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NUMERICAL SEMIGROUPS WITH TWO COPRIME

GENERATORS: JAMES J. SYLVESTER’S PROOF

ANTOINE MHANNA1∗

Abstract. This paper examines in a new way some known facts about nu-

merical semigroups especially when the number of minimal generators (that
is the embedding dimension) is at most three and at least two minimal gener-

ators are coprime; for such semigroups an algorithm is reinvestigated to find

the pseudo-Frobenius numbers, in particular we fully characterize those of
〈a, a + 1, a + p〉 for any p ≥ 2, 〈ab + a + 1, bc + b + 1, ca + c + 1〉 and con-

sider 〈n2, (n + 1)2, (n + 2)2〉 semigroups; a particular family of n dimensional

numerical semigroups of type at most n− 1 is also given.

1. Introduction and preliminaries

Let a1, . . . , an be n positive integers with gcd(a1, . . . , an) = 1. The set S :={
s∑

i=1

λiai
∣∣s ∈ N, λi ≥ 0, for all i

}
is called the numerical semigroup S and a1, . . . , an

are called the generators of S, they are minimal generators if we cannot take out a
generator ai without changing the set S, in this case we denote S by 〈a1, . . . , an〉.
For a numerical semigroup S 6= N the number F (S) := max{n ∈ N|n /∈ S} exists
(see [11, Theorem 1.0.1] for proof). It is called the Frobenius number of S. We
will suppose hereafter that a1 < a2. The interested reader can see [12] and the
references therein (in particular [13]) for an extensive reading on numerical semi-
groups. The next definition and Lemma 1 follow Sylvester’s terminology in [1] on
p. 134; in order to give the number of solutions to px+ py < pq where p and q are
coprime positive integers Sylvester gave a second proof which we quote the referred
paragraph as it led to this article:

This result admits of a somewhat piquant verification. The number of integers
less than pq and containing neither p nor q is (p − 1)(q − 1), and if every two of
these which are supplementary to one another (I mean whose sum is pq) be made
into a pair, it is easily demonstrable, but by no means an unimportant fact, that one
of the pair will be a compound and the other a non-compound of p and q. Hence
the total number of solutions of px+ qy < pq will be the remainder when the above

is subtracted from pq, i.e
pq + q + p− 1

2
as previously determined.

Definition 1. Let a1 and a2 be positive integers with gcd(a1, a2) = 1. The set of
positive integers x of the form x = αai − βa3−i, i = 1 or 2 with 0 < α < a3−i
and 0 < β < ai is called the non-compound set and is denoted by NC. The set of
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2 A.MHANNA

integers x of the form x = αa1 + βa2 with α > 0, β > 0 and x < a1a2 is called the
compound set and is denoted by C.

Lemma 1. [4] Let S = 〈a1, a2〉 and let x be a positive integer. Then x ∈ NC if
and only if 0 < x < a1a2 and x /∈ S.

Proof. Suppose x ∈ S and in NC, x < a1a2. So x = aa1 + ba2 = αai − βa3−i
for some nonnegative numbers a, b, but this contradicts the fact that α < a3−i
and β < ai (for example if i = 1, (a − α)a1 = −(β + b)a2 and |a − α| < a2).
Take the numbers less than a1a2 having neither a1 nor a2 as a divisor, there are
(a1 − 1)(a2 − 1) such numbers, arrange them as couples summing a1a2 if x ∈ NC,
a1a2 − x = y ∈ S, and if y ∈ C, (a1a2 − y) = x /∈ S, that means that x ∈ NC.

Finally |NC| = (a1 − 1)(a2 − 1)

2
and |NC|+ |C| = (a1 − 1)(a2 − 1). �

We have proven that |NC| = |C| =
(a1 − 1)(a2 − 1)

2
. The number F (S) =

(a1 − 1)(a2 − 1) − 1 = a1a2 − a1 − a2 doesn’t belong to S since a1a2 − F (S) is
compound. Any number y > a1a2 can be written as αa1a2 + r and it is easily seen
that since r < a1a2, r is either in S or in NC so all n > F (S) do belong to S.

