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Abstract

This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology
(http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown
into a standard methodology that manages Bayesian inference for models associated with intractable
likelihood functions. Most ABC implementations require the preliminary selection of a vector of infor-
mative statistics summarizing raw data. Furthermore, in almost all existing implementations, the toler-
ance level that separates acceptance from rejection of simulated parameter values needs to be calibrated.
We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of
the relevant components of the summary statistics and bypassing the derivation of the associated toler-
ance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non
parametric) regression setting. We advocate the derivation of a new random forest for each component
of the parameter vector of interest. When compared with earlier ABC solutions, this method offers sig-
nificant gains in terms of robustness to the choice of the summary statistics, does not depend on any type
of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible
interval estimations for a given computing time. We illustrate the performance of our methodological
proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics
example dealing with human population evolution. All methods designed here have been incorporated
in the R package abcrf (version 1.7) available on CRAN.

Keywords: Approximate Bayesian computation, Bayesian inference, likelihood-free methods, parame-
ter inference, random forests
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1 Introduction

As statistical models and data structures get increasingly complex, managing the likelihood function be-
comes a more and more frequent issue. We now face many realistic fully parametric situations where the
likelihood function cannot be computed in a reasonable time or simply is unavailable. As a result, while the
corresponding parametric model is well-defined, with unknown parameter θ , standard solutions based on
the density function f (y | θ) like Bayesian or maximum likelihood analyses are prohibitive to implement.
To bypass this hurdle, the last decade witnessed different inferential strategies, among which composite
likelihoods (Lindsay, 1988; Varin et al., 2011), indirect inference (Gourieroux et al., 1993), GMMs (Cher-
nozhukov and Hong, 2003), and likelihood-free methods such as approximate Bayesian computation (ABC,
Beaumont et al., 2002; Csilléry et al., 2010; Marin et al., 2012), became popular options. We focus here on
improving the latter solution.

Since their introduction in population genetics (Tavaré et al., 1997; Pritchard et al., 1999; Beaumont
et al., 2002), ABC methods have been used in an ever increasing range of applications, corresponding to
different types of complex models in diverse scientific fields (see, e.g., Beaumont, 2008; Toni et al., 2009;
Beaumont, 2010; Csilléry et al., 2010; Theunert et al., 2012; Chan et al., 2014; Arenas et al., 2015; Sisson
et al., 2017).

Posterior distributions are the cornerstone of any Bayesian analysis as they constitute both a sufficient
summary of the data and a means to deliver all aspects of inference, from point estimators to predictions and
uncertainty quantification. However, it is rather common that practitioners and users of Bayesian inference
are not directly interested in the posterior distribution per se, but rather in some summary aspects, like
posterior mean, posterior variance or posterior quantiles, since these are easier to interpret and report. With
this motivation, we consider a version of ABC focussing on the approximation of unidimensional transforms
of interest like the above, instead of resorting to the classical ABC approach that aims at approximating the
entire posterior distribution and then handling it as in regular Bayesian inference. The approach we study
here is based on random forests (RF, Breiman, 2001), which produces non-parametric regressions on an
arbitrary set of potential regressors. We recall that the calibration side of RF (i.e. the choice of the RF
parameters: typically the number of trees and the number of summary statistics sampled at each node) was
successfully exploited in Pudlo et al. (2016) for conducting ABC model choice.

After exposing the ABC and RF principles, we explain how to fuse both methodologies towards Bayesian
inference about parameters of interest. We then illustrate the performance of our proposal and compare it
with earlier ABC methods on a Normal toy example and a population genetics example dealing with human
population evolution.

2 Methods

Let
{ f (y | θ) : y ∈ Y ,θ ∈Θ} , Y ⊆ Rn , Θ⊆ Rp p,n≥ 1

be a parametric statistical model and π(θ) be a prior distribution on the parameter θ . Given an observation
(or sample) y issued from this model, Bayesian parameter inference is based on the posterior distribution
π(θ | y) ∝ π(θ) f (y|θ). The computational difficulty addressed by ABC techniques is that a numerical
evaluation of the density (a.k.a., likelihood) f (y | θ) is impossible or at least very costly, hence preventing
the derivation of the posterior π(θ | y), even by techniques like MCMC (Marin and Robert, 2014).
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2.1 ABC for parameter inference

The principle at the core of ABC is to approximate traditional Bayesian inference from a given dataset
by simulations from the prior distribution. The simulated values are accepted or rejected according to the
degree of proximity between the observed dataset y and a simulated one y(θ) thanks to a (usually normalized
Euclidean) distance d. ABC relies on the operational assumptions that, while the likelihood is intractable,
observations can be generated from the statistical model f (· | θ) under consideration for a given value of the
parameter θ .

