motor	cortex	 is	able	 to	make	such	
move	thanks	to	lateral	competition,	it	is	yet	to	be	confirmed	at	the	experimental	level.	
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Legends 
Table	1.	Results	from	the	Kruskal-Wallis	rank	sum	test	with	posthoc	pairwise	
comparisons	using	Dunn's-test	for	multiple	comparisons	of	independent	samples.	P-
values	have	been	adjusted	according	to	the	false	discovery	rate	(FDR)	procedure	of	
Benjamini-Hochberg.	Results	were	obtained	from	raw	data	using	the	PMCMR	R	package	
(Pohlert,	2014).	

Figure	1.	A	trial	is	made	of	the	simultaneous	presentation	of	two	cues	at	two	random	
positions	associated	with	a	fixed	reward	probability.	The	monkey	has	to	choose	a	stimulus	
at	the	go	signal	and	maintain	this	choice	for	one	second.	Reward	is	delivered	according	to	
the	reward	probability	associated	with	the	chosen	stimulus.	For	all	the	experiments	in	
this	study,	we	used	fixed	reward	probability	set	respectively	to	0.75	and	0.25.	Figure	from	
(Rougier,	2017),	CC-BY.	

Figure	2.	The	computational	model	is	made	of	12	neural	groups	organized	along	three	
segregated	loops	(motor,	associative	and	cognitive)	that	spread	over	the	cortex,	the	basal	
ganglia	and	the	thalamus.	Blue	lines	represent	excitatory	pathways;	red	lines	represent	
inhibitory	pathways	and	dashed	lines	represent	emulated	pathways	(they	are	not	
physically	present	in	the	model	but	their	influence	is	taken	into	account).	Red	crosses	
represent	lesion	sites	emulating	the	muscimol	injection	in	the	GPi	of	the	monkeys.	The	
color	of	the	different	units	has	only	an	illustrative	purpose	and	does	not	represent	actual	
activation.	Figures	from	(Rougier,	2017),	CC-BY.	

Figure	3.	A.	Histograms	show	the	mean	performance	at	the	start	and	the	end	of	a	session	
in	day	1	and	day	2	conditions	for	both	the	model	(left	part)	and	the	monkeys	(right	part).	
At	the	start	of	day	2,	the	performance	for	both	the	model	and	the	monkeys	is	significantly	
higher	compared	to	the	start	and	end	of	day	1,	suggesting	some	covert	learning	occurred	
during	day	1	even	though	performances	are	random	during	day	1.	B	&	C	panels	show	all	
the	individual	trials	(n=2x60)	for	all	the	sessions	(n=12)	for	the	theoretical	model	(panel	
B)	and	the	experiments	with	monkeys	(panel	C).	A	black	dot	means	a	successful	trial	(the	
best	stimulus	has	been	chosen)	and	an	outlined	white	dot	means	a	failed	trial	(the	best	
stimulus	has	not	been	chosen).	Measure	of	success	is	thus	independent	of	the	actual	
reward	received	after	having	chosen	one	of	the	two	stimuli.	The	bottom	part	shows	the	
mean	success	rate	over	a	sliding	window	of	ten	consecutive	trials	and	averaged	across	all	
the	sessions.	The	thick	black	line	is	the	actual	mean	and	the	gray-shaded	area	represents	
the	standard	error	of	the	mean	(STD)	over	sessions.	These	results	show	that	both	the	
model	and	the	monkeys	are	unable	to	choose	the	best	stimulus	when	the	GPi	is	disabled	
on	day	1.	This	can	be	seen	on	the	left	part	of	both	panels	with	a	mean	success	rate	
oscillating	around	0.5	(i.e.	random	choice).	However,	on	day	2,	when	the	GPi	is	re-enabled,	
there	is	an	immediate	effect	(right	part	of	both	panels)	and	the	mean	success	rate	is	
instantly	above	0.5	even	if	it	isn't	instantly	optimal.	Our	hypothesis	is	that	the	model	
benefits	from	the	covert	learning	happening	inside	the	basal	ganglia	during	day	1	even	
though	the	BG	cannot	influence	behavior	during	this	period.	The	other	consequence	of	
this	covert	learning	is	a	better	estimation	of	both	stimuli	value	during	day	1	because	there	
is	no	selection	bias	in	favor	of	one	or	the	other	stimulus.	They	are	both	sampled	
uniformly,	leading	to	a	quantitatively	uniform	estimation	of	their	respective	value.	*	=	p	<	
0.01.	Figure	from	(Rougier,	2017),	CC-BY.	 	
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Illustrations	and	Tables	

Table	1	

	 THEORETICAL	 EXPERIMENTAL	
H0	 statistic	(H)	 p	value	 statistic	(H)	 p	value	

D0	START	=	D2	START	 2.965	 0.0051	 3.181	 0.0024	
D1	START	=	D2	START	 4.986	 1.8e-06	 3.738	 0.0004	
D1	END	=	D2	START	 3.099	 0.0036	 2.803	 0.0069	
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Figure	2	

	

	

Striatum
Cognitive 4 units

GPi
Cognitive 4 units

Thalamus
Cognitive 4 units

STN
Cognitive 4 units

Cognitive loop

Cortex
Cognitive 4 units

Striatum
Motor 4 units

GPi
Motor 4 units

Thalamus
Motor 4 units

STN
Motor 4 units

Motor loop

Cortex
Motor 4 units

Associative loop

Task
Environment

Cue
Positions

Cue
Identities

Substantia
nigra pars 
compacta

COMPETITION COMPETITION

dopamine

reward

Lesion
sites

RL

HL

Cortex
Associative
4x4 units

Striatum
Associative
4x4 units

EXT EXT EXT EXT COMPETITION



11 

Figure	3	
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