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This paper examines in a new way some known facts about numerical semigroups especially when the number of minimal generators (that is the embedding dimension) is at most three and at least two minimal generators are coprime. For such semigroups, an algorithm is re-investigated to find the pseudo-Frobenius numbers. A certain family of n dimensional numerical semigroups of type at most n -1 is also given.

Introduction and preliminaries

Let a 1 , . . . , a n be n positive integers with gcd(a 1 , . . . , a n ) = 1. The set S = n i=1 λ i a i n ∈ N, λ i ≥ 0, for all i is called the numerical semigroup S and a 1 , . . . , a n are called the generators of S. They are minimal generators if we cannot take out a generator a i without changing the set S; in general we denote S by a 1 , . . . , a n . For a numerical semigroup S = N the number F (S) := max{n ∈ N|n / ∈ S} exists (see [7, Theorem 1.0.1] for proof) and is called the Frobenius number of S. We will suppose hereafter that a 1 < a 2 . The interested reader can see [START_REF] Rosales | Numerical Semigroups[END_REF] and the references therein (in particular [START_REF] Fröberg | On numerical semigroups[END_REF]) for an extensive reading on numerical semigroups.

There are different algorithms computing F (S) with S a three minimally generated semigroup; among them is [START_REF] Johnson | A Linear Diophantine Problem[END_REF], also [START_REF] Rosales | Numerical semigroups with embedding dimension three[END_REF][START_REF] Fel | Frobenius Problem for Semigroups S(d 1 , d 2 , d 3 )[END_REF], and Rödseth's formula [START_REF] Rödseth | On a linear Diophantine problem of Frobenius[END_REF]. We refer to [START_REF] Ramírez Alfonsín | The Diophantine Frobenius Problem[END_REF] for a further discussion on these and other generalized algorithms.

In this section we revisit the classical semigroup a 1 , a 2 . We will represent a proof from [8, p. 134] for two main purposes: one, this makes the article more self-contained and two, reformulates in details an often cited result of Sylvester [START_REF] Sylvester | Excursus on rational fractions and partitions[END_REF] on the Frobenius problem.

Definition 1. Let a 1 and a 2 be positive integers with gcd(a 1 , a 2 ) = 1. The set of positive integers x of the form x = αa i -βa 3-i , i = 1 or 2 with 0 < α < a 3-i and 0 < β < a i is called the non-compound set and is denoted by N C. The set of integers x of the form x = αa 1 + βa 2 with α > 0, β > 0, and x < a 1 a 2 is called the compound set and is denoted by C. Lemma 1. [START_REF] Rosales | The Frobenius problem for numerical semigroups[END_REF] Let S = a 1 , a 2 and let x be a positive integer; we have x ∈ N C if and only if 0 < x < a 1 a 2 and x / ∈ S.

Proof. Suppose x ∈ S and in N C with x < a 1 a 2 . Consequently, x = aa 1 +ba 2 = αa i -βa 3-i for some non-negative numbers a, b; but this contradicts the fact that α < a 3-i and β < a i (for example if i = 1, we have (a -α)a 1 = -(β + b)a 2 and |a -α| < a 2 ). Take the positive integers less than a 1 a 2 having neither a 1 nor a 2 as a divisor, there are (a 1 -1)(a 2 -1) such integers. Arrange these numbers as pairs (x, y) summing a 1 a

2 ; if x ∈ N C, then a 1 a 2 -x = y ∈ S and if y ∈ C, then (a 1 a 2 -y) = x / ∈ S, which means that x ∈ N C.
We have proven that

|N C| = |C| = (a 1 -1)(a 2 -1) 2 . The number F(S) = (a 1 -1)(a 2 -1) -1 = a 1 a 2 -a 1 -a 2 does not belong to S since a 1 a 2 -F(S) is compound.
Any number y > a 1 a 2 can be written as αa 1 a 2 + r and it is easily seen that since r < a 1 a 2 , the remainder r is either in S or in N C. Therefore all n > F(S) do belong to S. Now we can characterize all the numbers that are not in S = a 1 , a 2 .

Proposition 1. The set N C is the set {F(S) -y|y ∈ S, y < F(S)}.

Proof. A direct application of previous result.

