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A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size
50 nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation
measurements as a function of the excitation power for both pure charge states, neutral and negatively charged,
as well as for the photochromic state, where the center switches between both states at any power. A dedicated
three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling
all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is
found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing
photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters,
we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over
the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the
negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large
extent dominated by that of the negative state, in agreement with the excess charge release of the negative center
being much slower than the photon emission process.
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I. INTRODUCTION

With the development of photonic quantum cryptography
and quantum information processes, there is need for reliable
and easy-to-use single-photon sources. Such sources have
been developed in recent years [1], such as single molecules,
colloidal or epitaxial semiconductor quantum dots, and color
centers in diamond [2–4]. Here, we are interested in the
latter, namely the NV center, formed by a substitutional
nitrogen atom adjacent to a vacancy in the diamond lattice.
NV centers have found numerous applications recently thanks
to their unique physical properties such as excellent photo-
stability [2,5–7] and long spin coherence times [8] as well
as to improved control over both their production [9] and
physical initialization protocols [10]. NV centers can be made
available both in ultrapure bulk diamond [8] and ultrasmall
crystals [11]. Applications range from high-sensitivity high-
resolution magnetometry [12–18] to fluorescence probing of
biological processes [19,20], solid-state quantum information
processing [21,22], spin optomechanics [23,24], quantum
optics [25–27], nanophotonics [28–31], and quantum plas-
monics [32–34].

NV centers can take two different charge states with
different spectral properties: the neutral center NV0, which
has a zero-phonon line (ZPL) around 575 nm (2.16 eV), and
the negatively charged center NV−, which has a ZPL around
637 nm (1.95 eV) [35]. In addition to ZPLs, the fluorescence
spectra of both centers exhibit a broad and intense vibronic
band at lower energy. A single NV center, as a single-photon
emitter, is characterized by a second-order time-intensity
correlation function that exhibits a photon antibunching dip at
zero delay. In a first approach, the photophysics of NV centers
can be modeled by a two-level system with two photophysical
parameters, the excitation rate and the spontaneous emission
rate. However, with increasing excitation power, the NV center,

more particularly in the negative state NV−, can experience
distinctive photon bunching at finite coincidence time, in
addition to the expected antibunching at zero delay. This can
be accounted for within a three-level system with additional
photophysical parameters to describe photon decays to, or
from, the additional shelving level.

The aim of this paper is to give a detailed description
of the intrinsic photophysics of single NV centers of both
charge states in surface-purified [9] nanodiamonds (NDs) of
size around 50 nm, or below, as a function of the illumination
power from a cw laser. Understanding the intrinsic photo-
physics of NV centers is required before implementing small
fluorescent NDs in a complex electromagnetic environment,
such as practical single-photon devices, which will modify
the photophysics [28]. It is also useful to the applications
mentioned above as most of them exploit the single-photon
emitter nature of isolated NVs.

The statistics of both NV charge states has been studied
previously in ND samples similar to those studied here and
it was found to be size dependent, with a larger occurrence
(>80%) of the NV− center over the entire size range from
20 to 80 nm [9]. In the present study, we further observed
that most of the single NV centers being detected as neutral
from their fluorescence spectrum at low illumination power
(<0.5 mW) progressively gain with increasing power a
photochromic character in that they also exhibit the NV− ZPL
in addition to the NV0 ZPL. Only a few of NV0s remain
purely neutral over the entire power range, which we call pure
NV0 behavior. On the other hand, NV centers detected as
negatively charged at low power remain so with increasing
power, which we call pure NV− behavior. We first focus our
attention on such pure NV0 or NV− centers. In addition to
such behaviors, we found that some rare NVs can see their
charge switching between neutral and negative [36] already at
the lowest excitation power. We also describe the photophysics
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of such a photochromic NV over the same power range as the
nonphotochromic centers and show how both photophysics
can be linked. This allows us to find valuable information on
the dynamics of photochromism.

The paper is organized as follows. The experimental
methods are described in Sec. II. The three-level model
used to interpret the experiment is developed in detail in
Sec. III. Section IV focuses on the experimental results and
on the extraction of the various photophysical parameters as a
function of the excitation power for a NV0 and a NV− center.
Section V describes the photophysics of photochromism in a
single NV. A summary is given in Sec. VI.

II. EXPERIMENTAL METHODS

Preparation of the ND sample was achieved following
a procedure reported previously [9,37]. Commercial HPHT
diamond nanocrystals are first irradiated using high-energy
electrons, then annealed at 800 ◦C in vacuum to produce the
fluorescent NV centers, and finally annealed in air at 550 ◦C
to remove surface graphitic compounds. Colloidal dispersion
in water and further sonication allow us to obtain a uniform
solution of NDs. We consider here NDs with a typical size
of 25 nm or 50 nm deposited on a fused silica substrate
to minimize spurious fluorescence [29]. Single NV centers
were optically addressed using standard confocal microscopy
at room temperature [29]. A cw laser light (wavelength λexc =
515 nm) falling within the absorption band of the NVs is used
to excite the NV fluorescence. Excitation light was focused
onto the sample using an oil immersion microscope objective
with numerical aperture NA = 1.4. The NV fluorescence is
collected through the same objective and is filtered from the
remaining excitation, i.e., with wavelength below 532 nm,
by a dichroic mirror and a high-pass filter. The collected
fluorescence is subsequently sent either to a Hanbury Brown
and Twiss (HBT) intensity correlator (see below) or to a
spectrometer. An example of fluorescence spectrum is shown
in Fig. 1(b) for the NV− case. The ZPL corresponds to the
resonant decay [Fig. 1(a)] at λ = 637 nm while the wide
fluorescence sideband is the phonon replica.

The second-order time-intensity correlation function con-
tains the information on the classical versus quantum nature
of light. It reads in the stationary regime

g(2)(τ ) = P2(t + τ |t)/P1(t), (1)

where P2(t + τ |t) = P2(τ |0) is the conditional probability to
detect a photon at time t + τ knowing that another photon
has been recorded at time t . This probability is normalized by
the constant single-photon detection rate P1(t) = P1(0). For a
classical source of light g(2)(τ ) � 1, whereas the observation
of an antibunching g(2)(τ ) � 1 is a clear signature of the
quantum nature of light [38–40]. In particular, at zero delay
g(2)(0) = 0 for a single photon emitter [40], which means
that the probability to detect simultaneously two photons
vanishes.

In practice, an HBT correlator [Fig. 2(a)] [5,6] is used
to measure g(2). Here, the fluorescence of the NV center is
sent on a beam splitter, which separates the signal into two
equal parts sent to two avalanche photodiodes (APDs) named
APD1 and APD2. The APDs are connected to a time-correlated

FIG. 1. (Color online) (a) Schematic of the two-level system
explaining the emission spectrum of the NV center. g: ground state,
e: excited state. The several thinner horizontal lines represent the
coupling with the phonon bath in the diamond matrix. The green
arrow represents the excitation and the red ones the optical decay
at resonance (full arrow) and out of resonance (dotted arrow). (b)
Typical emission spectrum of an NV− center in a 25 nm ND.

FIG. 2. (Color online) (a) Schematic of the HBT correlator.
(b) Time-intensity second-order correlation function g(2)(τ ) of a NV0

center excited at 200 μW and presenting an antibunching at zero
delay. (c) Time-intensity second-order correlation function g(2)(τ ) of
a NV− center excited at 5 mW and presenting a bunching at finite
delay together with the antibunching at zero delay. SP 750: short-pass
filter at 750 nm.
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single-photon counting module to build histograms of delays
between photon events detected by the upper “start” APD1
and the lower “stop” APD2. In order to avoid unwanted
optical crosstalk between the APDs, a glass filter acting as
a short-pass filter at 750 nm and a diaphragm are added in
both branches [41]. In the standard configuration, no bandpass
filter is added to the setup, in contrast with the configurations
used to study photochromism (Sec. V), so that it can be used
for both charge states of the NV (provided that the NVs do
not experience charge conversion, which is the case for the
selected NVs in the present work).

