
HAL Id: hal-01337308
https://hal.science/hal-01337308

Submitted on 24 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Translation of Heterogeneous Databases into RDF, and
Application to the Construction of a SKOS Taxonomical

Reference
Franck Michel, Loïc Djimenou, Catherine Faron Zucker, Johan Montagnat

To cite this version:
Franck Michel, Loïc Djimenou, Catherine Faron Zucker, Johan Montagnat. Translation of Heteroge-
neous Databases into RDF, and Application to the Construction of a SKOS Taxonomical Reference.
Web Information Systems and Technologies: 11th International Conference, WEBIST 2015, Revised
Selected Papers, 246, Springer, pp.275-296, 2016, Lecture Notes in Business Information Processing,
978-3-319-30995-8. �10.1007/978-3-319-30995-5_14�. �hal-01337308�

https://hal.science/hal-01337308
https://hal.archives-ouvertes.fr

Translation of Heterogeneous Databases into
RDF, and Application to the Construction of a

SKOS Taxonomical Reference

Franck Michel1, Löıc Djimenou1, Catherine Faron-Zucker1, and Johan
Montagnat1

Univ. Nice Sophia Antipolis, CNRS, I3S (UMR 7271), France

Abstract. While the data deluge accelerates, most of the data produced
remains locked in deep Web databases. For the linked open data to ben-
efit from the potential represented by this huge amount of data, it is
crucial to come up with solutions to expose heterogeneous databases as
linked data. The xR2RML mapping language is an endeavor towards this
goal: it is designed to map various types of databases to RDF, by flex-
ibly adapting to heterogeneous query languages and data models while
remaining free from any specific language. It extends R2RML, the W3C
recommendation for the mapping of relational databases to RDF, and
relies on RML for the handling of various data formats.
In this paper we present xR2RML, we analyse data models of several
modern databases as well as the format in which query results are re-
turned, and we show how xR2RML translates any result data element
into RDF, relying on existing languages such as XPath and JSONPath
when necessary. We illustrate some features of xR2RML such as the gen-
eration of RDF collections and containers, and the ability to deal with
mixed data formats. We also describe a real-world use case in which we
applied xR2RML to build a SKOS thesaurus aimed at supporting studies
on History of Zoology, Archaeozoology and Conservation Biology.

Keywords: Linked Data, RDF, R2RML, NoSQL, History of Zoology

1 Introduction

The web of data is now emerging through the publication and interlinking of
various open data sets in RDF. Initiatives such as the W3C Data Activity1

and the Linking Open Data (LOD) project2 aim at Web-scale data integra-
tion and processing, assuming that making heterogeneous data available in a
common machine-readable format should create opportunities for novel appli-
cations and services. Their success largely depends on the ability to reach data
from the deep web [1], a part of the web content consisting of documents and
databases hardly linked with other data sources and hardly indexed by standard

1 http://www.w3.org/2013/data/
2 http://linkeddata.org/

2

search engines. The deep web keeps growing as data is continuously accumu-
lated in ever more heterogeneous databases. In particular, NoSQL systems have
gained a remarkable success during recent years. Driven by major web compa-
nies, they have been developed to meet requirements of web 2.0 services, that
relational databases (RDB) could not achieve (flexible schema, high throughput,
high availability, horizontal elasticity on commodity hardware). Thus, NoSQL
systems should now be considered as potential heavy contributors of linked open
data. Other types of databases have been developed over time, either for generic
purpose or specific domains, such as XML databases (notably used in edition
and digital humanities), object-oriented databases or directory-based databases.

Significant efforts have been invested in the definition of methods to translate
various kinds of data sources into RDF. R2RML [2], for instance, is the W3C
recommendation to describe RDB-to-RDF mappings. RML extends R2RML for
the integration of heterogeneous data formats [3]. To our knowledge though, no
method has been proposed yet to tackle NoSQL-to-RDF translation.

In this paper, we present xR2RML, a mapping language designed as an ex-
tension of R2RML and RML. Besides relational databases, xR2RML addresses
the mapping of a large and extensible scope of non-relational databases to RDF.
It is designed to flexibly adapt to various data models and query languages, it
can translate data with mixed formats and generate RDF collections and con-
tainers. xR2RML is exemplified and validated through a real-world use case. A
large-scale SKOS thesaurus aimed at supporting studies on History of Zoology,
Archaeozoology and Conservation Biology is thus generated.

In the rest of this section we draw a picture of other works pertaining to
the translation of various data sources to RDF, and we scope the objectives of
xR2RML. Section 2 explores in more details the capabilities required to reach
these goals. In section 3 we recall the main characteristics of R2RML and RML,
and in section 4 we describe xR2RML specific extensions. Section 5 presents a
working implementation of the language. Section 6 describes the experimentation
we ran to create a large taxonomical reference in SKOS. Finally sections 7 and
8 discuss xR2RML applicability in different contexts and concludes by outlining
some perspectives.

1.1 Related Works

Wrapper-based data integration systems like Garlic [4] and SQL/MED [5] gen-
erally have similar architectures: a global data model is described using specific
modelling languages (e.g. Garlic’s GDL), a query federation engine handles user
queries expressed in terms of a global data model and determines a query plan,
a per-data source wrapper implements a specific wrapper interface and performs
the mapping with the data source schema. No guideline is provided as to how a
wrapper should describe and implement the mapping.

The same global architecture holds in data integration systems based on se-
mantic web technologies. Existing works focus on efficient query planning and
distribution, such as FedX [6], Anapsid [7] and KGRAM-DQP [8]. The global
data model is expressed by domain ontologies using common languages, e.g.

3

RDFS or OWL. User queries, expressed in terms of the domain ontologies, are
written in SPARQL. SPARQL is also used as the wrapper interface. Each data
source wrapper is a SPARQL endpoint that performs the schema mapping with
the source schema. Our work, as well as most related works listed below, focuses
on the mapping step: the rationale is to standardize the schema mapping de-
scription, so that a mapping description can be written once and applied with
different wrapper implementations.

RDB-to-RDF mapping has been an active field of research during the last ten
years [9,10,11]. Several mapping methods and languages have been proposed over
time, based either on the materialization of RDF data sets or on the SPARQL-
based access to relational data. Published in 2012, R2RML, the W3C RDB-to-
RDF mapping language recommendation, has reached a notable consensus3.

Similarly, various solutions exist to map XML data to RDF. The XSPARQL
query language [12] combines XQuery and SPARQL for bidirectional transfor-
mations between XML and RDF. Several other solutions are based on the XSLT
technology such as XML Scissor-lift [13] that describes mapping rules in Schema-
tron XML validation language, and AstroGrid-D [14]. SPARQL2XQuery [15]
applies XML Schema to RDF/OWL translation rules.

Much work has already been accomplished regarding the translation of CSV,
TSV and spreadsheets to RDF. Tools have been developed such as XLWrap [16]
and RDF Refine4. The Linked CSV5 format is a proposition to embed metadata
in a CSV file, that makes it easy to link on the Web and eventually to translate to
RDF or JSON. However this approach assumes that CSV data is made compliant
with the format in the first place, before it can be translated to RDF. The
CSV on the Web W3C Working Group6, created in 2014, intends to propose a
recommendation for the description of and access to CSV data on the Web. In
this context, RDF is one of the formats targeted either to represent metadata
about CSV data, or as a format to translate CSV data into.