Remark 1. Notice at last that any integer x < a 1 a 2 in S has a unique representation as x = αa 1 + βa 2 with (α, β) ∈ N 2 , α < a 2 , and β < a 1 ; assuming the contrary αa 1 + βa 2 = νa 1 + γa 2 , that is (α -ν)a 1 = (γ -β)a 2 and we can not have a 2 divides (α -ν) or a 1 divides (γ -β). A number x in N C can be written as a 1 a 2 -wa 1 -ra 2 = (a 2 -w)a 1 -ra 2 , where 1 ≤ w < a 2 and 1 ≤ r < a 1 . Hence, the uniqueness of (w, r) ∈ N 2 follows similarly by contradiction.

We end this expository section by the following definition.

Definition 2. For a numerical semigroup S, we have T (S) := {x ∈ N|x ∈ S, x + s ∈ S, for all s ∈ S, s > 0}. The cardinality of T (S), denoted t(S), is called the type of S and a number in T (S) is called a pseudo-Frobenius number.

The Apéry set of S with respect to n ∈ S is the set Ap(S, n) = {s ∈ S|s-n / ∈ S} and the genus of S, denoted g(S), is the cardinality of {N\S}.

Adding minimal generator

Here we consider numerical semigroups S minimally generated by a 1 , a 2 , a 3 ; the integers a 1 and a 2 are coprime with a 1 < a 2 . The next remark is already well known and is very useful, see [START_REF] Rosales | Numerical Semigroups[END_REF]Chapter 1].

Remark 2. [START_REF] Johnson | A Linear Diophantine Problem[END_REF][START_REF] Fröberg | On numerical semigroups[END_REF] Let a 1 , a 2 , . . . , a n be positive integers. If gcd(a 2 , . . . , a n ) = d and a j = da j for each j > 1, then the following holds:

• F ( a 1 , a 2 , . . . , a n ) = dF ( a 1 , a 2 , . . . , a n ) + a 1 (d -1) (Johnson's formula).
• The type of a 1 , a 2 , . . . , a n equals type of a 1 , a 2 , . . . , a n .

• The type of S = a 1 , a 2 , a 3 is at most two.

• We have the equivalence:

w ∈ Ap( a 1 , a 2 , . . . , a n , a 1 ) ⇐⇒ dw ∈ Ap( a 1 , a 2 , . . . , a n , a 1 ). Remark 3. A number x in N C is written as a 1 a 2 -ka 2 -ja 1 and we have 0 < k < a 1 if and only if 0 < j < a 2 . This is useful when ix ∈ N C (i ∈ N * ) and 0 < ik < a 1 so 0 < ij -(i -1)a 2 < a 2 or 0 < ij < a 2 so 0 < ik -(i -1)a 1 < a 1 .
From the unique representation of N C numbers we have Lemma 2.

Lemma 2. Let S = a 1 , a 2 , a 3 , Q = a 1 , a 2 , and a 3 = a 1 a 2 -ka 2 -ja 1 for some (k, j) with 1 ≤ k < a 1 and 1 ≤ j < a 2 . If 2a 3 ∈ Q, then the possible pseudo-Frobenius numbers are {a 1 a 2 -(k + 1)a 2 -a 1 , a 1 a 2 -a 2 -(j + 1)a 1 }. Corollary 1. Let S = a, ka + d, ha + 2d with d ≥ 1 and h a non-negative integer. For a = 2i + 1 odd, if gcd(a, d) = 1 and h 2 < k < h( a+1 2 ) + d, then T (S) = {F 1 := a(ha + 2d) -a -( a-1 2 + 1)(ha + 2d), F 0 := a(ha + 2d) -(h a-1 2 + d + 1 -k + h)a -(ha + 2d)}. Proof. Write first ka + d = a(ha + 2d) -h a -1 2 + d -k + h a - a -1 2 (ha + 2d) and ha + 2d = 2(ka + d) -(2k -h)a.
From these expressions and the conditions stated, we know that the generators of S are minimal. Take Q = a, ha + 2d , where a 1 = a and a 2 = (ha + 2d). Apply Lemma 2; since

F 0 + a 3 = (2k -h -1)(a 1 ) + i(a 2 ) ∈ Q and F 1 + a 3 = a 1 (d -1 + hi + k) ∈ Q we get the result.
The case k = h is well known [START_REF] Tripathi | The Frobenius problem for modified arithmetic progressions[END_REF]. See [7, Theorem 5.4.3] and [START_REF] Tripathi | The Frobenius problem for modified arithmetic progressions[END_REF] for a general family of numerical semigroups with an arithmetic progression of generators.