III. THREE-LEVEL SYSTEM: THEORETICAL MODEL

Figure 2(b) shows a typical g(2) function measured for a
single NV at low excitation power. The experimental data
are compared with an equation stemming from a two-level
model [5,29]:

g(2)(τ ) = 1 − e−(r+γ )τ , (2)

where r and γ are the excitation and spontaneous emission
rates, respectively. Within this model g(2)(τ ) < 1, which
means that the emitted light is nonclassical at any delay τ .
However, at higher excitation rate this simple model [Eq. (2)]
generally fails. This is particularly true for NV− centers. In
this case, as shown in Fig. 2(c), the g(2) function includes a
bunching g(2)(τ ) > 1 feature at finite delays, superimposed to
the antibunching curve. This kind of correlation profile, which
contradicts Eq. (2), calls for a third level that traps the electron,
preventing subsequent emission of a photon for a certain
time [42–49]. Therefore, for these delays, the correlation
function is higher than 1. Though well known for the NV−

center, the existence of a shelving level is less documented for
its neutral counterpart but has been invoked theoretically [48]
as well as in electron-paramagnetic resonance [49]. From
now on, we will describe phenomenologically the color-
center dynamics by a three-level model and deduce the
intrinsic photophysical parameters of pure NV− and NV0

centers (Sec. IV) and of a photochromic center (Sec. V).
These NV centers have been selected from their fluorescence
spectra.

A. Correlation function of a three-level system

In order to give a quantitative description of the three-level
model we first review briefly the interpretation of the g(2)

function using Einstein’s rate equations. Starting from Glauber
quantum measurement theory [50] we have

g(2)(τ ) = 〈: I (t + τ )I (t) :〉
[〈I (t)〉]2

, (3)

where I (t) is the quantum operator equivalent to the elec-
tromagnetic energy flow absorbed by a detector at time t

and :: represents normal ordering [38,39]. Introducing the
creation and annihilation photon operators a†(t) and a(t) in
the Heisenberg representation, we obtain

g(2)(τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉
|〈a†(t)a(t)〉|2 . (4)

FIG. 3. (Color online) Jablonski diagram of the three-level sys-
tem, including the ground state (1), the excited state (2), and a
metastable state (3). Only the allowed transition channels taken into
account in the model are shown.

For a two-level system with ground state g and excited state e,
the creation operator a†(t) at time t is to a good approximation
proportional to the rising transition operator |e,t〉〈g,t | [51],
and we deduce

g(2)(τ ) = p(e,t + τ |g,t)

p(e,t)
= p(e,τ |g,0)

p(e,0)
, (5)

where p(e,t + τ |g,t) is the conditional probability for the
NV to be in the excited state e at time t + τ knowing that
it was in the ground state g at time t . Like in Eq. (3) this
probability is normalized to a single-event probability, i.e., the
probability p(e,t) for the NV to be in the excited state at the
previous time t . The main interest of these equations is to
link the probability of detection, as given by Eqs. (1) and (3),
to the emission probabilities p(e,t + τ |g,t) and p(e,t) defined
by the rate equations. Therefore, g(2) can be completely
determined if the transient dynamics of the emitter is known.

In the context of the NV center, we must use a two-level
system with a third metastable state to explain the bunching
observed in the correlation measurements [52]. Since the
previous calculations only considered the excited and ground
states involved in the fluorescence process we will admit
(see [38,54] for a discussion and justification) that these results
still hold with a three-level system if we replace the excited and
ground states by the levels 1 and 2 in the Jablonski diagram,
respectively (see Fig. 3). Here we neglect the channels 1
to 3 and 3 to 2, because the system is not supposed to be
excited at these transition energies, in contrast with previous
models [26,55]. There, channel 3 to 2 was taken into account
and channel 3 to 1 was neglected, because the quantum
yield associated with the NV relaxation was supposed to be
close to unity, while recent studies show that Q � 0.6–0.7
[2,28,56–58]. Therefore, we here take into account four chan-
nels. This leads to four unknown parameters: the excitation
rate, k12, the spontaneous emission, k21, and the two parameters
k23 and k31 of the additional decay paths involving the shelving
level. k21 being the only radiative channel, we can write the
autocorrelation function as

g(2)(τ ) = p2(τ )

p2(∞)
, (6)

where p2(t) is the population of state 2 at time t . p2(∞)
represents the asymptotic limit of p2(t) when the transitory
dynamics approaches the stationary regime. p2(t) can be
obtained by solving the system of rate equations defining the
three-level system presented in Fig. 3. With pi , i = {1,2,3},
the population of state i we can write the following set of

035308-3



MARTIN BERTHEL et al. PHYSICAL REVIEW B 91, 035308 (2015)

equations:

ṗ1 = −k12p1 + k21p2 + k31p3,

ṗ2 = k12p1 − (k21 + k23)p2,
(7)

ṗ3 = k23p2 − k31p3,

1 = p1 + p2 + p3,

where ṗi means time derivative of pi(t). The use of rate
equations instead of Bloch equations is here fully justified
since in ambient conditions, the coherence between levels is
decaying very fast [55]. Equations (7) show that the system is
necessarily in one of the states at any time. The steady-state
analysis of these equations permits us to find the explicit
definition of the fluorescence rate R at which the system emits
photons [54]. This definition allows us to explain the saturation
behavior of the NV fluorescence; i.e., R tends towards a finite
value for increasing excitation power. However, we are here
looking for the time-dependent analysis to find p2(τ ) as a
function of the kij coefficients. If we eliminate p3 from Eq. (7),
we obtain

ṗ1 = −(k12 + k31)p1 + (k21 − k31)p2 + k31,

ṗ2 = k12p1 − (k21 + k23)p2. (8)

The resolution of this pair of equations, with the initial con-
ditions p1(0) = 1 and p2(0) = 0, leads to p2(τ ) = p(2,τ |1,0)
and therefore to the expression of g(2)(τ ).

Important approximations can be made to obtain a simple
expression. More precisely, in addition to neglecting channels
1 to 3 and 3 to 2, we suppose that

{k21,k12} � {k23,k31}. (9)

This is justified since, even if the third level is considered, the
associated rates are supposedly very small compared to the
singlet rates k12 and k21. We will see later that this is not really
true for the NV− center but that the results obtained are actually
robust and keep their meaning even outside of their a priori
validity range. Within the above-mentioned approximations
the second-order correlation function reads (see Appendix A
for mathematical details)

g(2)(τ ) = 1 − βe−γ1τ + (β − 1)e−γ2τ , (10)

where the parameters γ1, γ2, and β are defined through the
relations

γ1 � k12 + k21, (11)

γ2 � k31 + k12k23

k12 + k21
, (12)

β � 1 + k12k23

k31(k12 + k21)
. (13)

B. Determination of the ki j coefficients

The aim of this subsection is to determine the kij coef-
ficients for the specific measured NV centers. The fit to the
g(2)(τ ) function allows us to determine γ1, γ2, and β. From

Eqs. (11)–(13) we deduce

k21 = γ1 − k12, (14)

k31 = γ2

β
, (15)

k23 = γ1γ2(β − 1)

βk12
. (16)