Several tools are designed as frameworks for the integration of sources with
heterogeneous data formats. XSPARQL, cited above, provides an R2RML-compliant
extension. Thus it can simultaneously translate relational, XML and RDF data
to XML or RDF. TARQL7 is a SPARQL-based mapping language that can con-
vert from RDF, CSV/TSV and JSON formats to RDF, but it does not focus
on how the data is retrieved from different types of databases. Datalift [17] pro-
vides an integrated set of tools for the publication in RDF of raw structured
data (RDB, CSV, XML) and the interlinking of resulting data sets.

RML [18,3] is an extension of R2RML that tackles the mapping of data
sources with heterogeneous data formats such as CSV/TSV, XML or JSON.
Most approaches create links between data sets after they were translated to
RDF, e.g. using properties rdfs:seeAlso or owl:sameAs. This is sometimes not

3 http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
4 http://refine.deri.ie/
5 http://jenit.github.io/linked-csv/
6 http://www.w3.org/2013/csvw/wiki
7 https://github.com/cygri/tarql/wiki/TARQL-Mapping-Language

4

adequate as logical resources having different identifiers in different data sets
cannot easily be reconciled. RML creates linked data sets at mapping time
by enabling the simultaneous mapping of multiple data sources, thus allowing
for cross-references between resources defined in various data sources. However,
RML does not investigate the constraints that arise when dealing with differ-
ent types of databases. It proposes a solution to reference data elements within
query results using expressive languages such as XPath and JSONPath. But it
does not clearly distinguish between such languages and the actual query lan-
guage of a database. In some cases they might be the same, e.g. XPath can be
used to query an XML native database, and later on to reference data elements
from query results. But in the general case, the query language and the language
used to reference elements within query results must be dissociated, e.g. NoSQL
document stores use proprietary query languages, while results are JSON docu-
ments that can be evaluated against JSONPath expressions. Furthermore, RML
explicitly refers to known evaluation languages (ql:JSONPath, ql:XPath). In this
context, supporting a new evaluation language requires to change the mapping
language definition. To achieve more flexibility, we believe that such character-
istics should be implementation-dependent, leaving the mapping language free
from any explicit dependency.

1.2 Objectives of this Work

The works presented in section 1.1 address various types of data sources. Some
of them could be extended to new data sources by developing ad-hoc exten-
sions, although they are generally not designed to easily support new data mod-
els and query languages. Only RML comes with this flexibility as its design
aims at adapting to new data models. Our goal with xR2RML is to define a
generic mapping language able to equally apply to most common relational and
non-relational databases. We make a specific focus on NoSQL and XML native
databases, and we argue that our work can be generalized to some other types
of database, for instance object-oriented and directory (LDAP) databases. In
section 2 we explore the capabilities required by xR2RML to reach these goals.

Moreover, we describe a validation of xR2RML made in the context of a real-
world use case: the translation of data from a MongoDB NoSQL document store
into a large-scale RDF-based thesaurus aimed at supporting studies on History
of Zoology, Archaeozoology and Conservation Biology.

2 xR2RML language requirements

Different kinds of databases typically differ in several aspects: the query language
used to retrieve data, the data model that underlies the data structures retrieved
and the cross-data referencing scheme, if any. Below we explore in further details
the capabilities that we want xR2RML to provide.

Query languages. The landscape of modern database systems shows a
vast diversity of query languages. Relational databases generally support ANSI

5

SQL, and most native XML databases support XPath and XQuery. By contrast,
NoSQL is a catch-all term referring to very diverse systems [19,20]. They have
heterogeneous access methods ranging from low-level APIs to expressive query
languages. Despite several propositions of common query language (N1QL8,
UnQL9, SQL++ [21], ArangoDB QL10, CloudMdsQL [22]), no consensus has
emerged yet, that would fit most NoSQL databases. Therefore, until a standard
eventually arises, xR2RML must be agile enough to cope with various query
languages and protocols in a transparent manner.

Data models. Similarly to the case of query languages, we observe a large
heterogeneity in data models of modern databases. To describe their translation
to RDF, a mapping language must be able to reference any data element from
their data models. Below we list most common data models, we shortly analyse
formats in which data is retrieved and figure out how a mapping language can
reference data elements within retrieved data.

Relational databases comply with a row-based model in which column names
uniquely reference cells in a row. NoSQL extensible column stores11 also comply
with the row-based model, with the difference that all rows do not necessarily
share the same columns. For such systems, referencing data elements is simply
achieved using column names. Other non-relational systems, such as XML na-
tive databases, NoSQL key-value stores, document stores or graph stores, have
heterogeneous data models that can hardly be reduced to a row-based model:

– In databases relying on a specific data representation format like JSON (no-
tably in NoSQL document stores) and XML, data is stored and retrieved
as documents consisting of tree-like compound values. Referencing data ele-
ments within such documents can be achieved thanks to languages such as
JSONPath and XPath.

– Object-oriented databases conventionally provide methods to serialize ob-
jects, typically as key-value associations: keys are attribute names while val-
ues are objects (composition or aggregation relationship), or compound val-
ues (collection, map, etc). Serialization is typically done in XML or JSON,
thus here again we can apply XPath or JSONPath expressions.

– A directory data model is organised as a tree: each node has an identifier
and a set of attributes represented as name=value. Each entry retrieved from
an LDAP request is named using an LDAP path expression, e.g. cn=Franck
Michel,ou=cnrs,o=fr. Referencing data elements within such entries can be
simply achieved using attribute names.

– In graph databases, the abstract data model basically consists of nodes and
edges. Query capabilities generally allow to retrieve either values matching
specific patterns (like the SPARQL SELECT clause), or a set of nodes and
edges representing a result graph (like the SPARQL CONSTRUCT clause).
Whatever the type of result though, graph databases commonly provide

8 http://www.couchbase.com/communities/n1ql
9 http://unql.sqlite.org/index.html

10 http://docs.arangodb.org/Aql/README.html
11 aka. column family store, column-oriented store, etc.

6

APIs to manipulate query results. For instance a SPARQL SELECT result
set has a row-based format: each row of a result set consists of columns typi-
cally named after query variable names. The Neo4J graph database provides
a JDBC interface to process a query result, and its REST interface returns
result graphs as JSON documents. Thus, although a graph may be a some-
how complex data structure, query results can be fairly easy to manipulate
using well-known formats: a row-column model, a serialization in JSON or
some other representation syntax, etc.

Finally, the way a mapping language can reference data elements within
query results depends more on the API capabilities than the data model itself.
To be effective, xR2RML must transparently accept any type of data element
reference expression. This includes a column name (applicable not only to row-
based data models but also to any row-based query result), JSONPath, XPath
or LDAP path expressions, etc. An xR2RML processing engine must be able to
evaluate such expressions against query results, but the mapping language itself
must remain free from any reference to specific expression syntaxes.

Collections. Many data models support the representation of collections:
these can be sets, arrays or maps of all kinds (sorted or not, with or without
duplicates, etc.). Although the RDF data model supports such data structures,
to the best of our knowledge, existing mapping languages do not allow for the
production of RDF collections (rdf:List) nor RDF containers (rdf:Bag, rdf:Seq,
rdf:Alt), except TARQL that is able to convert a JSON array into an rdf:List.
In all other cases, structured values such as collections or key-value associations
are flattened into multiple RDF triples. Listing 1.1 is an example XML collection
consisting of two “movie” elements.
Its translation into two triples is illustrated in Listing 1.2. Assuming that the
order of “movie” elements implicitly represents the chronological order in which
movies were shot, triples in Listing 1.2 lose this information. Using an RDF
sequence may be more appropriate in this case, as illustrated in Listing 1.3.