Now we can characterize all the numbers that aren’t in S := 〈a1, a2〉.

Proposition 1. The set NC is the set {F (S)− y > 0|y ∈ S, y < F (S)}

Proof. A direct application of previous result. �

Remark 1. Notice at last that any integer x < a1a2 in S has a unique repre-
sentation as x = αa1 + βa2 with (α, β) ∈ N2, α < a2 and β < a1 because
if not αa1 + βa2 = νa1 + γa2 and (α − ν)a1 = (γ − β)a2 and we can’t have
a2 divides (α − ν) or a1 divides (γ − β). A number x in NC can be written as
a1 · a2 −wa1 − ra2 = (a2 −w) · a1 − r · a2 where 1 ≤ w < a2 and 1 ≤ r < a1 hence
the uniqueness of (w, r) ∈ N2 follows from the last argument.

We end this expository section by the following definition

Definition 2. For a numerical semigroup S, T (S) := {x ∈ N|x 6∈ S, x + s ∈
S, for all s ∈ S, s > 0}. The cardinality of T (S) is called the type of S and a
number in T (S) is called a pseudo-Frobenius number.

2. Adding minimal generator

Here we consider numerical semigroups S minimally generated by a1, a2, a3; a1
and a2 are coprime with a1 < a2. The next remark is already well known and is
very useful:

Remark 2. [6, 12, 13] Let a1, a2, . . . , ak be positive integers. If gcd(a2, . . . , an) = d
and aj = d · a′j for each j > 1 then

• F (〈a1, a2, . . . , an〉) = d ·F (〈a1, a′2, . . . , a′n〉)+a1 · (d−1) (Johnson formula).
• The type of 〈a1, a2, . . . , an〉 equals type of 〈a1, a′2, . . . , a′n〉.
• The type of S = 〈a1, a2, a3〉 is at most two.

Remark 3. A number x in NC is written as a1 · a2 − k · a2 − j · a1 and we
have 0 < k < a1 if and only if 0 < j < a2. This is useful when i · x ∈ NC and:
0 < i·k < a1 so 0 < i·j−(i−1)·a2 < a2 or 0 < i·j < a2 so 0 < i·k−(i−1)·a1 < a1.
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From the unique representation of NC numbers we have:

Lemma 2. Let S = 〈a1, a2, a3〉, Q = 〈a1, a2〉, a3 = a1 · a2 − k · a2 − j · a1 for some
1 ≤ k < a1; 1 ≤ j < a2. If 2 · a3 ∈ Q then the possible pseudo-Frobenius numbers
are {a1 · a2 − (k + 1) · a2 − a1, a1 · a2 − a2 − (j + 1) · a1}

Example 1. Take 〈4, 9, 15〉 with a3 = 15, F (S) = 14 = 4 · 9 − 2 · 9 − 4 and the
other pseudo-Frobenius number is 11 = 4 · 9− 9− 4 · 4.

Corollary 1. Let S := 〈a, ha+ d, ha+ 2d〉 with d ≥ 1, gcd(a, d) = 1, h ≥ 1 and a
is odd then we have:
T (S) = {F1 := a · (ha + 2d) − a − (a−1

2 + 1) · (ha + 2d), F0 := a · (ha + 2d) − (h ·
a−1
2 + d+ 1) · a− (ha+ 2d)}.

Proof. Take Q = 〈a, ha + 2d〉 where a1 = a, a2 = (ha + 2d) and apply Lemma 2,
since F0 + a3 = (h− 1) · (a1) + i · (a2) ∈ Q and F1 + a3 = a1(d− 1 + h(i+ 1)) ∈ Q
we get the result. F1 − F0 = d. �

In Corollary 1 one can check that F1 = F (S) = a·(ha+2d)−a−(a−1
2 +1)·(ha+2d)

and equalize it with the formula of F (S) given in [11, Theorem 5.4.3] (or in [14])
for a more general family of numerical semigroups with an Arithmetic progression
of generators, see also [15].