We then have three equations for four unknown variables.
A fourth equation is needed to solve the problem entirely.
In the experiment, we also have access to the radiation or
fluorescence rate R, measured in s−1. This rate is simply the
average number of photons that the APDs collect per second.
It represents, up to a multiplicative coefficient associated with
the photon propagation in the setup, the probability for the
system to be in level 2, multiplied by the transition probability
k21 to relax (supposedly by optical means) to the ground state.
We have

R = ξk21p2(+∞), (17)

where ξ is the collection efficiency of the system once the
NV center has emitted its fluorescence. Note that the same
formula was used in Refs. [26,55] with a different definition
of p2(+∞) because of a different Jablonski diagram. However,
this has a physical meaning only if k21 is associated with a pure
radiative decay. Whereas the model of Refs. [26,55] implied
a unity quantum yield, the quantum yield in our approach is
defined by

Q = k21

k21 + k23
. (18)

In our phenomenological approach the third level is thus
assumed to absorb all of the nonradiative transitions letting k21

be a pure radiative decay. Finally we recall that the probability
p2(+∞) needed in Eqs. (17) and (6) should be calculated in
the asymptotic stationary regime, which can be obtained by
canceling all ṗi in Eq. (8):

p2(+∞) = k31

−k21 + k31 + (k21 + k23)(1 + k31/k12)
. (19)

Now four equations are at hand so that the system can be
inverted to determine all coefficients. This calculation involves
the numerical resolution through Cardano’s algorithm [59] of
a third-order polynomial as given in Appendix B.

IV. EXPERIMENTAL RESULTS AND EXTRACTION
OF THE ki j PARAMETERS

We here consider two representative examples of NDs, one
hosting a single pure NV− center, and the second one hosting
a single pure NV0 center. The NV−-center ND is about 25 nm
in diameter, whereas the one hosting the NV0 center is about
50 nm in diameter [60]. The g(2) function was recorded for
both NDs with different excitation powers Pexc in order to
study the evolution of the kij coefficients.

Figure 4 depicts the g(2) function for the two NV centers
and for excitation powers Pexc ranging from 200 μW to
10 mW. The experimental curves are fitted with Eq. (10) taking
into account the correction for the incoherent background
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FIG. 4. (Color online) Time-intensity second-order correlation functions g(2)(τ ) for a given NV0 center (green lines) and NV− center (red
lines). The excitation power is varied from 0.2 mW to 10 mW. The blue lines correspond to a three-level model fit.

light collected by the APDs [5,6,29]. The experimental
antibunching dip does not drop to zero due to this incoherent
background, which modifies Eq. (10) as g(2)

exp(τ ) = g(2)(τ )ρ2 +
1 − ρ2, where ρ = S/(S + B) contains the signal S and
background B contributions from the NV fluorescence and
the spurious incoherent light, respectively. By recording the
average intensity from the APD directly on the NV and at a
location close to it, we experimentally determine ρ and the fit
parameters of Fig. 4 as explained in Refs. [5,6,29]. It is seen
that the increase of Pexc only induces a very small bunching for
the NV0, contrary to what is observed for the NV−. However,
the antibunching dip narrows with increasing power in both
cases. Our observations are collected in Fig. 5, which shows
the power evolution of the fit parameters γ1, γ2, and β.

The general trends seen in Fig. 4 are confirmed in Fig. 5 for
both NVs since γ1, which is associated with the antibunching
contribution, is clearly increasing with Pexc, a fact which is
reminiscent from Eq. (2). Furthermore, it is seen that γ2 is also
increasing significantly for the NV− which is clear signature of
the third energy level. As far as the β parameter is concerned,
it remains at a constant value β � 1 for the NV0, while it
increases up to β � 7 for the NV−. This behavior agrees with
its definition from Eq. (10). Therefore, when β is very close to
1, there is no significant bunching, and when β increases with
power, the bunching turns on.

Now that the three parameters have been found, the kij

parameters can be traced back. This will be done in two steps.

A. ki j parameters with constant k21

In Eq. (17) the collection efficiency ξ of the optical setup
must be known precisely to extract the various kij . However,
since this can only be estimated, we will first calculate the
kij parameters by assuming that k21 does not change with
the excitation power. This hypothesis is intuitive because the
parameter k21, i.e., the spontaneous emission rate, is supposed
to be solely governed by Fermi’s golden rule, which in turn

depends on the electromagnetic environment only. In order
to determine the value of k21 we observe that according to
Eq. (14) we must have γ1 = k21 at zero excitation since in
this case k12 = 0. From the linear regression for γ1 (Fig. 5)
we deduce γ

(0)
1 (Pexc = 0) = k0

21 = 0.052 ns−1 for the NV0,
and γ

(−)
1 (Pexc = 0) = k−

21 = 0.046 ns−1 for the NV− [here the
(0) and (−) exponents refer to NV0 and NV−, respectively].
These constants give radiative lifetimes of τ

(0)
21 = 19.2 ns and

τ
(−)
21 = 21.7 ns, which are consistent with previous reports (see

for example Refs. [6,55]).
Thanks to Eqs. (14) to (16), we deduce the three other

parameters as shown in Fig. 6 for both NVs. The first point to

FIG. 5. (Color online) Evolution of the γ1, γ2, and β parameters
as a function of the excitation power. Points are fits to the experimental
g(2) functions using Eq. (10) and the lines are linear regressions. The
green (red) points and lines correspond to the NV0 (NV−) center.
Errors bars are shown where they exceed the symbol size. They
represent the standard deviation of each value calculated from the
covariance matrix as given by the fitting routine.
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FIG. 6. (Color online) Evolution of kij parameters with power
excitation when k21 is fixed for (a) the NV0 and (b) the NV−. Errors
bars are shown where they exceed the symbol size. These error bars
are estimated from those of the γ1, γ2, and β parameters; see Eqs. (14)
to (16).

notice is that for both NVs, the k12 parameter increases linearly
with the pumping rate from zero to a value exceeding k21 for
Pexc � 2 mW. Moreover, for NV0, we see that k31 increases,
but keeps very small values compared to the other parameters,
in agreement with the assumptions made in Eq. (9). However,
for NV−, the same parameters are no longer negligible
compared to the set of k21, k12 values. They even overtake
k21 for Pexc > 6 mW. However, we emphasize that assuming
k21 constant, if natural, is actually not fully demonstrated. In
order to check how robust this hypothesis is, we will now try to
approach the values and evolutions of the kij parameters that
were obtained here by modulating the collection efficiency ξ

using Eq. (17).

B. Modulation of the collection efficiency ξ

Now we use the fourth equation Eq. (17) to calculate the
kij parameters. As already stated, we do not know exactly
the ξ parameter but, as it turns out, slight variations in ξ

can produce significant changes in kij . To find the correct
value of ξ , we adopt the following procedure. We let its
value vary continuously and calculate the evolutions of the
slope and Y intercept of the linear regressions made with the
obtained k21(Pexc) traces. The slope should vanish because
k21 is assumed to be constant, whereas the Y intercept should
reach the value obtained previously, i.e., the value of γ1 at
zero excitation. Therefore, we calculate the evolution of the
kij parameters as a function of the collection efficiency ξ .
The results are shown in Fig. 7, where the constant horizontal
curves depict the values to be reached by the slope and Y
intercept. For the NV0 [Fig. 7 (a)], there is indeed a value of
ξ where the two parameters reach the assumed values (blue

FIG. 7. (Color online) Evolution of the slope and the Y intercept
of linear fit of k21(Pexc) with the collection efficiency ξ for the NV0

(a) and the NV− (b). Straight lines are the values obtained previously
with k21 fixed.

vertical line). This gives ξ (0) = 0.77 × 10−3, in agreement
with a rough estimate of our setup collection efficiency taking
into account the various optical components. However, for the
NV− [Fig. 7(b)], it is seen that the parameters do not reach
exactly the previous values. Yet, there is an optimum ξ for
which the kij approach the previous values (blue vertical line).
This corresponds to ξ (−) = 1.6 × 10−3, which differs only by
a factor 2 from the NV0 case. This appears reasonable since
the measurements were not carried out the same day (optical
alignments might be slightly different) and the collection
efficiency ξ also depends on the unknown transition-dipole
orientation in both NVs.