<director name="Woody Allen">

<movie >Annie Hall </movie >

<movie >Manhattan </movie >

</director >

Listing 1.1. Example of XML collection

<http :// example.org/dir/Woody \%20 Allen >

ex:directed "Annie Hall".

<http :// example.org/dir/Woody \%20 Allen >

ex:directed "Manhattan ".

Listing 1.2. Translation to multiple RDF triples

<http :// example.org/dir/Woody \%20 Allen >

ex:movieList [a rdf:Seq;

rdf:_1 "Annie Hall"; rdf:_2 "Manhattan"].

Listing 1.3. Translation to an RDF sequence

7

Consequently, to map heterogeneous data to RDF while preserving concepts
such as collections, bags, alternates or sequences, xR2RML must be able to map
data elements to RDF collections and containers.

Cross-references. Cross-references are commonly implemented as foreign
key constraints in relational data models, or aggregation and composition rela-
tionships in object-oriented models. Cross-referencing is even the primary goal
of graph-based databases. More generally, it is possible to cross-reference logical
entities in any type of database. For instance, a JSON document of a NoSQL
document store may refer to another document by its identifier or any other field
that identifies it uniquely, even if this is generally not recommended for the sake
of performances.

A cross-referenced logical resource may be mapped alternatively as the sub-
ject or the object of triples. This may entail joint queries between tables or
documents. Therefore, xR2RML must (i) allow a modular description so that
the mapping of a logical resource can be written once and easily reused as a
subject or an object, and (ii) allow the description of joint queries to retrieve
cross-referenced logical resources.

Summary. Finally, we draw up the list of key capabilities expected from
xR2RML as follows:
1. It enables to describe the mapping of various relational and non-relational
databases to RDF.
2. It is flexible enough to allow for new databases, query languages and data
models in an agile manner: supporting a new system, query language and/or
data model only requires changes in the implementation (adaptor, plug-in, etc.),
but no changes are required in the mapping language itself.
3. It enables to generate RDF collections (rdf:List) or containers (rdf:Seq,
rdf:Bag, rdf:Alt) from one-to-many relations modelled as compound values or
as cross-references. RDF collections and containers can be nested.
4. It enables to perform joint queries following cross-references between logical
resources, and it allows the modular reuse of mapping definitions.

Additionally, data sources to be mapped to RDF using xR2RML should
provide a declarative query language. If not, it must be possible to fetch the
whole data at once, like a CSV or XML file returned by a Web service. There
must exist technical means to parse query results, ranging from simple column
names to expressive languages like XPath. In case of large data sets, the database
interface should provide ways to iterate on query results, similarly to SQL cursors
in RDBs.

To help in the design of xR2RML we chose to leverage R2RML, a standard,
well-adopted mapping language for relational databases. R2RML already pro-
vides some of the requirements listed above: modularity, management of cross-
references, as well as rich features such as the ability to define target named
graphs. To facilitate its understanding and adoption, xR2RML is designed as
a backward compatible extension of R2RML. Besides, to address the mapping
of heterogeneous data formats such as CSV/TSV, XML and JSON, we leverage
propositions of RML that is itself an extension of R2RML.

8

3 R2RML and RML

R2RML is a generic language meant to describe customized mappings that trans-
late data from a relational database into an RDF data set. An R2RML mapping
is expressed as an RDF graph written in Turtle syntax12. An R2RML mapping
graph consists of triples maps, each one specifying how to map rows of a logi-
cal table to RDF triples. A triples map is composed of exactly one logical table
(property rr:logicalTable), one subject map (property rr:subjectMap) and any
number of predicate-object maps (property rr:predicateObjectMap). A logical ta-
ble may be a table, an SQL view (property rr:tableName), or the result of a valid
SQL query (property rr:sqlQuery). A predicate-object map consists of predicate
maps (property rr:predicateMap) and object maps (property rr:objectMap). For
each row of the logical table, the subject map generates a subject IRI, while
each predicate-object map creates one or more predicate-object pairs. Triples
are produced by combining the subject IRI with each predicate-object pair. Ad-
ditionally, triples are generated either in the default graph or in a named graph
specified using graph maps (property rr:graphMap).

Subject, predicate, object and graph maps are all R2RML term maps. A term
map is a function that generates RDF terms (either a literal, an IRI or a blank
node) from elements of a logical table row. A term map must be exactly one of the
following: a constant-valued term map (property rr:constant) always generates
the same value; a column-valued term map (property rr:column) produces the
value of a given column in the current row; a template-valued term map (property
rr:template) builds a value from a template string that references columns of
the current row.

When a logical resource is cross-referenced, typically by means of a foreign key
relationship, it may be used as the subject of some triples and the object of some
others. In such cases, a referencing object map uses IRIs produced by the subject
map of a (parent) triples map as the objects of triples produced by another (child)
triples map. In case both triples maps do not share the same logical table, a
joint query must be performed. A join condition (property rr:joinCondition)
names the columns from the parent and child triples maps, that must be joined
(properties rr:parent and rr:child).

Below we provide a short illustrative example. Triples map <#R2RML Directors>

uses table DIRECTORS to create triples linking movie directors (whose IRIs are built
from column NAME) with their birth date (column BIRTH DATE).

<#R2RML_Directors >

rrrrrr:logicalTablelogicalTablelogicalTable [rrrrrr:tableNametableNametableName "DIRECTORS"];

rrrrrr:subjectMapsubjectMapsubjectMap [

rrrrrr:templatetemplatetemplate "http :// example.org/dir/{NAME}"];

rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate ex:bithdate;

rrrrrr:objectMapobjectMapobjectMap [

rrrrrr:columncolumncolumn "BIRTH_DATE "; rrrrrr:datatypedatatypedatatype xsd:date]].

12 http://www.w3.org/TR/turtle/

9

RML is an extension of R2RML that targets the simultaneous mapping of
heterogeneous data sources with various data formats, in particular hierarchi-
cal data formats. An RML logical source (property rml:logicalSource) extends
R2RML logical table and points to the data source (property rml:source): this
may be a file on the local file system, or data returned from a web service for in-
stance. A reference formulation (property rml:referenceFormulation) names the
syntax used to reference data elements within the logical source. As of today,
possible values are ql:JSONPath for JSON data, ql:XPath for XML data, and
rr:SQL2008 for relational databases. Data elements are referenced with prop-
erty rml:reference that extends rr:column. Its object is an expression whose
syntax matches the reference formulation. Similarly, the definition of property
rr:template is extended to allow such reference expressions to be enclosed within
curly braces (’{’ and ’}’). Below we provide an RML example. It is very similar
to the R2RML example above, with the difference that data now comes from a
JSON file “directors.json”.

<#RML_Directors >

rmlrmlrml:logicalSourcelogicalSourcelogicalSource [

rmlrmlrml:sourcesourcesource "directors.json";

rmlrmlrml:referenceFormulationreferenceFormulationreferenceFormulation qlqlql:JSONPathJSONPathJSONPath;

rmlrmlrml:iteratoriteratoriterator "$.*";];

rrrrrr:subjectMapsubjectMapsubjectMap [

rrrrrr:templatetemplatetemplate "http :// example.org/dir/{$.*. name}"];

rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate ex:bithdate;

rrrrrr:objectMapobjectMapobjectMap [

rmlrmlrml:referencereferencereference "$.*. bithdate "; rrrrrr:datatypedatatypedatatype xsd:date]].

