NUMERICAL SEMIGROUPS OF TWO GENERATORS

Antoine Mhanna

To cite this version:

Antoine Mhanna. NUMERICAL SEMIGROUPS OF TWO GENERATORS. 2016. hal-01337295v1

HAL Id: hal-01337295
https://hal.science/hal-01337295v1
Preprint submitted on 24 Jun 2016 (v1), last revised 26 Aug 2023 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NUMERICAL SEMIGROUPS OF TWO GENERATORS

ANTOINE MHANNA ${ }^{1 *}$

Abstract

This paper will represent in a simple way some known facts about semigroups especially when the number of minimal generators equals two or in general semigroups with at least two minimal generators. The originality of this exposition is that it is a straight application of a remark written by Sylvester itself.

1. Introduction

As the title indicates we shall revisit numerical semigroups S having at most two minimal generators. However in contrast to other research analogies we shall consider general semigroups i.e. letting a_{1}, \cdots, a_{n} be n positive integers with $\operatorname{gcd}\left(a_{1}, \cdots, a_{n}\right)=m$, the set $S^{\prime}:=\left\{\sum_{i=1}^{s} \lambda_{i} a_{i}, s \in \mathbb{N}, \lambda_{i} \geq 0\right.$, for all $\left.i\right\}$ is called the semigroup S^{\prime} and a_{1}, \cdots, a_{n} are called the generators of $S^{\prime} . a_{1}, \cdots, a_{n}$ are minimal generators if we cannot take out a generator a_{i} without changing the set S^{\prime}, in this case we denote S^{\prime} by $\left\langle a_{1}, \cdots, a_{n}\right\rangle$. If $m=1$ the semigroup S^{\prime} becomes a numerical semigroup and is denoted hereafter by S. We will see (Lemma 1) that for such semigroups there exist a point $F(S)$ known as the Frobenius number for which every $n>F(S), n \in S$. The set of points $E:=\{y \leq F(S), y \in S\}$ is also called set of green points. The cardinality of E is denoted by $|E|$. Wilf's Conjecture stats that for a given $S=\left\langle a_{1}, \cdots, a_{n}\right\rangle$, we have:

$$
n .|E| \geq F(S)+1 .
$$

I will be giving a proof that is due to Sylvester, nevertheless no literature exist (to my knowledge) that explicit what Sylvester has to say concerning semigroups with two minimal generators.
Remark. Notice that $a_{1} a_{2}=\lambda_{1} a_{1}+\lambda_{2} a_{2}$ is impossible for any $\lambda_{1}, \lambda_{2} \in \mathbb{N}$ both different from 0 and a_{1} and a_{2} are coprime i.e $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. We will suppose hereafter that $a_{1}<a_{2}$.

2. Two minimal generators

Definition. Let a_{1} and a_{2} be positive integers with $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. The set of positive numbers x of the form $x=\alpha a_{i}-\beta a_{3-i}, i=1$ or 2 with $0<\alpha<a_{3-i}$ and $0<\beta<a_{i}$ is called the non-coumpound set (this will be clarified next) and is denoted by $N C$. The set of numbers x of the form $x=\alpha a_{1}+\beta a_{2}$ with $\alpha>0$, $\beta>0$ and $x<a_{1} a_{2}$ is called the coumpound set and is denoted by C.

[^0]The next theorem was just a line in a brief illustration remarked by Sylvester, (see [1] on p. 134).
Theorem 1. For $S=\left\langle a_{1}, a_{2}\right\rangle$, we have $x \in N C$ if and only if $0<x<a_{1} a_{2}$ and $x \notin S$.

Proof. Clearly if we subtract from $a_{1} a_{2}$ such number x the result is a positive number y, $(y \in S)$. Suppose $x \in S, x<a_{1} a_{2}, x=a a_{1}+b a_{2}=\alpha a_{i}-\beta a_{3-i}$ for some positive numbers a, b but this contradicts the fact that $\alpha<a_{3-i}$ and $\beta<a_{i}$. $|N C|=\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}$. Take the numbers less than $a_{1} a_{2}$ having neither a_{1} nor a_{2} as a divisor, there are $\left(a_{1}-1\right)\left(a_{2}-1\right)$ such numbers, arrange them as couples summing $a_{1} a_{2}$-this is possible see Remark 1- if $x \in N C, a_{1} a_{2}-x=y \in S$, and if $y \in$ $C,\left(a_{1} a_{2}-y\right)=x \notin S$, that means that $x \in N C$. Finally $|N C|=\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}$ and $|N C|+|C|=\left(a_{1}-1\right)\left(a_{2}-1\right)$.