Definition 3. Let S = 〈a1, a2, a3〉, Q = 〈a1, a2〉. If x1 := a1 · a2 − k · a2 − j · a1,
1 ≤ k < a1 and 1 ≤ j < a2, k is called the level and j the under level of x1.
Let m be the least integer such that m · a3 ∈ Q, x1 = a3 and let xi := ia3 /∈ Q
for every i, i ≤ m − 1. By Remark 3 we have either i · k < a1 (so i · j > a2)
with i · j − (i − 1) · a2 < a2 (upgrade start level) or i · j < a2 (so i · k > a1) with
i · k − (i − 1) · a1 < a1 (downgrade start level) where i ≤ s1 ≤ m − 1 for a certain
s1 (the s means the start level -see Example 2-).

If h denotes the highest level and l the highest under-level among x′is then our
pseudo-Frobenius numbers candidates are of the form F0 := a1 · a2 − a2 − (l + 1) ·
a1 + w · a3 for some w ≥ 0 and F1 := a1 · a2 − (h + 1) · a2 − a1 + r · a3 for some
r ≥ 0, w resp. r are the least integers such that F1 + a3 ∈ Q resp. F0 + a3 ∈ Q.

It is worth mentioning that the two previous pseudo-Frobenius candidates are the
precise formulas for pseudo-Frobenius numbers of S, this is proved in [13] -Theorem
11-Second proof- where similar characterizations of pseudo-Frobenius numbers for
any S = 〈a1, a2, a3〉 are given yielding that the type of 〈a1, a2, a3〉 is at most two.

Example 2. We illustrate the above definition here: Take 〈11, 13, 10〉, a3 = 10 =
11 ·13−5 ·11−6 ·13 and it can be verified that m = 5, (5 ·a3 ∈ Q = 〈11, 13〉), it has
a downgrade start level, s1 = 2, h = 7, l = 10 and the pseudo-Frobenius numbers
are 11 · 13− 11− 8 · 13 + 10 = 38 and 11 · 13− 11 · 11− 13 + 20 = 29.

Lemma 2 has the following extension:

Theorem 1. Let S := 〈a1, . . . , an〉, Q = 〈a1, a2〉 where a1 and a2 are two coprime
minimal generators. If for all i and j ≥ 3, ai + aj ∈ Q then the type of S is at
most n− 1.

Proof. The idea is simple in the sense that we get at most n − 1 possible pseudo-
Frobenius numbers Fi /∈ S verifying both Fi + a1 ∈ S and Fi + a2 ∈ S. By
Lemma 1 we can write ai := a1a2 − αia2 − βia1, i ≥ 3 for some 1 ≤ αi < a1 and
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1 ≤ βi < a2. Arrange these generators so sequence αi is decreasing (strictly) and
thus βi is strictly increasing since otherwise the difference between two consecutive
minimal generators is in Q. Set

F1 = a1a2 − a2 − max
3≤i≤n

(βi + 1)a1

F2 = a1a2 − max
3≤i≤n

(αi + 1)a2 − a1

and for 3 ≤ i ≤ n− 1 set

Fi = a1a2 − (min(αi, αi+1) + 1)a2 − (min(βi, βi+1) + 1)a1.

The proof is direct for possible pseudo-Frobenius numbers having their level or
under level equals 1 (F1 and F2; F1 /∈ S and F2 /∈ S. Fi + aj ∈ S for any i = 1, 2
and j = 1, 2).