C. Comparison of the photophysics of NV centers
in both charge states

Figure 8 depicts the kij (Pexc) curves deduced from the
previous optimization. It is found that the order of magnitude
of the coefficients is the same as for imposed k21. In particular,
the relaxation rate k31 is unchanged because it only depends
on the g(2) fit parameters, Eq. (15). For the two NV centers,
the excitation rate vanishes in the absence of any excitation
power and linearly increases with Pexc as it should. The main
difference between both centers comes from the evolution of
k23, k31, and k21. Indeed, for NV0, k23 and k31 remain very small
compared to k21, which is almost constant (1/k31 ≈ 500 ns and
1/k23 ≈ 1000 ns if Pexc tends to zero). Therefore, the third
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FIG. 8. (Color online) Evolution of the kij parameters with the
excitation power taking into account the collection efficiency for the
NV0 (a) and the NV− (b) centers. Errors bars estimated as in Fig. 6
are shown where they exceed the symbol size.

level plays little role in the photodynamics of the NV0 center.
However, it is worth stressing that although very small, k23

is not zero for NV0 [errors bars are within the symbol size in
Fig. 8(a), right panel], which confirms the very existence of the
third metastable level for this charge state. Regarding the g(2)

curves, it implies that the optical channel 2 to 1 is favored,
which prevents any significant bunching. Furthermore, for
the NV0 the narrowing of the antibunching dip is due to the
increasing excitation rate as for a two-level system, i.e., Eq. (2)
(see Ref. [29]).

The analysis of the kij parameters for the NV− is more
involved. Indeed, k23 increases very quickly to reach the
order of magnitude of k21, while the latter is increasing
as well (at zero excitation power we have 1/k21 � 24 ns
and 1/k23 � 500 ns). The increase of k23, associated with
nonradiative transitions, actually explains the growth of the
bunching feature on the g(2) curves. Although the physical
justification of this finding is beyond our phenomenological
treatment, it is likely that the variation of k21 and k23 with
excitation power is due to a change in the local energy
environment of the NV center at high power, in particular
because the efficient coupling with the phonon bath in the
diamond matrix is expected to be temperature sensitive.
Increasing the excitation power could thus correspond to an
increasing effective temperature, subsequently affecting the
relaxation dynamics.

It is worth pointing out that there is a limitation in the
analysis done for the NV− center. Indeed, the very fact that k23

and {k21,k12} reach the same order of magnitude contradicts
the hypothesis made in Eqs. (9)–(13). Actually, as already
mentioned, the results obtained are much more robust that

FIG. 9. (Color online) Evolution of kij parameters with power
excitation taking into account the collection efficiency for the NV−

in the approximation-free rate-equation model. Errors bars estimated
as in Fig. 6 are shown where they exceed the symbol size.

could be anticipated at first sight. This can be figured out
by relaxing the constraint of Eq. (9) as done in the detailed
calculation presented in Appendix C. The results obtained
with the new rate-equation model are shown in Fig. 9 for
the evolution of the kij coefficients of the NV− center. The
obtained values are very similar to those of the approximate
treatment, thereby justifying the previous results. For the
NV0 the coupling to the third level is very weak and the
modifications (not shown) are even smaller.

To complete the analysis we also computed the quantum
yield evolution as given by Eq. (18) and compared with the
evolution of the fluorescence rate. Figure 10 confirms that
within the Jablonski model sketched in Fig. 3 and in the

FIG. 10. (Color online) Evolution of the fluorescence rate (upper
panel) and the quantum yield Q (lower panel) with the excitation
power for the NV− and NV0 center in the rate equation model free of
any approximation. Errors bars for Q are shown where they exceed
the symbol size. They are estimated from those of the kij parameters;
see Eq. (18).
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considered excitation regime, the quantum yield of the NV0

center is approximately constant Q � 1, in agreement with the
intuitive fact that the third level does not play a significant role
in the dynamics. In contrast, the NV− quantum yield decreases
dramatically with increasing excitation power from a starting
Q � 1 to Q � 0.5 at high power. This entails the fact that the
NV− dynamics is strongly dependent on the excitation power
as discussed before.

V. PHOTOCHROMISM

Photochromism of NV centers has been reported in ensem-
bles of NV centers in CVD diamond films under additional
selective illumination [61], with single NV centers in 90
nm NDs under femtosecond illumination, which results in
the photoionization of the negative center to its neutral
counterpart [35], with ensembles of NV centers in type-Ib
bulk diamond at cryogenic temperatures under intense cw
excitation [62], and with a single center in natural type-IIa
bulk diamond under cw illumination [36]. In this last report, a
special scheme of cross-correlation photon measurements was
applied in the emission band of both charge states to show that
the collected fluorescence in the NV0 and NV− states were
correlated and originated form a single NV defect. Several
studies have reported that charge conversion within the NVs
critically depends on the illumination conditions [57,63,64].

A complete understanding of NV photochromism is lacking
but a widespread view is that the optical excitation, either cw
or transient, tunes the quasi-Fermi-level around a NV charge
transition level, thereby inducing charge conversion [61,65].
This scenario has been reinforced recently by electrical
manipulation of the charge state of NV ensembles and of
single NVs by an electrolytic gate electrode used to tune the
Fermi energy [65]. Depending on the sort of diamond studied,
photochromism is thought to be favored by the presence
of electron donor or acceptor defects, such as nitrogen, in
the neighborhood of the NV center [66]. Recently, it was
also found that resonant excitation of the NV0 and NV−

states in ultrapure synthetic IIa bulk diamond can induce
reversible charge conversion in cryogenic conditions even at
low power [10]. This was taken as evidence that the charge
conversion process is intrinsic in this sort of diamond, not
assisted by an electron donor or acceptor state. The goal of
this section is to give additional information on NV pho-
tochromism detected in surface-purified NDs, 25 nm in size,
subjected to a cw nonresonant excitation of increasing power.
By comparing the behavior of a single photochromic center
to that of nonphotochromic centers in the same illumination
conditions as described above, we gain valuable information
on the rich photophysics of photochromism.

For the purpose of studying photochromism, we use two
additional configurations of the HBT correlator that differ
only by the set of bandpass filters added in the interferometer
branches. These configurations, called NV−/0 and NV0/−,
respectively, are shown schematically in Fig. 11. In contrast
to Fig. 2(a), these two configurations add selective bandpass
filters in the interferometer branches. The NV−/0 configuration
in Fig. 11(a) [respectively NV0/− configuration in Fig. 11(b)]
uses a filter selective to the NV− (respectively NV0) fluores-
cence in the “start” (respectively “stop”) branch. Therefore, in

FIG. 11. (Color online) HBT configurations used to study pho-
tochromism. (a) is the NV−/0 configuration, where a bandpass filter
(central wavelength 675 nm, bandwidth 67 nm) adapted to the
negative NV− center is inserted in the upper “start” branch, whereas
a bandpass filter adapted to the neutral NV0 (central wavelength
593 nm, bandwidth 46 nm) is inserted in the lower “stop” branch. (b) is
the NV0/− configuration where both bandpass filters are interchanged
compared to (a).

the NV−/0 configuration, a single photon emitted by a NV−

center and detected in APD1 gives the “start” signal to the
counting module, whereas a single NV0 photon subsequently
detected in APD2 produces the “stop” signal. The NV0/−

configuration works in just the complementary way. Note that
our NV−/0 configuration is similar to the cross-correlation
technique used in Ref. [36]. These schemes turn out to be very
powerful to study photochromism since cross correlation can
be expected only if NV− and NV0 photons originate from
the same defect center. Note that related techniques have
also successfully been applied to identify various excitonic
species emitted by single semiconductor quantum dots; see
for instance [67–71].