4 The xR2RML Mapping Language

In this section we briefly describe the elements of the xR2RML language. A
complete specification is provided in [23]. We illustrate the descriptions with
a running example: Listing 1.4 shows JSON documents stored in a MongoDB
database, in two collections: a “directors” collection with documents on movie
directors, and a “movies” collection in which movies are grouped in per-decade
documents. Listing 1.5 shows an xR2RML mapping graph to translate those
documents into RDF. Director IRIs are built using director names, while movie
IRIs use movie codes. We assume the following namespace prefix definitions:
@predfix xrr: <http://www.i3s.unice.fr/ns/xr2rml#>.

@predfix rr: <http://www.w3.org/ns/r2rml#>.

@predfix rml: <http://semweb.mmlab.be/ns/rml#>.

@predfix xsd: <http://www.w3.org/2001/XMLSchema#>.

@predfix ex: <http://example.com/ns#>.

10

4.1 Describing A Logical Source

To reach its genericity objective, xR2RML must avoid explicitly referring to
specific query languages or data models. Keeping this in mind, we define log-
ical sources as a mean to represent a data set from any kind of database. In
conformance with R2RML principles, we keep database connection details out
of the scope of the mapping language. In RML on the other hand, a logical
source points to the data to be mapped typically using a file URL (property
rml:source). This difference makes it difficult for xR2RML to extend RML’s
logical source concept. Instead, xR2RML extends the R2RML logical source
while commonalities are addressed by using or extending some RML properties
(rml:referenceFormulation, rml:query, rml:iterator).

xR2RML triples maps extend R2RML triples maps by referencing a logical
source (property xrr:logicalSource) which is the result of a request applied to
the input database. It is either an xR2RML base table or an xR2RML view.
The xR2RML base table extends the concept of R2RML table or view to tabu-
lar databases beyond relational databases (extensible column store, CSV/TSV,
etc.). It refers to a table by its name (property rr:tableName). An xR2RML view
represents the result of executing a query against the input database. It has ex-
actly one xrr:query property that extends RML property rml:query (which itself
extends rr:sqlQuery13). Its value is a valid expression with regards to the query
language supported by the input database. No assumption is made whatsoever
as to the query language used.

Reference formulation. Retrieving values from a query result set requires
evaluating data element references against the query result. Relational database
APIs (such as JDBC drivers) support the evaluation of a column name against
the current row of a result set. Conversely, some databases come with simple
APIs that provide lower level evaluation features. For instance, APIs of most
NoSQL document stores return JSON documents but hardly support JSON-
Path. Therefore, the xR2RML processing engine is responsible for evaluating
such data element references. To do so, it needs to know which syntax is being
used. To this end, RML introduced the reference formulation concept (property
rml:referenceFormulation of a logical source) to name the syntax of data ele-
ment references. As underlined above, xR2RML adheres to R2RML’s principle
that database-specific details be kept out of the scope of the mapping language.
We also want the mapping language to remain free from explicit reference to
specific syntaxes. As a result, we amend the R2RML processor definition as fol-
lows: an xR2RML processor must be provided with a database connection and the
reference formulation applicable to results of queries run against the connection.
If the reference formulation is not provided, it defaults to column name, in order
to ensure backward compatibility with R2RML.

Iteration model. In R2RML, the row-based iteration occurs on a set of
rows read from a logical table. xR2RML applies this principle to other systems

13 rml:query also subsumes rml:xmlQuery and rml:queryLanguage, although none of
those properties are described or exemplified in the RML language specification and
articles at the time of writing.

11

Collection "directors ":

{"name": "Woody Allen", "directed ":

[" Manhattan", "Interiors "]},

{"name": "Wong Kar -wai", "directed ":

["2046" , "In the Mood for Love "]}

Collection "movies ":

{ "decade ": "2000s", "movies ": [

{"name": "2046" , "code": "m2046",

"actors ": ["T. Leung", "G. Li"]},

{"name": "In the Mood for Love", "code": "Mood",

"actors ": ["M. Cheung "]}] }

{ "decade ": "1970s":, "movies ": [

{"name": "Manhattan", "code": "Manh",

"actors ": ["Woody Allen", "Diane Keaton "]}

{"name": "Interiors", "code": "Int01",

"actors ": ["D. Keaton", "G. Page "]}] }

Listing 1.4. Example Database

<#Movies >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [

xrrxrrxrr:queryqueryquery "db.movies.find({ decade :{ $exists:true }})";

rmlrmlrml:iteratoriteratoriterator "$.movies .*";

];

rrrrrr:subjectMapsubjectMapsubjectMap [

rrrrrr:templatetemplatetemplate "http :// example.org/movie /{$.code}"];

rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate ex:starring;

rrrrrr:objectMapobjectMapobjectMap [

rrrrrr:termTypetermTypetermType xrrxrrxrr:RdfBagRdfBagRdfBag;

xrrxrrxrr:referencereferencereference "$.actors .*";

xrrxrrxrr:nestedTermMapnestedTermMapnestedTermMap [rrrrrr:datatypedatatypedatatype xsd:string]]].

<#Directors >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [xrrxrrxrr:queryqueryquery "db.directors.find ()"];

rrrrrr:subjectMapsubjectMapsubjectMap [

rrrrrr:templatetemplatetemplate "http :// example.org/dir/{$.name}"];

rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate ex:directed;

rrrrrr:objectMapobjectMapobjectMap [

rrrrrr:parentTriplesMapparentTriplesMapparentTriplesMap <#Movies >;

rrrrrr:joinConditionjoinConditionjoinCondition [

rrrrrr:childchildchild "$.directed .*";

rrrrrr:parentparentparent "$.name"]]].

Listing 1.5. xR2RML Example Mapping Graph

12

returning row-based result sets: CSV/TSV files, extensible column stores, but
also some graph databases as underlined in 2, e.g. a SPARQL SELECT result set
is a table in which columns are named after the variables in the SELECT clause.
In the context of non row-based result sets, the model is implicitly extended
to a document-based iteration model : a document is basically one entry of a
result set returned by the database, e.g. a JSON document retrieved from a
NoSQL document store, or an XML document retrieved from an XML native
database. In the case of data sources whose access interface does not provide
built-in iterators, e.g. a web service returning an XML response at once, then a
single iteration occurs on the whole retrieved document.

Yet, some specific needs may not be fulfilled. For instance, it may be needed
to iterate on explicitly specified entries of a JSON document or elements of an
XML tree. To this end, we leverage the concept of iterator introduced in RML.
An iterator (property rml:iterator) specifies the iteration pattern to apply to
data read from the input database. Its value is a valid expression written using
the syntax specified in the reference formulation. The iterator can be either
omitted or empty when the reference formulation is a column name.

Listing 1.5 presents two logical source definition examples. Both consist of
a MongoDB query (property xrr:query). We assume that the JSONPath refer-
ence formulation is provided along with the database connection. In collection
“directors” (Listing 1.4), each document describes exactly one director. By con-
trast, in collection “movies” each document refers to several movies grouped by
decade. To avoid mixing up multiple movies of a single document, an iterator
with JSONPath expression $.movies.* is associated with triples map <#Movies>:
thus, the triples map applies separately on each movie of each document.

4.2 Referencing Data Elements

In section 3 we have seen that RML properties rml:reference and rr:template

both allow data element references expressed according to the reference formu-
lation (column name, XPath, JSONPath). xR2RML uses these RML definitions
as a starting point to a broader set of use cases.