Otherwise we have the result from: {ai + s|s ∈ Q, i ≥ 3}∪Q = S and Remark 1.
For example one can prove that if Fi = a1 · a2− k · a2− j · a1 is a pseudo-Frobenius
number k > 1 and j > 1 then for some i, αi+1 < k < αi and βi < j < βi+1, to get
the necessity of the given expressions. �

3. Algorithm’s Applications

As the reader may have noticed computing the Frobenius number for S =
〈a1, a2, a3〉 as presented may require to explicit all the integers in N\S. However for
some particular cases the answer is known. The intersting particular case that was
unsolved in the general case (for any p) is S = 〈a, a+1, a+p〉. It turns out from the
following theorems that knowing this Frobenius number we can find the Frobenius
number of any S = 〈a1, a2, a3〉. We only state the algorithms layout without going
further in details and complexity.

Theorem 2. [2] Let S = 〈a, b, c〉, a < b < c, d = gcd(a, b), n := bv
d − 1, p =

n( cdv
a − 1), v ∈ N such that bv ≡ d (mod a) with vd < a then

F (〈a, b, c〉) =
ab(F (〈n, n+ 1, n+ p〉) + 2n+ 1)

dn(n+ 1)
+ (d− 1)c− (a+ b).

As stated in [2] this follows by applying Johnson formula (Remark 2) three
times: It could be better seen if one starts considering b = db′, a = da′, replacing
the different variables n, p by the given values the computation should be applied
two times to the semigroup 〈n, n+1, n+p〉. Lastly the formula is applied for 〈a, b, c〉
with gcd(a, b) = d.

Theorem 3. [2] Let S = 〈a, a+ 1, a+ p〉. If a ≥ p(p− 4) + 2 then

F (S) =

⌊
a

p

⌋
(a+ 1) + (p− 1)

⌊
a+ 1

p

⌋
+ (p− 3)a− 1.

Lemma 3. Let S = 〈a, a + 1, ia + d〉, a = dk + j, 0 < i < d < a, 1 ≤ j < d and
(k + 1) · i+ j + 1 = d. Then the type of S is one.

Proof. The proof makes use of Remark 2 by finding a common factor f of a + 1,
ia+d and showing that a ∈ 〈a+1

f , ia+d
f 〉. Notice that a = j ·(k+1)+k ·(i(1+k)+1)

from the definition of a and d, a+1 = (d−i)·(k+1) and ia+d = (d−i)·(1+i(1+k)).
The result follows taking f = d− i.

�
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Theorem 4. Let S = 〈a, a+1, ia+d〉, Q = 〈a, a+1〉 where a = dk+j, a3 = ia+d,
0 < i < d < a, 1 ≤ j < d, we set by definition wd := 3 + x and d ≥ 3. Then
T (S) = {F1, F2},

F1 = a · (a+ 1)− (k(d− i) + 1) · a− (a+ 1) + w · a3
F2 = a · (a+ 1)− a− (a− d+ 1) · (a+ 1) + (k − 1)a3

where w = 0 if (k + 1)i+ j ≥ d and w = k otherwise.

Proof. Write ia+d = a ·(a+1)−(d−i) ·a−(a−d) ·(a+1), we are in a downgrading
stage with

na3 = a · (a+ 1)− n(d− i) · a− (a− dn) · (a+ 1)

for all n ≤ k and (k + 1) · a3 ∈ Q. If

F = a · (a+ 1)− (k(d− i) + 1) · a− (a+ 1)

F /∈ S and F +w · a3 = (−2 + j − x+wi− 1 + ki) · (dk+ j) + (2 + x) · (dk+ j + 1)
is in Q if and only if:

ki+ j ≥ w(d− i) and 2 + x = wd− 1 ≥ 0

or ki+ j − w(d− i) < 0 and wd− 1 ≥ a,
we call w0 the smallest such integer ≥ 1. But w0 exists and w0 = 1 if (k+1)i+j ≥ d,
w0 = k + 1 otherwise; so first

F1 = a · (a+ 1)− (k(d− i) + 1) · a− (a+ 1) + (w0 − 1) · (ia+ d) ⊂ T (S).