With the above setup, we have located a few rare NDs
hosting a single NV center that showed charge conversion at
low excitation power already. In the following, we consider
such a ND hosting a single photochromic NV center.

The relevant spectra are shown in Fig. 12(a). It is found that
both the NV0 and NV− ZPLs are seen at any excitation power.
The corresponding g(2) function measured in the standard
configuration of the HBT (no bandpass filter) is shown in
Fig. 12(b). It reveals a clear antibunching dip at zero delay. A
precise analysis taking into account the background light (see
Table I) confirms this finding since at high excitation power

FIG. 12. (Color online) (a) Fluorescence spectra of the pho-
tochromic ND nanoparticle taken at 3 different excitation powers
of nominally 0.5 mW, 1 mW, 2 mW, from bottom to top, respectively.
(b) Antibunching curve at short time delays and an excitation power
of 5 mW.
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TABLE I. Table summarizing the experimental parameters Pexc,
R, g(2)

exp(0), S, B measured on the photochromic NV for the observation
of the g(2)

exp function. The fit parameters γ1, γ2, and β using a 3-energy-
level model are also given.

Pexc(mW) 0.5 1 2 3 5

R (kHz) 11.8 17.1 23.0 27.7 32.0
g(2)

exp(0) 0.25 0.32 0.48 0.45 0.6
S (kHz) 10.2 14.1 16.6 20.5 20.2
B (kHz) 1.6 3.0 6.4 7.2 11.8
β 1.36 1.45 1.75 1.6 2.5
γ1 (ns−1) 0.03 0.036 0.044 0.052 0.054
γ2 (ns−1) 0.005 0.007 0.009 0.012 0.018

we observe that the background B increases significantly with
respect to the NV fluorescence signal: ρ = S/(S + B) � 0.6
while at low power ρ � 0.9–1. With this value and using
the formula g(2)

exp(τ )/ρ2 + 1 − 1/ρ2 = g(2)(τ ) we deduce the
actual value of g(2)(0) � 0 [6,25,55,72]. From these results, a
natural interpretation for the observation of the NV0 and NV−

ZPLs together with NV uniqueness is that this particular ND is
subjected to photochromism. In addition to the antibunching
dip at zero delay, it is seen in Fig. 12 that g(2) exceeds 1 at longer
delays [55]. In agreement with the previous sections, this is
evidence for the presence of a trapping level and calls for a
three-level description of the photochromic NV. The values of
γ1, γ2, and β parameters used for fitting the g(2)

exp function agree
qualitatively well with those obtained for the NV− considered
previously in agreement with the fact that the system is acting
more like a three-level system.

Although our study of NV photochromism is limited to a
particular example we suggest that the dynamics of the system
involves probably all energy levels of the NV− and NV0 with
some possible hybridization. It could be interesting to know
whether or not the third level involved in the photochromic
case is identical in nature to the third level of the NV−. The
role of the environment or of the radiation power [73] on the
dynamics could be investigated in the future to clarify this
point.

Switching now to the cross-correlation regime we show
in Fig. 13 the result obtained for Pexc = 3 mW (similar
features, not shown here, were observed at other excitation

FIG. 13. (Color online) Time-intensity second-order correlation
functions measured for the photochromic NV center in two different
HBT configurations. (a) is the cross-correlation NV−/0 configuration;
(b) is the cross-correlation NV0/− configuration. The temporal
window is [−100 ns; 500 ns] and the excitation power is 3 mW.

powers). It is worth emphasizing that cross correlations, as
described in, e.g., Refs. [68,69,74], allow us to characterize the
transitory dynamics between the two NV configurations. Using
a formalism equivalent to the one leading to Eqs. (3)–(5) we
indeed obtain in the NV−/0 configuration sketched in Fig. 11(a)

g
(2)
−/0(τ ) = p(e,NV0,t + τ |g,NV−,t)

p(e,NV−,t)
, (20)

where p(e,NV0,t + τ |g,NV−,t) is the conditional probability
for the NV to be in the excited level e of the NV0 state at time
t + τ knowing that it was in the ground energy level g of the
NV− charged state at the previous time t . This also means that
a first photon emitted by the NV0 was detected at time t while
a second photon emitted by the NV− is detected at time t + τ .
In a symmetrical way using the NV0/− configuration sketched
in Fig. 11(b) we get

g
(2)
0/−(τ ) = p(e,NV−,t + τ |g,NV0,t)

p(e,NV0,t)
(21)

with similar definitions to the previous ones but with the roles
of NV0 and NV− inverted.

The experimental results corresponding to these two con-
figurations are shown in Figs. 13(a) and 13(b), respectively.
Here, it is also important to have τ � 0 in the calculation
leading to Eqs. (20) and (21) in order to have a clear physical
understanding. However, the electronic delay � = 100 ns
included in the HBT correlator setup implies that sometimes
even a photon emitted, say at time t0, by a NV− is recorded
after a second photon emitted later by the NV0 state, i.e., at
t0 + τ . This corresponds to the “negative” delay part of the
graph, i.e., Fig. 13(a), which is actually associated with the
inverse dynamics NV0/−, i.e., Eq. (21). Here for clarity we did
not subtract the delay from the abscises in Fig. 13. Therefore
for τ > � in Fig. 13(a) we have g(2)

exp(τ ) = g
(2)
−/0(τ − �)ρ2 +

1 − ρ2 while we have g(2)
exp(τ ) = g

(2)
0/−(� − τ )ρ2 + 1 − ρ2 for

0 < τ < � with ρ = S/(S + B) as previously. In the same
way for Fig. 13(b) we have g(2)

exp(τ ) = g
(2)
0/−(τ − �)ρ2 + 1 −

ρ2 for τ > � and g(2)
exp(τ ) = g

(2)
−/0(� − τ )ρ2 + 1 − ρ2 for

0 < τ < �.
As it is clear from the definitions these cross correlations

should present some symmetries. In the present case we
used a three-energy-level fit, i.e., Eq. (10), for the theoretical
functions, Eqs. (20) and (21). The parameters obtained to
reproduce the data are the same for Figs. 13(a) and 13(b) up to
an inversion between the “positive” and “negative” delay for
each graph. Therefore, we get for Fig. 13(a) γ1 = 0.046 ns−1,
γ2 = 0.01 ns−1, and β = 1.2 for τ < �, while we have γ1 =
0.052 ns−1, γ2 = 0.01 ns−1, and β = 1.5 for τ > �. For the
second cross-correlation curve the parameters are identical but
the roles of τ > � and τ < � are inverted as they should be.
We observe that these values are very close to each other and
also from the one obtained in Table I at the same excitation
power Pexc = 3 mW. This confirms that the system acts here
mainly as a NV− center.