Definition 3. Let S = a 1 , a 2 , a 3 and Q = a 1 , a 2 . If x := a 1 a 2 -ka 2 -ja 1 , 1 ≤ k < a 1 ,
and 1 ≤ j < a 2 , then the integers k and j are called the level and the under-level of x, respectively. Let m be the least integer such that m • a 3 ∈ Q with m ≥ 3, x 1 := a 3 and let

x i := ia 3 / ∈ Q for every i, 2 ≤ i ≤ m -1.
By Remark 3 we have either ik < a 1 (so ij > a 2 ) with ij -(i -1)a 2 < a 2 , which we refer to as an upgrade start or ij < a 2 (so ik > a 1 ) with ik -(i -1)a 1 < a 1 referred to as a downgrade start, where i verifies

2 ≤ i ≤ s 1 ≤ m -1 for a certain s 1 .
Next we represent an algorithm to find T (S). Definition 4. Keeping the previous notation, if h denotes the highest level and l the highest under-level among x i , then our pseudo-Frobenius numbers candidates are of the form F 0 := a 1 a 2 -a 2 -(l + 1)a 1 + wa 3 for some w ≥ 0 and F 1 := a 1 a 2 -(h + 1)a 2 -a 1 + ra 3 for some r ≥ 0, where the integers w and r are the least integers such that F 1 + a 3 ∈ Q and F 0 + a 3 ∈ Q, respectively.

It is worth mentioning that the two previous pseudo-Frobenius candidates are the precise formulas for pseudo-Frobenius numbers of S. This is proved by Ralf Fröberg et al. [START_REF] Fröberg | On numerical semigroups[END_REF]Theorem 11, second proof] where similar characterizations of pseudo-Frobenius numbers for any S = a 1 , a 2 , a 3 are given, yielding that the type of a 1 , a 2 , a 3 is at most two. The previous lemma has the following extension: Theorem 1. Let S = a 1 , . . . , a n and Q = a 1 , a 2 , where a 1 and a 2 are two coprime generators. If a i + a j ∈ Q for all i and j ≥ 3, then the type of S is at most n -1.

Proof. The idea is simple in the sense that we get at most n-1 possible pseudo-Frobenius numbers F i / ∈ S verifying both F i + a 1 ∈ S and F i + a 2 ∈ S. By Lemma 1 we can write a i := a 1 a 2 -α i a 2 -β i a 1 with i ≥ 3 for some 1 ≤ α i < a 1 and 1 ≤ β i < a 2 . Arrange these generators so sequence (α i ) i≥3 is decreasing (strictly) and thus, (β i ) i≥3 is strictly increasing (since otherwise the difference between two consecutive minimal generators is in Q). Set

F 1 = a 1 a 2 -a 2 -max 3≤i≤n (β i + 1)a 1 , F 2 = a 1 a 2 -max 3≤i≤n (α i + 1)a 2 -a 1 ,
and for 3 ≤ i ≤ n -1, set

F i = a 1 a 2 -(min(α i , α i+1 ) + 1)a 2 -(min(β i , β i+1 ) + 1)a 1 .
The proof is direct for possible pseudo-Frobenius numbers having their level or under-level equals 1 (the numbers F 1 and F 2 verify F 1 / ∈ S, F 2 / ∈ S, and F i + a j ∈ S for any i = 1, 2 and j = 1, 2).

Otherwise we have the result from: {a i + s|s ∈ Q, i ≥ 3} ∪ Q = S and Remark 1. For example, one can prove that if F i = a 1 a 2 -ka 2 -ja 1 is a pseudo-Frobenius number, k > 1, and j > 1, then for some i we have α i+1 < k < α i and β i < j < β i+1 , to get the necessity of the given expressions. 

Algorithm's Applications

Before giving some examples and applications, we point out that we do not discuss or compare other algorithms with the one in Definition 4. For example, the algorithm formulas [4, Corollary 12], proved by giving Apéry sets, require additional parameters assuming pairwise coprime minimal generators.

Theorem 2. [3] Let S = a, b, c , a < b < c, d = gcd(a, b), n = bv d -1, p = n( cdv a -1), v ∈ N such that bv ≡ d (mod a) with vd < a, then F ( a, b, c ) = ab(F ( n, n + 1, n + p ) + 2n + 1) dn(n + 1) + (d -1)c -(a + b).
As stated by Igor Kan et al. [START_REF] Kan | On the Frobenius problem for three arguments[END_REF]Theorem 1], Theorem 2 follows by applying Johnson's formula (Remark 2) three times; it could be better seen if one starts considering b = db , a = da . Replacing the different variables n, p by the given values, the computation should be applied two times to the semigroup n, n + 1, n + p . Lastly the formula is applied for a, b, c with gcd(a, b) = d.