In real world use cases, databases commonly store values written in a data
format that they cannot interpret. For instance, in key-value stores and in most
extensible column stores, values are stored as binary objects whose content is
opaque to the system. A developer may choose to embed JSON, CSV or XML
values in the column of a relational table, for performance issues or due to
application design constraints. We call such cases mixed content.

xR2RML proposes to apply the principle of data element references defined
in RML, and extend it to allow referencing data elements within mixed content.
An xR2RML mixed-syntax path consists of the concatenation of several path ex-
pressions, each path being enclosed in a syntax path constructor that explicits the
path syntax. Existing constructors are: Column(), CSV(), TSV(), JSONPath()
and XPath(). For example, in a relational table, a text column NAME stores JSON-
formatted values containing people’s first and last names, e.g.: {"First":"John",

13

"Last":"Smith"}. Field FirstName can be referenced with the following mixed-
syntax path: Column(NAME)/JSONPath($.First). An xR2RML processing engine
evaluates a mixed-syntax path from left to right, passing the result of each path
constructor on to the next one. In this example, the first path retrieves the value
associated with column NAME. Then the value is passed on to the next path con-
structor that evaluates JSONPath expression “$.First” against the value. The
resulting value is finally translated into an RDF term according to the current
term map definition.

xR2RML defines property xrr:reference as an extension of RML property
rml:reference, and extends the definition of property rr:template. Both prop-
erties accept either simple references (illustrated in Listing 1.5) or mixed-syntax
path expressions.

4.3 Producing RDF Terms and (Nested) RDF
Collections/Containers

In a row-based logical source, a valid column name reference returns zero or one
value during each triples map iteration. In turn an R2RML term map generates
zero or one RDF term per iteration. By contrast, JSONPath and XPath expres-
sions used with properties xrr:reference and rr:template allow addressing mul-
tiple values. For instance, XPath expression //movie/name returns all <name> ele-
ments of all <movie> elements. Therefore, reference-valued and template-valued
term maps can return multiple RDF terms at once. This difference entails the
definition of two strategies with regards to how triples maps combine RDF terms
to build triples: the product strategy, and the collection/container strategy.

Product strategy. During each iteration of an xR2RML triples map, triples
are generated as the product between RDF terms produced by the subject map
and each predicate-object pair. Predicate-object pairs result of the product be-
tween RDF terms produced by the predicate maps and object maps of each
predicate-object map. Like any other term map, a graph map may also pro-
duce multiple terms. The product strategy equally applies in that case, there-
fore triples are produced simultaneously in all target graphs corresponding to
the multiple RDF terms produced by the graph map.

Collection/container strategy. Multiple values returned by properties
xrr:reference and rr:template are combined into an RDF collection or con-
tainer. This is achieved using new xR2RML values of the rr:termType prop-
erty: a term map with term type xrr:RdfList generates an RDF term of type
rdf:List, term type xrr:RdfSeq corresponds to rdf:Seq, xrr:RdfBag to rdf:Bag

and xrr:RdfAlt to rdf:Alt. Listing 1.5 illustrates this case: instead of generating
multiple triples relating each movie to one actor, triples map <#Movies> relates
each movie to a bag of actors starring in that movie. For instance:
<http://example.org/movie/m2046> ex:starring

[a rdf:Bag; rdf: 1 "Tony Leung"; rdf: 2 "Gong Li"].

At this point, two important needs must still be addressed in the collection/-
container strategy: (i) like in a regular term map, it must be possible to assign
a term type, language tag or data type to the members of an RDF collection or

14

container; and (ii) it must be possible to nest any number of RDF collections and
containers inside each-other. Both needs are fulfilled using xR2RML Nested Term
Maps. A nested term map (property xrr:nestedTermMap) very much resembles a
regular term map, with the exception that it can be defined only in the context of
a term map that produces RDF collections or containers. In a column-valued or
reference-valued term map, a nested term map describes how to translate values
read from the logical source into RDF terms, by specifying optional properties
rr:termType, rr:language and rr:datatype. Similarly, in a template-valued term
map, a nested term map applies to values produced by applying the template
string to input values. In Listing 1.5, triples map <#Movie> uses a nested term
map to assign a xsd:string datatype to names of names starring in a movie. For
instance:
<http://example.org/movie/m2046> ex:starring [a rdf:Bag;

rdf: 1 "Tony Leung"^^xsd:string; rdf: 2 "Gong Li"^^xsd:string].

Finally, properties xrr:reference and rr:template can be used within a nested
term map to recursively parse structured values while producing nested RDF
collections and containers.

4.4 Reference Relationships Between Logical Sources

A cross-referenced logical resource usually serves as the subject of some triples
and the object of other triples. In R2RML, this is achieved using a referencing
object map. xR2RML extends R2RML referencing object maps in two ways.
Firstly, when a joint query is needed (i.e. the parent and child triples map do
not share the same logical source), properties rr:child and rr:parent of the join
condition contain data element references (4.2), possibly including mixed-syntax
paths. As underlined in section 4.3, such data element references may produce
multiple terms. Consequently, the equivalent joint query of a referencing object
map must deal with multi-valued child and parent references. More precisely, a
join condition between two multi-valued references should be satisfied if at least
one data element of the child reference matches one data element of the parent
reference. This is described in Definition 1 using an SQL-like syntax and first
order logic for the description of WHERE conditions.

Definition 1: If a referencing object map has at least one join condition, then
its equivalent joint query is:

SELECT * FROM (child-query) AS child, (parent-query) AS parent
WHERE

∃c1 ∈ eval(child, {child− ref1}),∃p1 ∈ eval(parent, {parent− ref1}), c1 = p1
AND

∃c2 ∈ eval(child, {child− ref2}),∃p2 ∈ eval(parent, {parent− ref2}), c2 = p2
AND ...

where “{child-ref i}” and “{parent-ref i}” are the child and parent references of
the ith join condition, and “eval(child, {ref})” and “eval(parent, {ref})” are the
result of evaluating data element reference “{ref}” on the result of the child and
parent queries.

15

Listing 1.5 depicts a simple example: in triples map <#Directors>, the object
map uses movie IRIs generated by parent triples map <#Movies>. When process-
ing director “Wong Kar-wai”, the child reference ($.directed.*) returns values
“2046” and “In the Mood for Love”, while the parent reference ($.name) returns
a single movie name. The join condition is satisfied if the parent reference returns
one of “2046” or “In the Mood for Love”. Generated triples use movie codes to
build movie IRIs, such as:
<http://example.org/dir/Wong%20Kar-wai>

ex:directed <http://example.org/movie/m2046>.

Secondly, the objects produced by a referencing object map can be grouped
in an RDF collection or container, instead of being the objects of multiple triples.
To do so, an xR2RML referencing object map may have a rr:termType property
with value xrr:RdfList, xrr:RdfSeq, xrr:RdfBag or xrr:RdfAlt. Results of the
joint query are grouped by child value, i.e. objects generated by the parent
triples map, referring to the same child value, are grouped as members of an
RDF collection or container. An interesting consequence of this use case is the
ability, in the case of a regular relational database, to build an RDF collection
or container reflecting a one-to-many relation.

5 Implementation

To evaluate the effectiveness of xR2RML, we have developed Morph-xR2RML,
an open source prototype implementation available on Github14. It is written in
Scala and is an extension of Morph-RDB [24], an R2RML implementation.

In a first step, we upgraded Morph-RDB to support xR2RML features in
the context of relational databases. This included the support of logical sources,
mixed contents (JSON, XML, CSV or TSV data embedded in cells) and RDF
collections/containers. In a second step, we developed a connector to the Mon-
goDB document store, to translate MongoDB JSON documents into RDF. A
MongoDB query string is specified in each triples map logical source. The con-
nector executes the query and iterates over result documents returned by the
database. Subsequently, results are passed to the xR2RML processor that ap-
plies the optional iterator (rml:iterator) and evaluates JSONPath expressions
in each xrr:reference and rr:template property of all term maps. The support
of RDF collections/containers was validated, including in the case of referencing
object maps that entail a joint query between two JSON documents.