Interestingly, the last finding implies that after the emission
of a photon in the spectral fluorescence band of the NV− the
delayed emission of a second photon in the spectral band of the
NV0, i.e., the conditional probability given by Eq. (20), is also
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characterized by the dynamics of the NV− contrary to the intu-
ition. Such behavior was reported in Ref. [36] for NV centers
in bulk. In particular, in this paper the time dependence of the
conversion NV0 to NV− process (and its inverse) was studied
using pulse sequences. It was found that the relaxation from
NV− to NV0 is a very slow process occurring with a decay time
�1 μs. This agrees with our finding in Fig. 13 since, even if the
full dynamics of the photochromic NV center is expected to
depend on the energy levels of both the NV− and NV0 centers,
it is clearly the NV− characteristics which dominate during
the transition associated with Eq. (20). A similar qualitative
analysis can be done in the NV0 to NV− center conversion.
The small dissymmetry between the two parts of the curves
for positive and negative delays results from the presence of
a small NV0 contribution to the dynamics during the NV0 to
NV− transition which is absent in the NV− to NV0 conversion.
Clearly, this complex charged/uncharged transition dynamics
would deserve systematic studies in the future.

VI. SUMMARY

To summarize, we have experimentally studied the fluores-
cence photodynamics of NV− and NV0 centers in diamond
nanocrystals of 50 nm size or below using HBT photon-
correlation measurements as a function of the excitation power.
The dynamics was theoretically modeled using Einstein’s rate
equations and the transition probability rates kij entering the
three-level model developed to analyze the data were deduced
and used to infer a quantum efficiency to both charge states
of the NV. It has been found that the shelving state, though
present, plays a very small role on the neutral center in those
small diamond crystals. The narrowing of the antibunching
dip observed with increasing power for this center is a simple
power effect that does not affect the near unity quantum effi-
ciency. In contrast, the negative center experiences a distinctive
photon bunching behavior at finite delay that increases with
increasing power. This reflects the increasing role of the shelv-
ing state for this center, which in turn diminishes the quantum
efficiency from near unity at low power to approximately
0.3 at high power. We have also studied the dynamics of a
photochromic center. It reveals a rich phenomenology that is
essentially dominated by the negative face of the center. In the
future, it would be interesting to determine how the presence
of, e.g., a plasmonic structure affects the dynamics of NV
centers [28] in any charge state, in particular if the role of the
shelving state in the NV0 center as well as the neutral face of
the photochromic center can be modified.
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APPENDIX A

Here we briefly summarize the derivation of the main
equations used in Secs. III and IV. We start from Eq. (8)

written in a matrix form as

Ṗ :=
(

ṗ1

ṗ2

)
=

(
a b

c d

)
· P + J

= M · P + J, (A1)

where

a = −(k12 + k13 + k31),

b = k21 − k31,

c = k12 − k32,

d = −(k21 + k23 + k32),

and

J =
(

k31

k32

)
. (A2)

For the sake of generality we here keep all transition coeffi-
cients kij allowed by the three-level model. Such an Eq. (A1)
can be formally solved by defining a new vector q related to
P by the equation P = eMt · q. This leads to the new equation
q̇ = e−MtJ which has the general solution

q(t) = q(0) +
∫ t

0
dτe−Mτ · J

= q(0) + M−1 · [1 − e−Mt ] · J, (A3)

where M−1 is the inverse matrix of M and where the initial
condition corresponding to a system in the ground state at time
t = 0 is q(0) = P(0) = (1

0). Therefore, we deduce

P(t) = eMt · (q(0) + M−1 · [1 − e−Mt ] · J). (A4)

In order to give an explicit form to the solution we need to
diagonalize the M matrix. Therefore, we write

	−1 · M · 	 =
(

λ1 0
0 λ2

)
. (A5)

The eigenvalues λ1 and λ2 of M are easily obtained from the
secular equation det[M − λI] = 0. They read

λ1 = a + d

2
− 1

2

√
(a + d)2 − 4 det[M],

λ2 = a + d

2
+ 1

2

√
(a + d)2 − 4 det[M]. (A6)

From Eq. (A4) we easily obtain

	−1 · P =
(

eλ1t 0
0 eλ2t

)(
α

ε

)
+

(
γ

δ

)
, (A7)

with (
γ

δ

)
= −

(
1/λ1 0

0 1/λ2

)
· 	−1 · J (A8)

and (
α

ε

)
= 	−1 ·

(
1
0

)
−

(
γ

δ

)
. (A9)

In order to determine completely the solution we need to
specify the transformation matrix 	 = (u1 u2

v1 v2
) whose column

vectors Xi = (ui

vi
) with i = 1,2 are solutions of the eigenvalue
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problem M · Xi = λiXi . These eigenvectors are determined
up to an arbitrary normalization and here we choose

Xi =
(

b

λi − a

)
. (A10)

Using Eq. (A7) we therefore get

p2(t) = v1αeλ1t + v2εe
λ2t + v1γ + v2δ. (A11)

We can further simplify the solution since from Eq. (A9)
and the definition of M−1 we easily deduce (v1v2)(αε) =
−(v1v2)(γδ), i.e., v1α + v2ε = −(v1γ + v2δ). After regrouping
all terms we obtain

p2(t)

p2(∞)
= − v1α

v1α + v2ε
eλ1t +

(
v1α

v1α + v2ε
− 1

)
eλ2t + 1,

(A12)

which up to notations is equivalent to Eq. (10) of Sec. III if we
write λi = −γi and β = v1α

v1α+v2ε
.

APPENDIX B

The results obtained in Appendix A are exact and no
approximation were made for calculating the coefficients γi

and β. Now we will use the fact that {k21,k12} � {k23,k31} to
simplify and explicit these coefficients.

First, we point out that we have

β = (1 − J1/γ1)

(γ1 − γ2)

γ1γ2

J1

= (1 − k31/γ1)√
(a + d)2 − 4 det[M]

det[M]

k31
. (B1)

Therefore from Eqs. (A6) and (B1) we see that all coefficients
γi and β can be expressed as functions of a + d and det[M].
Up to the first order we have

a + d � −(k12 + k21),
(B2)

det[M] � k31(k12 + k21) + k23k12.

Therefore, up to the same order, we have√
(a + d)2 − 4 det[M] � −(a + d)[1 − 4 det[M]/(a + d)2].

These lead to

γ1 � −(a + d) = k12 + k21,
(B3)

γ2 � −det[M]

a + d
� k31 + k23k12

k12 + k21
,

which are Eqs. (11) and (12), respectively. Finally we have

β � −1

(a + d)

det[M]

k31
� 1 + k23k12

k31(k12 + k21)
, (B4)

which is Eq. (13).
In order to solve the system of equations (11)–(13) we first

eliminate k23 from Eq. (12) using Eq. (13); i.e.,

k23 = γ1k31(β − 1)

k12
. (B5)

Inserting this result into Eq. (11) leads to

k31 = γ2

β
, (B6)

which constitutes our first parameter solution. In order to
determine the other parameters we insert the value obtained
for k31 into Eq. (B5) and Eq. (11) to obtain

k23 = γ1γ2(β − 1)

k12β
,

(B7)
k21 = γ1 − k12.

In other words, all parameters are now expressed as a function
of the excitation coefficient k12. To complete the solution we
use Eqs. (17) and (19) for the single-photon rate R. After
insertion of Eqs. (B5) and (B7) into Eq. (17) and some lengthly
rearrangements we finally obtain

k3
12 − γ1k

2
12 + R

ξ

(
γ1 + X

k31

)
k12 + RX

ξ
= 0 (B8)

with X = (β − 1)γ1γ2/β. The three roots of this cubic
equation can be obtained numerically using Cardano’s method.