Take G = a · (a+ 1)− a− (a− d+ 1) · (a+ 1) + k · (ia+ d) and set y = d− 1− j,
G = a · (ki+ j) + y · (a+ 1) ∈ Q. Now take F = a · (d− 2) + d− 1 + (k− t) · (ia+ d)
clearly F −G = −(td+ ita) thus

F = a · (ki+ j + td+ ita)− (−d+ 1 + j + td+ ita) · (a+ 1)

= a · (ki+ j + td− it)− (1 + j + (t− 1)d) · (a+ 1)

and clearly F is not in Q if and only if ki + j + t(d − i) < a + 1 and 1 + j +
(t − 1)d > 0. We call t0 the smallest such integer ≥ 1, but it can be verified that
(k − 1)i+ j + d < a+ 1 and so if r = k − t0 = k − 1, the second pseudo-Frobenius
is F2 := a · (d− 2) + d− 1 + (k − 1) · (ia+ d).
F1 = (j + ki − w(d − i)) · a + (wd − 1) · (a + 1) and F2 = a · ((k − 1)i + j +

d) − (1 + j) · (a + 1); if w = 0 then F1 6= F2 since 1 < 1 + j and for w = k it is
straightforward that F1 ≤ F2 with equality if and only if (k+ 1)i+ j+ 1 = d which
yields the result by Lemma 3. �

By Remark 2 the case d divides a is almost trivial. Note that Theorem 4 gives by
Theorem 2 a new way to find the Frobenius number of any S = 〈a, b, c〉. Particular
cases of Theorem 4 can be deduced from the following result:

Theorem 5. [3] Let S = 〈a, b, c〉 with pairwise coprime generators and so c =

bh − ad = a · b − (a − h) · b − d · a = (b − d) · a − (a − h)b. If
b

d
≥
⌈a
h

⌉
then

T (S) =

{⌊
a− 1

h

⌋
c+ da− b− a, (a− 1)b−

⌊
a− 1

h

⌋
da− a

}
Example 3. For S = 〈34, 35, 46〉 we cannot apply Theorem 5 because the pairwise
coprime condition is not satisfied, also Theorem 3 cannot be applied, applying The-
orem 4 we have d = 12, a = 34 = 2 · 12 + 10, i = 1, k = 2, j = 10, here w = 0 and
T (S) = {373, 397}.
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One can verify that (n + 1)(n + 2)2 = (n + 1)n2 + 4(n + 1)2 and n(2n + 1)2 =
n(n + 1)2 + (3n + 2)n2 for any n. Some results for example Frobenius number
formulas of three consecutive squares were done in [16, 17].

Lemma 4. Let S = 〈(4s−1)2, (4s)2, (4s+1)2〉 and Q = 〈n2, (n+1)2〉 with n = 4s−1
odd (s > 1) then T (S) = {256s3 − 144s2 + 8s− 1, 272s3 − 168s2 + s− 2}.

Proof. First let us write

(n+ 2)2 = n2(n+ 1)2 − (n2 − 2n− 4)n2 − (4n− 4)(n+ 1)2,

if n = 4s− 1, s > 1 then we verify that s(n+ 2)2 ∈ Q and

(s− 1)(n+ 2)2 = (16s2 − 15s− 1)n2 − (n2 − 4n+ 3)(n+ 1)2 /∈ Q

by Definition 3 notations we have that S is an upgrade start level semigroup with
s1 = s− 1, l = n2 − 2n− 4 and h = n2 − 4n+ 3. Finally we have:

n2(n+ 1)2 − (n2 − 2n− 3)n2 − (n+ 1)2 + (α)(n+ 2)2

= (4n+ 4 + α(4n+ 5))n2 − (1 + α(4n− 4))(n+ 1)2

so we verify

n2(n+1)2−(n2−2n−3)n2−(n+1)2+(s−1)(n+2)2 = (s−1)n2+(16s−8)(n+1)2

and n2(n+ 1)2 − n2 − (n2 − 4n+ 4)(n+ 1)2 + (n+ 2)2 = 16sn2. �

Lemma 5. Let S = 〈(4s−3)2, (4s−2)2, (4s−1)2〉 and Q = 〈n2, (n+1)2〉 with n =
4s−3 odd (s > 1) then T (S) = {144s3−296s2+193s−42, 160s3−352s2+234s−51}.