We evaluated the prototype using two simple databases: a MySQL relational
database and a MongoDB database with two collections. In both cases, the
data and associated xR2RML mappings were written to cover most mapping
situations addressed by xR2RML: strategies for handling multiple RDF terms,
mixed-syntax paths with mixed contents (relational, JSON, XML, CSV/TSV),
cross-references, RDF collection/containers, UTF-8 encoding. Both databases as
well as the example mappings are available on the GitHub repository. The cur-
rent status of the prototype applies the data materialization approach, i.e. RDF

14 https://github.com/frmichel/morph-xr2rml/

16

data is generated by sequentially applying all triples maps. The query rewriting
approach (SPARQL to database specific query rewriting) may be considered in
future work as suggested in section 8. At the time of writing the prototype has
two limitations: (i) only one level of RDF collections and containers can be gen-
erated (no nested collections/containers), and (ii) the result of a joint query in
a relational database cannot be translated into an RDF collection or container.

6 Validation: construction of a SKOS zoological and
botanical reference thesaurus

The Zoomathia research network15 studies the transmission of zoological knowl-
edge throughout historical periods. It intends to leverage the Semantic Web tech-
nologies to annotate and link together various resources such as rich medieval
compilation literature on Ancient zoological knowledge, archaeozoological data
from excavation reports, iconographic material and modern conservation biology
knowledge. This challenging goal can be addressed through the use of controlled
and widely accepted semantic references. In this context, the TAXREF [25] zo-
ological and botanical taxonomy has been chosen to build a SKOS thesaurus 16

supporting the integration of these heterogeneous data sets. SKOS, the Simple
Knowledge Organization System, is a W3C standard designed to represent con-
trolled vocabularies, taxonomies and thesauri. It is extensively used to bridge the
gap between existing knowledge organisation systems and the Semantic Web and
Linked Data. In this section we shortly present TAXREF and we describe how
we used xR2RML for the creation of a SKOS vocabulary faithfully representing
TAXREF. More detailed information about TAXREF’s content and structure,
the SKOS modeling and the data sources to be integrated, can be found in [26].

TAXREF is the French national taxonomic reference for fauna, flora and
fungus of metropolitan France and overseas departments and collectivities. It
registers 452.106 taxa of living beings from the Palaeolithic until now, cover-
ing continental and marine environments. Each taxon is provided along with its
scientific name, upper taxon in the classification, synonyms, vernacular names,
authority (author name and publication year), taxonomical rank (order, family,
gender, species...), type of habitat (marine, terrestrial...) and a biogeographical
status (present, endemic, extinct, etc.) for each considered geographical area.
TAXREF is developed, maintained and distributed by the French National Mu-
seum of Natural History (MNHN). It can be browsed, downloaded in TSV for-
mat, or queried through a Web service.

In a first step we defined the SKOS modelling of TAXREF17. In brief, a SKOS
concept is created for each taxon, along with a SKOS label for each scientific
(preferred label) name and synonym (alternate label). The SKOS broader prop-
erty is used to model the relationships between a taxon and the upper taxon in

15 http://www.cepam.cnrs.fr/zoomathia/
16 http://www.w3.org/2009/08/skos-reference/skos.html
17 Changes were made since the description presented in [26]

17

the classication. To ensure proper linkage with well-adopted data sets, in partic-
ular within the Linking Open Data cloud, we identified relevant ontologies such
as the NCBI taxonomic classification18, the GeoSpecies ontology19, the ENVO20

environment ontology and Biodiversity Information Standards promoted by the
Taxonomic Databases Working Group21. Links were made either by using appro-
priate properties and classes, or by aligning taxa with their equivalent in other
ontologies.

Listing 1.6 shortly illustrates the SKOS representation of a dolphin species,
the taxon ”Delphinus delphis”, generated by xR2RML using the Turtle RDF
syntax. This consists of a SKOS concept for the taxon and two SKOS labels,
one for the reference name and one for the synonym ”Delphinus tropicalis”.

In a second step we retrieved a full TAXREF JSON dump from the TAXREF
Web service, and imported it into a MongoDB instance. We wrote the xR2RML
mappings that describe how to map the result of queries to the MongoDB in-
stance into RDF triples, according to the SKOS modelling. This step requires
a good knowledge of the xR2RML language, but it is quite straightforward for
users who are already familiar with R2RML.

To perform the translation of TAXREF into SKOS, we ran Morph-xR2RML,
the prototype implementation of xR2RML described in section 5, on a laptop
equipped with a 3GHz Intel Core i7 processor and 8GB of RAM. The resulting
RDF graph consists of more than 5 million triples. The translation process re-
quired approximately 6 hours to complete, which can be considered surprisingly
long. We analyze this issue in the next paragraph. Nonetheless, this execution
time span should not be considered as an hurdle in the context of TAXREF.
Indeed, insofar as TAXREF is updated once a year approximately, the tradi-
tional Extract, Transform and Load (ETL) approach is relevant. This is the
approach we intend to follow in the future: each time TAXREF is updated, the
corresponding SKOS thesaurus is generated. The resulting graph is loaded into
a public triple store accessible using either a SPARQL endpoint or the HTTP
dereferencing method.

The xR2RML mapping graph for TAXREF consists of 90 triples maps. The
high number of triples maps is a consequence of the distance between the in-
ternal structure of TAXREF and the targeted SKOS modelling. We illustrate
this distance with an example. Habitats are coded in TAXREF with integer val-
ues, e.g. value ’1’ represents the marine habitat. Translating the marine habitat
into URI <http://inpn.mnhn.fr/taxref/habitat#1> would be straightforward: a
template-valued term map could simply append the value ’1’ read from the
database to the namespace <http://inpn.mnhn.fr/taxref/habitat#>. Therefore
a single triples map (thus a single query) would be sufficient to generate all triples
related to all types of habitat. However, we wish to generate more meaningful
URIs, such as <http://inpn.mnhn.fr/taxref/habitat#Marine>. This URI cannot

18 http://www.ontobee.org/browser/index.php?o=NCBITaxon
19 http://datahub.io/dataset/geospecies
20 http://www.ontobee.org/browser/index.php?o=ENVO
21 http://www.tdwg.org/

18

@prefix rdfsrdfsrdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .

@prefix dctdctdct: <http :// purl.org/dc/elements /1.1/> .

@prefix skcskcskc: <http :// www.w3.org /2004/02/ skos/core#>.

@prefix skxskxskx: <http :// www.w3.org /2008/05/ skos -xl#>.

@prefix tctctc: <http :// lod.taxonconcept.org/ontology/txn.owl#>.

@prefix ntntnt: <http :// purl.obolibrary.org/obo/ncbitaxon#> .

@prefix dwcdwcdwc: <http ://rs.tdwg.org/dwcdwcdwc/terms/> .

@prefix taxrtaxrtaxr: <http :// inpn.mnhn.fr/taxref/> .