APPENDIX C

We can generalize the analysis made in Appendix B without
any approximation. For this we first remark that we have the
exact relations

γ1γ2 = det[M],

γ1 + γ2 = −(a + d), (C1)

R · det[M] = ξk21k12k31,

which can be obtained after some manipulations from the
definition of the M matrix and of Eqs. (17), (19). If we now
introduce the definitions

A = det[M] = (k12 + k21)k31 + (k12 + k31)k23,

B = −(a + d) − k31 = k12 + k21 + k23, (C2)

C = R · det[M]/ξ = k12k21,

we obtain after lengthy but straightforward calculations

k2
12 − Bk12 + C + A − Bk31 = 0. (C3)

To complete the resolution of the system we use the exact
relation Eq. (B1). We finally obtain

k31 = γ2γ1/[(γ1 − γ2)β + γ2],

k12 = B/2 −
√

B2 − 4(C + A − Bk31)/2,
(C4)

k21 = C/k12,

k23 = B − k12 − k21.

The minus sign was chosen in the second equation for k12 [i.e.,
solution of Eq. (C3)] since a Taylor expansion at low excitation
power when γ2 	 γ1, β � 1 gives for the two roots

k12 � γ1/2

(
1 ±

√
1 − 4R

ξγ1

)
� γ1/2 ± γ1/2 ∓ R

ξ
. (C5)

In order to have the linear regime k12 ∝ R/ξ we must therefore
impose the minus sign.
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A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.
F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105,
140502 (2010).

[23] O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S.
Seidelin, Nat. Phys. 7, 879 (2011).

[24] S. Hong, M. S. Grinolds, P. Maletinsky, R. L. Walsworth, M. D.
Lukin, and A. Yacoby, Nano Lett. 12, 3920 (2012).

[25] A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier,
Phys. Rev. A 64, 061802 (2001).

[26] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev.
Lett. 85, 290 (2000).

[27] A. Sipahigil, M. L. Goldman, E. Togan, Y. Chu, M. Markham,
D. J. Twitchen, A. S. Zibrov, A. Kubanek, and M. D. Lukin,
Phys. Rev. Lett. 108, 143601 (2012).

[28] S. Schietinger, M. Barth, T. Aichele, and O. Benson, Nano Lett.
9, 1694 (2009).

[29] A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart,
J.-F. Roch, and S. Huant, Opt. Express 17, 19969 (2009).

[30] R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and
A. N. Vamivakas, Nano Lett. 13, 3807 (2013).

[31] A. W. Schell, Ph. Engel, J. F. M. Werra, C. Wolff, K. Busch, and
O. Benson, Nano Lett. 14, 2623 (2014).

[32] R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L.
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Bergonzo, S. Perruchas, T. Gacoin, F. Treussart, and J.-F. Roch,
J. Lumin. 130, 1655 (2010).

[38] R. Loudon, The Quantum Theory of Light (Oxford University
Press, New York, 2000).

[39] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, London, 1995).

[40] H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123 (1976).
[41] C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, J. Mod.

Opt. 48, 2039 (2001).
[42] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.

Wrachtrup, and L. C. Hollenberg, Phys. Rep. 528, 1 (2013).
[43] M. W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup,

N. B. Manson, and L. C. L. Hollenberg, Phys. Rev. B 85, 205203
(2012).

[44] J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras,
and M. D. Lukin, New J. Phys. 13, 025025 (2011).

035308-12

http://dx.doi.org/10.1063/1.3610677
http://dx.doi.org/10.1063/1.3610677
http://dx.doi.org/10.1063/1.3610677
http://dx.doi.org/10.1063/1.3610677
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1103/PhysRevLett.105.217403
http://dx.doi.org/10.1103/PhysRevLett.105.217403
http://dx.doi.org/10.1103/PhysRevLett.105.217403
http://dx.doi.org/10.1103/PhysRevLett.105.217403
http://dx.doi.org/10.1088/0953-4075/39/1/005
http://dx.doi.org/10.1088/0953-4075/39/1/005
http://dx.doi.org/10.1088/0953-4075/39/1/005
http://dx.doi.org/10.1088/0953-4075/39/1/005
http://dx.doi.org/10.1088/1367-2630/13/2/025012
http://dx.doi.org/10.1088/1367-2630/13/2/025012
http://dx.doi.org/10.1088/1367-2630/13/2/025012
http://dx.doi.org/10.1088/1367-2630/13/2/025012
http://dx.doi.org/10.1364/OL.25.001294
http://dx.doi.org/10.1364/OL.25.001294
http://dx.doi.org/10.1364/OL.25.001294
http://dx.doi.org/10.1364/OL.25.001294
http://dx.doi.org/10.1364/OL.33.000611
http://dx.doi.org/10.1364/OL.33.000611
http://dx.doi.org/10.1364/OL.33.000611
http://dx.doi.org/10.1364/OL.33.000611
http://dx.doi.org/10.1038/nnano.2010.56
http://dx.doi.org/10.1038/nnano.2010.56
http://dx.doi.org/10.1038/nnano.2010.56
http://dx.doi.org/10.1038/nnano.2010.56
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1103/PhysRevB.82.115449
http://dx.doi.org/10.1103/PhysRevB.82.115449
http://dx.doi.org/10.1103/PhysRevB.82.115449
http://dx.doi.org/10.1103/PhysRevB.82.115449
http://dx.doi.org/10.1103/PhysRevLett.110.167402
http://dx.doi.org/10.1103/PhysRevLett.110.167402
http://dx.doi.org/10.1103/PhysRevLett.110.167402
http://dx.doi.org/10.1103/PhysRevLett.110.167402
http://dx.doi.org/10.1002/smll.200801802
http://dx.doi.org/10.1002/smll.200801802
http://dx.doi.org/10.1002/smll.200801802
http://dx.doi.org/10.1002/smll.200801802
http://dx.doi.org/10.1063/1.2943282
http://dx.doi.org/10.1063/1.2943282
http://dx.doi.org/10.1063/1.2943282
http://dx.doi.org/10.1063/1.2943282
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1038/nnano.2012.50
http://dx.doi.org/10.1038/nnano.2012.50
http://dx.doi.org/10.1038/nnano.2012.50
http://dx.doi.org/10.1038/nnano.2012.50
http://dx.doi.org/10.1063/1.3703128
http://dx.doi.org/10.1063/1.3703128
http://dx.doi.org/10.1063/1.3703128
http://dx.doi.org/10.1063/1.3703128
http://dx.doi.org/10.1088/0034-4885/77/5/056503
http://dx.doi.org/10.1088/0034-4885/77/5/056503
http://dx.doi.org/10.1088/0034-4885/77/5/056503
http://dx.doi.org/10.1088/0034-4885/77/5/056503
http://dx.doi.org/10.1038/nphys2543
http://dx.doi.org/10.1038/nphys2543
http://dx.doi.org/10.1038/nphys2543
http://dx.doi.org/10.1038/nphys2543
http://dx.doi.org/10.1021/nn901014j
http://dx.doi.org/10.1021/nn901014j
http://dx.doi.org/10.1021/nn901014j
http://dx.doi.org/10.1021/nn901014j
http://dx.doi.org/10.1038/nnano.2011.64
http://dx.doi.org/10.1038/nnano.2011.64
http://dx.doi.org/10.1038/nnano.2011.64
http://dx.doi.org/10.1038/nnano.2011.64
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1103/PhysRevLett.105.140502
http://dx.doi.org/10.1038/nphys2070
http://dx.doi.org/10.1038/nphys2070
http://dx.doi.org/10.1038/nphys2070
http://dx.doi.org/10.1038/nphys2070
http://dx.doi.org/10.1021/nl300775c
http://dx.doi.org/10.1021/nl300775c
http://dx.doi.org/10.1021/nl300775c
http://dx.doi.org/10.1021/nl300775c
http://dx.doi.org/10.1103/PhysRevA.64.061802
http://dx.doi.org/10.1103/PhysRevA.64.061802
http://dx.doi.org/10.1103/PhysRevA.64.061802
http://dx.doi.org/10.1103/PhysRevA.64.061802
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1103/PhysRevLett.108.143601
http://dx.doi.org/10.1103/PhysRevLett.108.143601
http://dx.doi.org/10.1103/PhysRevLett.108.143601
http://dx.doi.org/10.1103/PhysRevLett.108.143601
http://dx.doi.org/10.1021/nl900384c
http://dx.doi.org/10.1021/nl900384c
http://dx.doi.org/10.1021/nl900384c
http://dx.doi.org/10.1021/nl900384c
http://dx.doi.org/10.1364/OE.17.019969
http://dx.doi.org/10.1364/OE.17.019969
http://dx.doi.org/10.1364/OE.17.019969
http://dx.doi.org/10.1364/OE.17.019969
http://dx.doi.org/10.1021/nl401791v
http://dx.doi.org/10.1021/nl401791v
http://dx.doi.org/10.1021/nl401791v
http://dx.doi.org/10.1021/nl401791v
http://dx.doi.org/10.1021/nl500460c
http://dx.doi.org/10.1021/nl500460c
http://dx.doi.org/10.1021/nl500460c
http://dx.doi.org/10.1021/nl500460c
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1038/nphys1278
http://dx.doi.org/10.1021/nl102568m
http://dx.doi.org/10.1021/nl102568m
http://dx.doi.org/10.1021/nl102568m
http://dx.doi.org/10.1021/nl102568m
http://dx.doi.org/10.1103/PhysRevB.86.045401
http://dx.doi.org/10.1103/PhysRevB.86.045401
http://dx.doi.org/10.1103/PhysRevB.86.045401
http://dx.doi.org/10.1103/PhysRevB.86.045401
http://dx.doi.org/10.1016/j.jlumin.2004.01.020
http://dx.doi.org/10.1016/j.jlumin.2004.01.020
http://dx.doi.org/10.1016/j.jlumin.2004.01.020
http://dx.doi.org/10.1016/j.jlumin.2004.01.020
http://dx.doi.org/10.1007/s00340-005-2056-2
http://dx.doi.org/10.1007/s00340-005-2056-2
http://dx.doi.org/10.1007/s00340-005-2056-2
http://dx.doi.org/10.1007/s00340-005-2056-2
http://dx.doi.org/10.1016/j.jlumin.2009.12.003
http://dx.doi.org/10.1016/j.jlumin.2009.12.003
http://dx.doi.org/10.1016/j.jlumin.2009.12.003
http://dx.doi.org/10.1016/j.jlumin.2009.12.003
http://dx.doi.org/10.1103/PhysRevA.13.2123
http://dx.doi.org/10.1103/PhysRevA.13.2123
http://dx.doi.org/10.1103/PhysRevA.13.2123
http://dx.doi.org/10.1103/PhysRevA.13.2123
http://dx.doi.org/10.1080/09500340108240905
http://dx.doi.org/10.1080/09500340108240905
http://dx.doi.org/10.1080/09500340108240905
http://dx.doi.org/10.1080/09500340108240905
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1103/PhysRevB.85.205203
http://dx.doi.org/10.1103/PhysRevB.85.205203
http://dx.doi.org/10.1103/PhysRevB.85.205203
http://dx.doi.org/10.1103/PhysRevB.85.205203
http://dx.doi.org/10.1088/1367-2630/13/2/025025
http://dx.doi.org/10.1088/1367-2630/13/2/025025
http://dx.doi.org/10.1088/1367-2630/13/2/025025
http://dx.doi.org/10.1088/1367-2630/13/2/025025