Proof. If n = 4s − 3 for some s > 1 then (2s − 1)(n + 2)2 ∈ Q, the highest under
level is for

s(n+ 2)2 = n2(n+ 1)2 − (16s2 − 25s+ 8)n2 − (8s− 9)(n+ 1)2

so l = 16s2 − 25s+ 8 and the highest level is for h = 16s2 − 32s+ 16 with

(s− 1)(n+ 2)2 = n2(n+ 1)2 − (7s− 3)n2 − (16s2 − 32s+ 16)(n+ 1)2

(2s− 2)(n+ 2)2 = n2(n+ 1)2 − (14s− 6)n2 − (16s2 − 40s+ 23)(n+ 1)2.

Here s1 = s− 1 and we verify that

n2(n+ 1)2 − n2 − (16s2 − 32s+ 17)(n+ 1)2 + α(n+ 2)2

= (α(4n+ 5)− 1)n2 − (8− 8s+ α(4n− 4))(n+ 1)2

n2(n+ 1)2 − (16s2 − 25s+ 9)n2 − (n+ 1)2 + α(n+ 2)2

= (9s− 5 + α(4n+ 5))n2 − (1 + α(4n− 4))(n+ 1)2

n2(n+ 1)2−n2− (16s2− 32s+ 17)(n+ 1)2 + s(n+ 2)2 = (9(s− 1) + 4)n2 + (n+ 1)2

and n2(n+ 1)2 − (16s2 − 25s+ 9)n2 − (n+ 1)2 + (s− 1)(n+ 2)2 = (2(s− 1))n2 +
(8(s− 1))(n+ 1)2. �

Lemma 6. Let S = 〈(4s)2, (4s+1)2, (4s+2)2〉 and Q = 〈n2, (n+1)2〉 with n = 4s,
s ≥ 2 then T (S) = {112s3 + 48s2 + 8s− 1, 128s3 − 20s− 5}.
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Proof. (n + 2)2 = n2(n + 1)2 − (n2 − 2n − 4)n2 − (4n − 4)(n + 1)2, here we need
the following expressions:

s(n+ 2)2 = n2(n+ 1)2 − (3s+ 1)n2 − (16s2 − 4s)(n+ 1)2

(s+ 1)(n+ 2)2 = n2(n+ 1)2 − (16s2 − 5s− 3)n2 − (12s− 4)(n+ 1)2

2s(n+ 2)2 = n2(n+ 1)2 − (2 + 6s)n2 − (16s2 − 8s)(n+ 1)2

(2s+ 1)(n+ 2)2 = n2(n+ 1)2 − (16s2 − 2s− 2)n2 − (8s− 4)(n+ 1)2

3s(n+ 2)2 = n2(n+ 1)2 − (9s+ 3)n2 − (16s2 − 12s)(n+ 1)2

(3s+ 1)(n+ 2)2 = n2(n+ 1)2 − (16s2 + s− 1)n2 − (4s− 4)(n+ 1)2

n(n+ 2)2 = n2(n+ 1)2 − (12s+ 4)n2 − (16s2 − 16s)(n+ 1)2

with (n+ 1)(n+ 2)2 ∈ Q. s1 = s, h = 16s2 − 4s and l = 16s2 + s− 1. Finally we
have

n2(n+ 1)2 − n2 − (16s2 − 4s+ 1)(n+ 1)2 + α(n+ 2)2

= (α(4n+ 5)− 1)n2 − (1− 4s+ 16αs− 4α)(n+ 1)2

n2(n+ 1)2 − (16s2 + s)n2 − (n+ 1)2 + α(n+ 2)2

= (2n+ 1− s+ α(4n+ 5))n2 − (1 + α(4n− 4))(n+ 1)2.

n2(n+ 1)2−n2− (16s2− 4s+ 1)(n+ 1)2 + (3s+ 1)(n+ 2)2 = 3(n+ 1)2 + (7s+ 1)n2

and

n2(n+ 1)2 − (16s2 + s)n2 − (n+ 1)2 + s(n+ 2)2 = (4s)n2 + (4s− 1)(n+ 1)2.