Theorem 3. [3] Let S = a, a + 1, a + p . If a ≥ p(p -4) + 2, then F (S) = a p (a + 1) + (p -1) a + 1 p + (p -3)a -1.

A downgrade semigroup

Next we present particular semigroups that were introduced by A. M. Robles-Pérez and J. C. Rosales [START_REF] Robles-Pérez | The Frobenius problem for some numerical semigroups with embedding dimension equal to three[END_REF].

Lemma 3. Let S = a, a + 1, ia + d , a = dk + j, 0 < i < d < a, and 1 ≤ j < d.

If (k + 1)i + j + 1 = d, then the type of S is one.

Proof. The proof makes use of Remark 2: by finding a common factor f of a + 1, ia + d and showing that a ∈ a+1 f , ia+d f . Notice that a = j(k + 1) + k(i(1 + k) + 1) from the definition of a and d with a 

+ 1 = (d -i)(k + 1) and ia + d = (d -i)(1 + i(1 + k)). The result follows taking f = d -i.
so c = bh -ar = ab -(a -h)b -ra = (b -r)a -(a -h)b. If b r ≥ a h , then 
T (S) = a -1 h c + ra -b -a, (a -1)b - a -1 h ra -a .
Using Remark 2 and [6, Proposition 2.20], it is not hard to prove that the formulas in the previous theorem are invariant with gcd(a, c) = d or gcd(b, c) = d and d > 1 (gcd(a, b) = 1 necessarily). Consequently, by Theorem 2, we see that Theorem 4 and Theorem 5 are equivalent for those numerical semigroups of type 2.

Theorem 5. Let S = a, a + 1, ia + d , Q = a, a + 1 , where a = dk + j, a 3 = ia + d, 0 < i < d < a, 1 ≤ j < d, and d ≥ 3. If (k + 1)i + j ≥ d -1, then T (S) = {F 1 , F 2 } for: F 1 = a(a + 1) -(k(d -i) + 1)a -(a + 1) + wa 3 , F 2 = a(a + 1) -a -(a -d + 1)(a + 1) + (k -1)a 3 , where w = 0 if (k + 1)i + j ≥ d and w = k otherwise. Proof. Write ia + d = a(a + 1) -(d -i)a -(a -d)(a + 1), we are in a downgrade start and na 3 = a(a + 1) -n(d -i)a -(a -dn)(a + 1) for all n with 1 ≤ n ≤ k. The number (k + 1)a 3 ∈ Q since (k + 1)a 3 = a(a + 1) -(a -(i(k + 1) + j -d))a + (d -j)(a + 1).
Set by definition wd := 3 + x, if

F = a(a + 1) -(k(d -i) + 1)a -(a + 1), then F / ∈ S and F + wa 3 = (-2 + j -x + wi -1 + ki)(dk + j) + (2 + x)(dk + j + 1) is in Q if, in particular: ki + j ≥ w(d -i) and 2 + x = wd -1 ≥ 0 (1),
or -(a + 1) < ki + j -w(d -i) < 0 and wd -1 ≥ a (2).

We call w 0 the smallest such integer ≥ 1; but it can be verified that w 0 exists as w 0 = 1 if (k + 1)i + j ≥ d from (1) and w 0 = k + 1 otherwise (2). Thus, first

F 1 = a(a + 1) -(k(d -i) + 1)a -(a + 1) + (w 0 -1)(ia + d) ∈ T (S). Take G = a(a + 1) -a -(a -d + 1)(a + 1) + k(ia + d) and set y = d -1 -j, G = a(ki + j) + y(a + 1) ∈ Q. Now take F = a(d -2) + d -1 + (k -t)(ia + d) with 1 ≤ t ≤ k, clearly F -G = -(td + ita) thus, F = a(ki + j + td + ita) -(-d + 1 + j + td + ita)(a + 1) = a(ki + j + td -it) -(1 + j + (t -1)d)(a + 1)
and clearly F is not in Q if and only if ki + j + t(d -i) < a + 1 and 1 + j + (t -1)d > 0. We call t 0 the smallest such integer ≥ 1; but it can be verified that (k -

1)i + j + d < a + 1, that is (k -1)i < (k -1)d + 1 and so if r = k -t 0 = k -1, the second pseudo-Frobenius is F 2 = a(d -2) + d -1 + (k -1)(ia + d).
Rearranging terms we get F 1 = (j + ki -w(d -i))a + (wd -1)(a + 1) and