<http :// inpn.mnhn.fr/taxref /8.0/ taxon /60878 > a skcskcskc:ConceptConceptConcept;

skxskxskx:altLabelaltLabelaltLabel <http :// inpn.mnhn.fr/espece/cd_nom /60881 >;

skxskxskx:prefLabelprefLabelprefLabel <http :// inpn.mnhn.fr/espece/cd_nom /60878 >;

skcskcskc:broaderbroaderbroader <http :// inpn.mnhn.fr/taxref/taxon /191591 >;

taxrtaxrtaxr:hasHabitathasHabitathasHabitat <http :// inpn.mnhn.fr/taxref/habitat#Marine >;

ntntnt:has_rankhas_rankhas_rank <http :// inpn.mnhn.fr/taxref/taxrank#Species >;

skcskcskc:notenotenote "Delphinus delphis ";

taxrtaxrtaxr:bioGeoStatusInbioGeoStatusInbioGeoStatusIn [

rdfsrdfsrdfs:labellabellabel "Guadeloupe ";

dctdctdct:spatialspatialspatial <http :// sws.geonames.org /3579143/ >;

dwcdwcdwc:locationIdlocationIdlocationId "TDWG:LEE -GU; WOEID :23424831";

dwcdwcdwc:occurrenceStatusoccurrenceStatusoccurrenceStatus <http :// inpn.mnhn.fr/taxref/bioGeoStat#P>] ;

taxrtaxrtaxr:bioGeoStatusInbioGeoStatusInbioGeoStatusIn [

rdfsrdfsrdfs:labellabellabel "New Caledonia ";

dctdctdct:spatialspatialspatial <http :// sws.geonames.org /2139685/ > ;

dwcdwcdwc:locationIdlocationIdlocationId "TDWG:NWC -OO; WOEID :23424903" ;

dwcdwcdwc:occurrenceStatusoccurrenceStatusoccurrenceStatus <http :// inpn.mnhn.fr/taxref/bioGeoStat#B>].

<http :// inpn.mnhn.fr/espece/cd_nom /60878 > a skxskxskx:LabelLabelLabel;

skxskxskx:literalFormliteralFormliteralForm "Delphinus delphis ";

tctctc:authorityauthorityauthority "Linnaeus , 1758";

taxrtaxrtaxr:isPrefLabelOfisPrefLabelOfisPrefLabelOf <http :// inpn.mnhn.fr/taxref /8.0/ taxon /60878 >:

taxrtaxrtaxr:vernacularNamevernacularNamevernacularName "Short -beaked common dolphin"@en.

<http :// inpn.mnhn.fr/espece/cd_nom /60881 > a skxskxskx:LabelLabelLabel;

skxskxskx:literalFormliteralFormliteralForm "Delphinus tropicalis ".

tctctc:authorityauthorityauthority "Van Bree , 1971";

taxrtaxrtaxr:isAltLabelOfisAltLabelOfisAltLabelOf <http :// inpn.mnhn.fr/taxref /8.0/ taxon /60878 >;

taxrtaxrtaxr:vernacularNamevernacularNamevernacularName "Short -beaked common dolphin"@en.

Listing 1.6. Example representation of TAXREF entries in SKOS

19

be generated by a template, instead we have to write a triples map whom query
filters only taxa with habitat ’1’. Similarly, we must write one triples map for
each habitat value, that is 8 triples maps. The same situation is observed for the
48 taxonomical ranks and 30 biogeographical statuses, that all result in specific
dedicated triples maps. Consequently, many queries have to be run, some of them
returning tens or hundreds of thousands of JSON documents. The same JSON
documents are retrieved and parsed several times, but, each time, for the genera-
tion of triples with different properties. An analysis of the execution traces shows
that, out of the 452.106 unique documents in the database, approximately 1.6
million documents are actually retrieved and processed during the translation,
that is an approximate average of 4.600 documents treated per minute.

7 Discussion

xR2RML relies on the assumption that databases to translate into RDF provide
a declarative query language, such that queries can be expressed directly in a
mapping description. This complies with the equivalent assumption of R2RML
that all RDBs support ANSI SQL. This is somehow restrictive since some NoSQL
key-value stores, like DynamoDB and Riak, have no declarative query language,
instead they provide APIs for usual programming languages to describe queries
in an imperative manner. For xR2RML to work with those systems, a query
language should be figured out along with a compiler that transforms queries
into imperative code. Interestingly, this is already the case of some systems
supporting the MapReduce programming model. MapReduce is conventionally
supported through APIs for programming languages, however more and more
systems now propose an SQL or SQL-like query language on top of a MapReduce
framework (e.g. Apache Hive). Queries are compiled into MapReduce jobs. This
approach is often referred to as SQL-on-Hadoop [27].

To achieve the targeted flexibility, xR2RML comes with features that are
applicable independently of the type of database used. Yet, all features should
probably not be applied with all kinds of database. For instance, join conditions
entail joint queries. Whereas RDBs are optimized to support joins very effi-
ciently, it is not recommended to make cross-references within NoSQL document
or extensible column stores, as this may lead to poor performances. Similarly,
translating a JSON element into an RDF collection is quite straightforward, but
translating the result of an SQL joint query into an RDF collection is likely to
be quite inefficient. In other words, because the language makes a mapping pos-
sible does not mean that it should be applied regardless of the context (database
type, data model, query capabilities). Consequently, mapping designers should
be aware of how databases work in order to write efficient mappings of big
databases to RDF.

Like R2RML, xR2RML assumes that well-defined domain ontologies exist
beforehand, whereof classes and properties will be used to translate a data
source into RDF triples. In the context of RDBs, an alternative approach, the
Direct Mapping, translates relational data into RDF in a straightforward man-

20

ner, by converting tables to classes and columns to properties [10,28]. The di-
rect mapping comes up with an ad-hoc ontology that reflects the relational
schema. R2RML implementations often provide a tool to automatically generate
an R2RML direct mapping from the relational schema (e.g. Morph-RDB [29]).
The same principles could be extended to automatically generate an xR2RML
mapping for other types of data source, as long as they comply with a schema:
column names in CSV/TSV files and extensible column stores, XSD or DTD
for XML data, JSON schema22 or a JSON-LD23 description for JSON data.
Nevertheless, such schemas do not necessarily exist, and some databases like the
DynamoDB key-value store are schema-less. In such cases, automatically gen-
erating an xR2RML direct mapping should involve different methods aimed at
learning the database schema from the data itself.

More generally, how to automate the generation of xR2RML mappings may
become a concern to map large and/or complex schemas. There exists signif-
icant work related to schema mapping and matching [30]. For instance, Clio
[31] generates a schema mapping based on the discovery of queries over the
source and target schemas and a specification of their relationships. Karma [32]
semi-automatically maps structured data sources to existing domain ontologies.
It produces a Global-and-Local-As-View mapping that can be used to translate
the data into RDF. xR2RML does not directly address the question of how map-
pings are written, but can be complementary of approaches like Clio and Karma.
In particular, Karma authors suggest that their tool could easily export map-
ping rules as an R2RML mapping graph. A similar approach could be applied
to discover mappings between a non-relational database and domain ontologies,
and export the result as an xR2RML mapping graph.

8 Conclusion and perspectives

In this paper we presented xR2RML, a language designed to describe the map-
ping of various types of databases to RDF, by flexibly adapting to heterogeneous
query languages and data models. We analysed data models of several modern
databases as well as the format in which query results are returned, and we
showed that xR2RML can translate any data element within such results into
RDF, relying when necessary on existing languages such as XPath and JSON-
Path. We illustrated some features of xR2RML such as the generation of RDF
collections and containers, and the ability to deal with mixed data formats, e.g.
when the column of a relational table stores data formatted in another syntax
like XML, JSON or CSV.