�

Lemma 7. Let S = 〈(4s − 2)2, (4s − 1)2, (4s)2〉 and Q = 〈n2, (n + 1)2〉 with
n = 4s− 2, (s > 1) then T (S) = {80s3 − 80s2 + 28s− 5, 128s3 − 160s2 + 60s− 9}.

Proof. (n+ 2)2 = n2(n+ 1)2 − (n2 − 2n− 4)n2 − (4n− 4)(n+ 1)2.

(s− 1)(n+ 2)2 = n2(n+ 1)2 − (11s− 2)n2 − (16s2 − 28s+ 12)(n+ 1)2

s(n+ 2)2 = n2(n+ 1)2 − (16s2 − 13s+ 2)n2 − (4s− 4)(n+ 1)2

(2s− 1)(n+ 2)2 = n2(n+ 1)2 − (6s− 1)n2 − (16s2 − 24s+ 8)(n+ 1)2

(2s)(n+ 2)2 = n2(n+ 1)2 − (16s2 − 18s+ 3)n2 − (8s− 8)(n+ 1)2

(3s− 1)(n+ 2)2 = n2(n+ 1)2 − (s)n2 − (16s2 − 20s+ 4)(n+ 1)2

(3s)(n+ 2)2 = n2(n+ 1)2 − (16s2 − 23s+ 4)n2 − (12s− 12)(n+ 1)2

n(n+ 2)2 = n2(n+ 1)2 − (12s− 2)n2 − (16s2 − 32s+ 12)(n+ 1)2

with (n + 1)(n + 2)2 ∈ Q. s1 = s − 1, h = 16s2 − 20s + 4 and l = 16s2 − 13s + 2.
Finally we have

n2(n+ 1)2 − n2 − (16s2 − 20s+ 5)(n+ 1)2 + α(n+ 2)2

= (α(4n+ 5)− 1)n2 − (1− 4s+ 16αs− 12α)(n+ 1)2

n2(n+ 1)2 − (16s2 − 13s+ 3)n2 − (n+ 1)2 + α(n+ 2)2

= (5s− 2 + α(4n+ 5))n2 − (1 + α(4n− 4))(n+ 1)2.
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n2(n+ 1)2 − n2 − (16s2 − 20s+ 5)(n+ 1)2 + s(n+ 2)2 = 3(n+ 1)2 + (5s− 2)n2

and

n2(n+1)2−(16s2−13s+3)n2−(n+1)2+(3s−1)(n+2)2 = (n)n2+(n+1)(n+1)2.

�

Lemma 8. Let S = 〈(2s)2, (4s+1)2, (2s+1)2〉 and Q = 〈n2, (n+1)2〉 with n = 2s,
(s > 1) then T (S) = {32s3 − 12s2 − 11s− 2, 28s3 − 4s− 1}.