F 2 = a((k -1)i + j + d) -(1 + j)(a + 1); if w = 0, then F 1 = F 2 since 1 < 1 + j and for w = k we have (k + 1)i + j + 1 = d with F 1 = F 2 .
Remark 5. By Remark 2, the case d divides a in Theorem 5 is almost trivial. Note also that the condition

(k + 1)i + j ≥ d -1 of Theorem 5 is equivalent to a -(d -i)(k + 1) ≥ -1 ⇐⇒ a + 1 d -i ≥ a d (T heorem 4).
See also [15, 

Semigroup of three consecutive squares

The Frobenius number formulas of numerical semigroups generated by three consecutive squares were given by M. Lepilov et al. [START_REF] Lepilov | Frobenius numbers of numerical semigroups generated by three consecutive squares or cubes[END_REF] and also by Fel [START_REF] Fel | Numerical semigroups generated by squares, cubes and quartics of three consecutive integers[END_REF].

Here we compute their two pseudo-Frobenius numbers. One can verify that (n + 1)(n + 2) 2 = (n + 1)n 2 + 4(n + 1) 2 and n(2n + 1) 2 = n(n + 1) 2 + (3n + 2)n 2 for any n. 

Example 1 .

 1 We illustrate the above definitions here; take 11, 13, 10 , a 3 = 10 = 11 • 13 -5 • 11 -6 • 13, and it can be verified that m = 5, (5 • a 3 ∈ Q = 11, 13 ). The semigroup has a downgrade start with s 1 = 2, h = 7, and l = 10. The pseudo-Frobenius numbers are 11 • 13 -11 -8 • 13 + 10 = 38 and 11 • 13 -11 • 11 -13 + 20 = 29.

Remark 4 .

 4 It is well known that numerical semigroups S of embedding dimension n with t(S) ≤ n -1 verify Wilf 's conjecture; see[START_REF] Rosales | Numerical Semigroups[END_REF] Chapter 1].

Theorem 4 .

 4 [START_REF] Robles-Pérez | The Frobenius problem for some numerical semigroups with embedding dimension equal to three[END_REF] Let S = a, b, c with pairwise coprime minimal generators and

Corollary 1]. Example 2 .

 2 For S = 34, 35, 46 , we cannot apply Theorem 3, applying Theorem 5 we have d = 12, a = 34 = 2 • 12 + 10, i = 1, k = 2, and j = 10. Here w = 0 and T (S) = {373, 397}. Notice that Theorem 4 gives the same result without the pairwise coprime condition.

Lemma 4 . 2 = 2 and n 2 (n + 1 ) 2 -n 2 - 2 = 16sn 2 . 5 .

 4222122225 Let S = (4s -1) 2 , (4s) 2 , (4s + 1) 2 and Q = n 2 , (n + 1)2 with n = 4s-1 and s > 1; we have T = {256s 3 -144s 2 +8s-1, 272s 3 -168s 2 +s-2}.Proof. First let us write(n + 2) 2 = n 2 (n + 1) 2 -(n 2 -2n -4)n 2 -(4n -4)(n + 1) 2 ;if n = 4s -1 and s > 1, then we verify that s(n + 2) 2 ∈ Q and(s -1)(n + 2) 2 = (16s 2 -15s -1)n 2 -(n 2 -4n + 3)(n + 1) 2 / ∈ Q.From Definition 3 and Definition 4 notation, we have that S has an upgrade start with s 1 = s -1, l = n 2 -2n -4, and h = n 2 -4n + 3. Finally we have:n 2 (n + 1) 2 -(n 2 -2n -3)n 2 -(n + 1) 2 + (α)(n + 2) (4n + 4 + α(4n + 5))n 2 -(1 + α(4n -4))(n + 1) 2 ,we verifyn 2 (n+1) 2 -(n 2 -2n-3)n 2 -(n+1) 2 +(s-1)(n+2) 2 = (s-1)n 2 +(16s-8)(n+1) (n 2 -4n + 4)(n + 1) 2 + (n + 2)Lemma Let S = (4s -3) 2 , (4s -2) 2 , (4s -1) 2 and Q = n 2 , (n + 1) 2 with n = 4s -3 and s > 1; we have T (S) = {144s 3 -296s 2 + 193s -42, 160s 3 -352s 2 + 234s -51}.Proof. First it is clear from the cyclic expression that, if any two of the generators share a common factor d, the third one will be divisible by d. Assuming the hypothesis, we write bc + b + 1 = (ab + a + 1)(ca + c + 1) -c(ab + a + 1) -((b + 1)a -b)(ca + c + 1). The generators are a 3 = bc + b + 1 and Q = ab + a + 1, ca + c + 1 . We get m = a + 1 (see Definition 3) and (ab + a + 1)(ca + c + 1)-(ab + a + 1) -((b + 1)a -b + 1)(ca + c + 1) + αa 3 = (b + α(b + 1))(ca + c + 1) -(1 + αc)(ab + a + 1). Finally we verify F 1 = (ab + a + 1)(ca + c + 1) -(ab + a + 1) -((b + 1)a -b + 1)(ca + c + 1) + (a -1)(bc + b + 1) = 2(abc -1) and F 2 = (ab + a + 1)(ca + c + 1) -(ca + 1)(ab + a + 1) -(ca + c + 1) = abc -1.
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Proof. If n = 4s -3 for some s > 1, then (2s -1)(n + 2) 2 ∈ Q, the highest under-level is for s(n + 2) 2 = n 2 (n + 1) 2 -(16s 2 -25s + 8)n 2 -(8s -9)(n + 1) 2 , thus, we get l = 16s 2 -25s + 8 and the highest level is for h = 16s 2 -32s + 16 with (s -1)(n + 2) 2 = n 2 (n + 1) 2 -(7s -3)n 2 -(16s 2 -32s + 16)(n + 1) 2 and (2s -2)(n + 2) 2 = n 2 (n + 1) 2 -(14s -6)n 2 -(16s 2 -40s + 23)(n + 1) 2 .