Principles of the xR2RML mapping language were validated in a prototype
implementation supporting several RDBs and the MongoDB NoSQL document
store. The prototype was used in a real-world use case to perform the translation
of a taxonomical reference of more than 450.000 taxa, represented as JSON
documents stored in a MongoDB instance, into a SKOS thesaurus. The data

22 http://json-schema.org/
23 http://www.w3.org/TR/json-ld/

21

materialization approach we implemented proved to be effective, although the
use case underlined scaling limitations with regards to execution time span and
memory consumption. In particular, this approach cannot scale to big data sets.
Dealing with big data sets requires the data to remain in legacy databases, and
that the translation to RDF be performed on demand through the xR2RML-
based rewriting of SPARQL queries into the source database query language. In
this regard, existing works related to RDBs should be leveraged [24,33].

References

1. B. He, M. Patel, Z. Zhang, and K. C.-C. Chang, “Accessing the deep web,” Com-
munications of the ACM, vol. 50, no. 5, pp. 94–101, 2007.

2. S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF mapping language,”
2012.

3. A. Dimou, M. V. Sande, J. Slepicka, P. Szekely, E. Mannens, C. Knoblock, and
R. V. d. Walle, “Mapping hierarchical sources into RDF using the RML mapping
language,” in Proc. of ICSC’2014, pp. 151–158, IEEE, 2014.

4. M. T. Roth and P. Schwartz, “Don’t scrap it, wrap it! A wrapper architecture for
legacy data sources,” in Proc. of VLDB’1997, pp. 266–275, 1997.

5. J. Melton, J. E. Michels, V. Josifovski, K. Kulkarni, and P. Schwarz, “SQL/MED:
a status report,” ACM SIGMOD Record, vol. 31, no. 3, pp. 81–89, 2002.

6. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, “FedX: Optimization
techniques for federated query processing on linked data,” in Proc. of ISWC’11,
pp. 601–616, 2011.

7. M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus, “ANAPSID: an
adaptive query processing engine for SPARQL endpoints,” in Proc. of ISWC’11,
pp. 18–34, 2011.

8. A. Gaignard, “Distributed knowledge sharing and production through collabora-
tive e-science platforms. PhD thesis.,” 2013.

9. D.-E. Spanos, P. Stavrou, and N. Mitrou, “Bringing relational databases into the
semantic web: A survey,” Semantic Web Journal, vol. 3, no. 2, pp. 169–209, 2012.

10. J. Sequeda, S. H. Tirmizi, s. Corcho, and D. P. Miranker, “Survey of directly
mapping SQL databases to the semantic web,” Knowledge Eng. Review, vol. 26,
no. 4, pp. 445–486, 2011.

11. F. Michel, J. Montagnat, and C. Faron-Zucker, “A survey of RDB to RDF trans-
lation approaches and tools,” 2014. Research report. ISRN I3S/RR 2013-04-FR.

12. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres, “Mapping be-
tween RDF and XML with XSPARQL,” Journal on Data Semantics, vol. 1, no. 3,
pp. 147–185, 2012.

13. P. Fennell, “Schematron - more useful than you’d thought,” in Proc. of the XML
London 2014 Conference, pp. 103–112, 2014.

14. F. Breitling, “A standard transformation from XML to RDF via XSLT,” Astro-
nomical Notes, vol. 330, p. 755, 2009.

15. N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, N. Gioldasis, and S. Christodoulakis,
“The SPARQL2XQuery interoperability framework.,” CoRR, vol. abs/1311.0536,
2013.

16. A. Langegger and W. Wöss, “XLWrap - querying and integrating arbitrary spread-
sheets with SPARQL,” in Proc. of ISWC’2009, 2009.

22

17. F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata, B. Bucher, F. Hamdi,
L. Bihanic, G. Képéklian, F. Cotton, and others, “Enabling linked data publication
with the Datalift platform,” in Proc. of the AAAI workshop on semantic cities,
2012.

18. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de
Walle, “RML: A generic language for integrated RDF mappings of heterogeneous
data,” in Proc. of the 7th LDOW workshop, 2014.

19. R. Hecht and S. Jablonski, “NoSQL evaluation: A use case oriented survey,” in
Proc. of CSC’2011, pp. 336–341, IEEE Computer Society, 2011.

20. S. K. Gajendran, “A survey on NoSQL databases (technical report),” 2013.
21. K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++ unifying semi-

structured query language, and an expressiveness benchmark of SQL-on-Hadoop,
NoSQL and NewSQL databases (submitted),” CoRR, vol. abs/1405.3631, 2014.

22. B. Kolev, P. Valduriez, R. Jimenez-Peris, N. Mart̀ınez-Bazan, and J. Pereira,
“CloudMdsQL: Querying heterogeneous cloud data stores with a common lan-
guage,” in Proc. of the BDA’2014 Conference, 2014.

23. F. Michel, L. Djimenou, C. Faron-Zucker, and J. Montagnat, “xR2RML: Relational
and non-relational databases to RDF mapping language,” 2014. Research report.
ISRN I3S/RR 2014-04-FR v3.

24. F. Priyatna, O. Corcho, and J. Sequeda, “Formalisation and experiences of
R2RML-based SPARQL to SQL query translation using Morph,” in Proc. of
WWW’2014., 2014.

25. P. Gargominy, S. Tercerie, C. Régnier, T. Ramage, C. Schoelinck, P. Dupont,
E. Vandel, P. Daszkiewicz, and L. Poncet, “TAXREF v8.0, référentiel taxonomique
pour la France: Méthodologie, mise en oeuvre et diffusion,” in Rapport SPN 2014
- 42, 2014.

26. C. Callou, F. Michel, C. Faron-Zucker, C. Martin, and J. Montagnat, “Towards
a Shared Reference Thesaurus for Studies on History of Zoology, Archaeozoology
and Conservation Biology,” in ESCW 2015, workshop Semantic Web For Scientific
Heritage (SW4SH), (Portoroz, Slovenia), 2015.

27. A. Floratou, U. F. Minhas, and F. Ozcan, “Sql-on-hadoop: Full circle back to
shared-nothing database architectures,” Proc. of the VLDB Endowment, vol. 7,
no. 12, 2014.

28. M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda, “A direct mapping
of relational data to RDF,” 2012.

29. L. F. de Medeiros, F. Priyatna, and O. Corcho, “MIRROR: Automatic R2RML
mapping generation from relational databases,” in Submission to ICWE 2015,
2015.

30. P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,” in
Journal on Data Semantics IV, pp. 146–171, Springer, 2005.

31. R. Fagin, L. M. Haas, M. Hernndez, R. J. Miller, L. Popa, and Y. Velegrakis,
“Clio: Schema mapping creation and data exchange,” in Conceptual Modeling:
Foundations and Applications, pp. 198–236, Springer, 2009.

32. C. A. Knoblock, P. Szekely, J. L. Ambite, A. Goel, S. Gupta, K. Lerman,
M. Muslea, M. Taheriyan, and P. Mallick, “Semi-automatically mapping structured
sources into the semantic web,” in Proc. of ESWC’2012, pp. 375–390, Springer,
2012.

33. J. F. Sequeda and D. P. Miranker, “Ultrawrap: SPARQL execution on relational
data,” Web Semantics: Science, Services and Agents on the WWW, vol. 22, pp. 19–
39, 2013.

	Translation of Heterogeneous Databases into RDF, and Application to the Construction of a SKOS Taxonomical Reference
	Introduction
	Related Works
	Objectives of this Work

	xR2RML language requirements
	R2RML and RML
	The xR2RML Mapping Language
	Describing A Logical Source
	Referencing Data Elements
	Producing RDF Terms and (Nested) RDF Collections/Containers
	Reference Relationships Between Logical Sources

	Implementation
	Validation: construction of a SKOS zoological and botanical reference thesaurus
	Discussion
	Conclusion and perspectives