We have proven that $|N C|=|C|=\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}$. The number $F(S)=$ $\left(a_{1}-1\right)\left(a_{2}-1\right)-1$ doesn't belong to S, indeed since $a_{1} a_{2}-F(S)$ is coumpound, the nearest (smaller) non counpound number is precisely $y=F(S)-a_{1}$, but again the difference between $F(S)$ and y is a_{1} and $F(S)+a_{1} \in S$ so all $n>F(S)$ do belong to S. In other words $|E|=\left(a_{1}-1\right)\left(a_{2}-1\right)-\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}=\frac{\left(a_{1}-1\right)\left(a_{2}-1\right)}{2}$ and $2 .|E|=F(S)+1$.

Now we can characterize all the numbers that aren't in $S:=\left\langle a_{1}, a_{2}\right\rangle$.
Proposition 1. The set $N C$ is the set $\{F(S)-y, y \in S, y<F(S)\}$
Proof. A direct application of previous arguments.
Some topics related to the above discussion are in [2], [3] and [4]. Interested reader can see [5] and the references therein for an extensive reading on numerical semigroups.
2.1. Bezout Theorem. The following lemma generalizes Sylvester's idea to semigroups:
Lemma 1. Let $S^{\prime}=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ with $\operatorname{gcd}\left(a_{1}, \cdots, a_{n}\right)=m$ then there is an integer α_{0} such that for all $\alpha \geq \alpha_{0}, \alpha m \in S$. In particular when $m=1, S^{\prime}$ becomes S and we have the existence of $F(S)$ the Frobenius number.
Proof. Start by $n=2$, the semigroup $\left\langle\frac{a_{1}}{m}, \frac{a_{2}}{m}\right\rangle$ is a numerical semigroup so called S, any number $x>F(S)$ do belong to S multiplying x by m we get the result. First we deal with $m=1$, (any semigroup S^{\prime} can be transformed in a numerical semigroup by dividing each minimal generator by m) say $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $m_{2}=\operatorname{gcd}\left(a_{1}, a_{2}\right)>1$ we already know that m_{2}^{j} is in $\left\langle a_{1}, a_{2}\right\rangle$ for some large j but since $m=1 ;\left\langle m_{2}^{j}, a_{3}\right\rangle$ is a numerical semigroup and the statement follows. By induction if $m_{n-1}=\operatorname{gcd}\left(a_{1}, \cdots, a_{n-1}\right)>1$ then $r:=z^{i}$ is in the semigroup $\left\langle a_{1}, \cdots, a_{n-1}\right\rangle$ for sufficiently large $i ; z$ is formed by factors that are common to all $a_{i}{ }^{\prime}$ s with $1 \leq i \leq n-1$. Having $m=1, S_{1}=\left\langle r, a_{n}\right\rangle$ is a numerical semigroup and for all $x>F\left(S_{1}\right), x \in S_{1} ; x$ multiplied by m will be in S^{\prime}. When $m_{n-1}=1$ we can remove minimal generators until $m_{h}=\operatorname{gcd}\left(a_{1}, \cdots, a_{h}\right)>1$ and the same proof can be applied here.

Theorem 2. Let $S^{\prime}=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ with $\operatorname{gcd}\left(a_{1}, \cdots, a_{n}\right)=m$ then there exists at least one n - tuple $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ such that $\sum_{i=1}^{n} \lambda_{i} a_{i}=m$
Proof. By Lemma 1, take any $\beta \geq \alpha_{0}$ so that $(\beta+1) m-\beta m=m$

References

[1] J. J. Sylvester. Excursus on rational fractions and partitions. Amer J. Math. 5: p. 119-136, 1882.
[2] T. C. Brown, P. J.-S. Shiue, A Remark Related to the Frobenius Prob- lem, Fibonacci Quarterly, 31 (1), p. 32-36, 1993.
[3] Ö. J. Rödseth, A note on T.C. Brown and P.J.-S. Shiues paper: A remark related to the Frobenius problem, Fibonacci Quarterly, 32 (5), p. 407-408, 1994.
[4] H. J.H. Tuenter, The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers, Journal of Number Theory, 117 (2), p. 376-386, 2006.
[5] J. C. Rosales, P. A. García-Sánchez, Numerical semigroups, Developments in Mathematics, 20, Springer, New York, 2009.
${ }^{1}$ Kfardebian-Beirut, Lebanon
E-mail address: tmhanat@yahoo.com

[^0]: Date: 2016

 * Corresponding author.

 2010 Mathematics Subject Classification. 11D07; 11A99.
 Key words and phrases. Numerical Semigroups, Frobenius Number, Bezout's theorem.