Here s 1 = s -1 and we verify that

and

Lemma 6. Let S = (4s) 2 , (4s + 1) 2 , (4s + 2) 2 and Q = n 2 , (n + 1) 2 with n = 4s and s ≥ 2; we have T (S) = {112s 3 + 48s 2 + 8s -1, 128s 3 -20s -5}.

Proof. Write (n + 2) 2 = n 2 (n + 1) 2 -(n 2 -2n -4)n 2 -(4n -4)(n + 1) 2 ; here we need the following expressions:

and

Lemma 7. Let S = (4s -2) 2 , (4s -1) 2 , (4s) 2 and Q = n 2 , (n + 1) 2 with n = 4s-2 for s > 1; we have T (S) = {80s 3 -80s 2 +28s-5, 128s 3 -160s 2 +60s-9}.

Proof. We check that (n + 2

The potential highest level and under-level are for the following multiples:

with (n + 1)(n + 2) 2 ∈ Q. Consequently, s 1 = s -1, h = 16s 2 -20s + 4, and l = 16s 2 -13s + 2. Finally we have

Thus,

Lemma 8 and Lemma 9 can be considered the reduction by 4 (d = 4 see Remark 2) of Lemma 6 and Lemma 7, respectively . Lemma 8. Let S = (2s) 2 , (4s + 1) 2 , (2s + 1) 2 and Q = n 2 , (n + 1) 2 with n = 2s > 2; we have T (S) = {32s 3 -12s 2 -11s -2, 28s 3 -4s -1}.

For n = 2s, the semigroup S has a downgrade start with s 1 = s -1, l = n 2 -3s -1, and h = n 2 -2n -1. By computation we have

and n 2 (n + 1) 2 -(n 2 -3s)n 2 -(n + 1) 2 + (2n + 1) 2 = 3sn 2 + 4s(n + 1) 2 . Lemma 9. Let S = (2s + 1) 2 , (4s + 3) 2 , (2s + 2) 2 and Q = n 2 , (n + 1) 2 with n = 2s + 1 > 1; we have T (S) = {20s 3 + 28s 2 + 9s -1, 32s 3 + 44s 2 + 13s -2}.

Proof. First we got

Also if n = 2s + 1, then s(2n + 1) 2 / ∈ Q and (s + 1)(2n + 1) 2 = (s + 1)n 2 + (3s + 2)(n + 1) 2 , so s 1 = s, l = n 2 -s -1, and h = n 2 -2n -1.

From computation:

By a direct verification

and n 2 (n + 1) 2 -(n 2 -s)n 2 -(n + 1) 2 + (2n + 1) 2 = sn 2 + (4s + 2)(n + 1) 2 .

A cyclic semigroup

The next lemma is the particular three dimensional case of Prof. Dao's question at: http://mathoverflow.net/questions/292507/a-formula-for-frobeniusnumber-of-certain-numerical-semigroups.