PHOTOPHYSICS OF SINGLE NITROGEN-VACANCY . . . PHYSICAL REVIEW B 91, 035308 (2015)

[45] A. Gali and J. R. Maze, Phys. Rev. B 88, 235205 (2013).
[46] J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuiss-

chert, J.-F. Roch, and V. Jacques, New J. Phys. 14, 103033
(2012).

[47] P. Kehayias, M. W. Doherty, D. English, R. Fischer, A. Jarmola,
K. Jensen, N. Leefer, P. Hemmer, N. B. Manson, and D. Budker,
Phys. Rev. B 88, 165202 (2013).

[48] A. Gali, Phys. Rev. B 79, 235210 (2009).
[49] S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau,

D. Fisher, and D. J. Twitchen, Phys. Rev. B 77, 081201(R)
(2008).

[50] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[51] P. W. Milonni, The Quantum Vacuum: An Introduction to

Quantum Electrodynamics (Academic Press, New York, 1993).
[52] Note that for the NV− center, one should consider a four-level

model by including two intermediate singlet states [42, 53]
responsible for an additional ZPL line in the IR part of the
spectrum. However, because of a rapid radiative decay between
these states, only the low-energy singlet plays a role in the
bunching behavior.

[53] P. Dalaney, J. C. Greer, and J. A. Larsson, Nano Lett. 10, 610
(2010).

[54] L. Novotny and B. Hecht, Principles of Nano-Optics
(Cambridge University Press, London, 2006).

[55] A. Beveratos, R. Brouri, J.-P. Poizat, and P. Grangier,
arXiv:quant-ph/0010044.

[56] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W.
Hell, Nat. Photonics 3, 144 (2009).

[57] G. Waldherr, J. Beck, M. Steiner, P. Neumann, A. Gali, Th.
Frauenheim, F. Jelezko, and J. Wrachtrup, Phys. Rev. Lett. 106,
157601 (2011).

[58] F. A. Inam, M. D. W. Grogan, M. Rollings, T. Gaebel, J. M. Say,
C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R.
Rabeau, and M. J. Steel, ACS Nano 7, 3833 (2013).

[59] N. Jacobson, Basic Algebra I, 2nd ed. (Dover, New York,
2009).

[60] These are nominal values. Because of the uncertainty on the
exact location of the NV center in the ND matrix, we expect that
the exact size of the studied NDs, whether 50 or 25 nm, is not a
critical parameter in the present study.

[61] K. Iakoubovskii, G. J. Adriaenssens, and M. Nasladek, J. Phys.:
Condens. Matter 12, 189 (2000).

[62] N. B. Manson and J. P. Harrison, Diam. Relat. Mater. 14, 1705
(2005).

[63] K. Beha, A. Batalov, N. B. Manson, R. Bratschitsch, and A.
Leitenstorfer, Phys. Rev. Lett. 109, 097404 (2012).

[64] N. Aslam, G. Waldherr, P. Neumann, and F. Jelezko, New J.
Phys. 15, 013064 (2013).

[65] B. Grotz, M. V. Hauf, M. Dankerl, B. Naydenov, S. Pezzagna,
J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard,
and J. A. Garrido, Nat. Commun. 3, 729 (2012).

[66] A. T. Collins, J. Phys.: Condens. Matter 14, 3743 (2002).
[67] E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J.-M. Gérard,

and I. Abram, Phys. Rev. Lett. 87, 183601 (2001).
[68] D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund,

W. V. Schoenfeld, and P. M. Petroff, Phys. Rev. Lett. 87, 257401
(2001).

[69] A. Kiraz, S. Fälth, C. Becher, B. Gayral, W. V. Schoenfeld,
P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, Phys. Rev. B
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