Proof. First

(2n+ 1)2 = n2(n+ 1)2 − (2n+ 1)n2 − (n2 − 2n− 1)(n+ 1)2.

n = 2s, S is a downgrade semigroup with s1 = s−1, l = n2−3s−1, h = n2−2n−1
by computation we have

n2(n+ 1)2 − n2 − (n2 − 2n)(n+ 1)2 + α(2n+ 1)2

= (2n+ α(2n+ 1))(n+ 1)2 − (1 + α(2n+ 1))n2.

n2(n+ 1)2−n2− (n2− 2n)(n+ 1)2 + (s− 1)(2n+ 1)2 = (s− 1)(n+ 1)2 + (7s+ 1)n2

and n2(n+ 1)2 − (n2 − 3s)n2 − (n+ 1)2 + (2n+ 1)2 = 3sn2 + 4s(n+ 1)2. �

Lemma 9. Let S = 〈(2s + 1)2, (4s + 3)2, (2s + 2)2〉 and Q = 〈n2, (n + 1)2〉 with
n = 2s+ 1 > 1, then T (S) = {20s3 + 28s2 + 9s− 1, 32s3 + 44s2 + 13s− 2}.

Proof. First we got

(2n+ 1)2 = n2(n+ 1)2 − (2n+ 1)n2 − (n2 − 2n− 1)(n+ 1)2.

Also if n = 2s+1, s(2n+1)2 /∈ Q and (s+1)(2n+1)2 = (s+1)n2 +(3s+2)(n+1)2

so s1 = s, l = n2 − s− 1, h = n2 − 2n− 1.

From computation: n2(n+ 1)2 − n2 − (n2 − 2n)(n+ 1)2 + α(2n+ 1)2

= (2n+ α(2n+ 1))(n+ 1)2 − (1 + α(2n+ 1))n2.

By a direct verification

n2(n+ 1)2 − n2 − (n2 − 2n)(n+ 1)2 + s(2n+ 1)2 = (5s+ 3)n2 + (3s+ 1)(n+ 1)2

and n2(n+ 1)2 − (n2 − s)n2 − (n+ 1)2 + (2n+ 1)2 = sn2 + (4s+ 2)(n+ 1)2. �

The next lemma is the particular three dimensional case of what it seems a con-
jecture of Prof. Dao at http://mathoverflow.net/questions/292507/a-formula-
for-frobenius-number-of-certain-numerical-semigroups

Lemma 10. [12, Proposition 10.16] Let a, b, c be three positive integers such that
ab+ b+ 1 and ca+ c+ 1 are coprime. For S = 〈ab+ a+ 1, bc+ b+ 1, ca+ c+ 1〉,
T (S) = {abc− 1, 2(abc− 1)}.

Proof. First it is clear from the cyclic expression that if any two of the generators
share a common factor d the third one will be divisible by d, assuming the hypothesis
we write:

bc+ b+ 1 = (ab+ a+ 1)(ca+ c+ 1)− c(ab+ a+ 1)− ((b+ 1)a− b)(ca+ c+ 1).

The generators are a3 = bc+ b+ 1, Q = 〈ab+ a+ 1, ca+ c+ 1〉.

http://mathoverflow.net/questions/292507/a-formula-for-frobenius-number-of-certain-numerical-semigroups
http://mathoverflow.net/questions/292507/a-formula-for-frobenius-number-of-certain-numerical-semigroups
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We get m = a+ 1, and

(ab+ a+ 1)(ca+ c+ 1)−(ab+ a+ 1)− ((b+ 1)a− b+ 1)(ca+ c+ 1) + αa3

= (b+ α(b+ 1))(ca+ c+ 1)− (1 + αc)(ab+ a+ 1).

F1 =(ab+ a+ 1)(ca+ c+ 1)− (ab+ a+ 1)− ((b+ 1)a− b+ 1)(ca+ c+ 1)

+ (a− 1)(bc+ b+ 1) = 2(abc− 1)

F2 = (ab+ a+ 1)(ca+ c+ 1)− (ca+ 1)(ab+ a+ 1)− (ca+ c+ 1) = abc− 1.

�

The algorithm that we studied first appeared in [13] Theorem-11. The arguments
are closely related to the results in [4]. There are different algorithms computing
F (S) with S a three minimally generated semigroup, among them is [6] also [8],
Rödseth’s formula [5, 7]; and more recently [9, 10]. We refer to [11] for a further
discussion on these and other generalized algorithms.
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