The ABC resolution of the intractability issue with the likelihood is to produce a so-called reference
table, recording a large number of datasets simulated from the prior predictive distribution, with density
f (y | θ)×π(θ), and then extracting those that bring the simulations close enough to the actual sample. In
most ABC implementations, for both computational and statistical efficiency reasons, the simulated y(t)’s
(t = 1, . . . ,N) are summarised through a dimension-reduction function η : Y → Rk, often called a vector
of k summary statistics. While the outcome of the ABC algorithm is then an approximation to the posterior
distribution of θ given η(y), rather than given the entire data y (Marin et al., 2012), arguments are to be
found in the literature supporting the (ideal) choice of a summary statistic η of the same dimension as the
parameter (Fearnhead and Prangle, 2012; Li and Fearnhead, 2015; Frazier et al., 2017). Algorithm 1 details
how the reference table is constructed. The reference table will latter be used as a training dataset for the
different RF methods explained below.

In practice, a reference table of size N is simulated, distances
(
d(η(y),η(y(t)))

)
t=1,...,N are computed and

then given a tolerance proportion 0 < pε ≤ 1, pairs (θ (t),η(y(t))) within the pε range of lowest distances are
selected. The parameter sample thus derived is deemed to approximate the posterior distribution π(θ |η(y)).

Algorithm 1: Generation of a reference table from the prior predictive distribution π(θ) f (y | θ)
1 for t← 1 to N do
2 Simulate θ (t) ∼ π(θ);

3 Simulate y(t) = (y(t)1 , . . . ,y(t)n )∼ f
(
y | θ (t)

)
;

4 Compute η(y(t)) = {η1(y(t)), . . . ,ηk(y(t))};
5 end

The method is asymptotically consistent in the sense that the true parameter behind the data can be ex-
hibited when both the sample size and the number of simulations grow to infinity and the tolerance decreases
to zero (Frazier et al., 2017). However, it suffers from two major drawbacks. First, to ensure a sufficient
degree of reliability, the number N of simulations must be quite large. Hence, it may prove difficult to apply
ABC on large or complex datasets since producing data may prove extremely costly. Second, the calibration
of the ABC algorithm (i.e. a tolerance level indicating the separation of accepted from rejected simulated
parameter values) is a critical step and impacts the resulting approximation (Marin et al., 2012; Blum et al.,
2013). Since the justification of the method is doubly asymptotic, it is delicate if not impossible (Li and
Fearnhead, 2015; Frazier et al., 2017) to optimally tune ABC for finite sample sizes. A third feature of
major importance in this algorithm is that it requires selecting a vector of summary statistics that captures
enough information from the observed and simulated data. For most problems, using the raw data to run
the comparison is indeed impossible, if only because of the dimension of the data. Fearnhead and Prangle
(2012) give a natural interpretation of the vector of summary statistics as an estimator of θ , but this puts a
clear restriction on the dimension and nature of the components of η(y).

Finally, it has to be noted that the original rejection ABC method, which can be interpreted as a K-nearest
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neighbour method, has been recurrently improved by linear or non-linear regression strategies, mentioned
in literature as adjusted local linear (Beaumont et al., 2002), ridge regression (Blum et al., 2013), and by
methods based on adjusted neural networks (Blum and François, 2010). Instead of ridge regularization
within local linear adjustment, Saulnier et al. (2017) propose to use a lasso regularization in order to select
among the summary statistics. The obtained results are promising exceptt when the summary statistics are
highly correlated. In such cases, Saulnier et al. (2017) suggest to use random forests.We will only consider
ridge regularization in the present work.

2.2 Random forest methodology

The random forest methodology (RF) of Breiman (2001) is pivotal in our proposal. We use Breiman’s
RF in a regression setting where a response variable Y ∈ R is explained by a vector of covariates X =
(X (1), . . . ,X (k)). A collection of N datasets, made of responses and associated covariates, is used to train a
RF.

A given regression RF of size B is composed of B regression trees. A tree is a structure made of binary
nodes, which are iteratively built from top to bottom until a stopping rule is satisfied. There are two types of
nodes in such trees, the internal and terminal nodes, the latter being also called leaves. At an internal node,
a binary rule of the form X ( j) ≤ s versus X ( j) > s compares a covariate X ( j) with a bound s. The result of
the test divides the predictor space and the training dataset depending on this splitting rule into two parts
in two new different nodes. When constructing the tree based on a training sample, the covariate index j
and the splitting bound s are determined towards minimising a L2-loss criterion. The same covariate may
be used multiple times for the choice of j at different levels of the tree construction. Splitting events stop
when all the observations of the training dataset in a given node have the same covariates value, in that case
the node becomes a leaf. Moreover, when a node has less than Nmin observations, the node also becomes a
leaf, typically Nmin = 5 in the regression framework. Once the tree construction is complete, a value of the
response variable is allocated to each tree leaf, corresponding to the average of the response values of the
present datasets. For a given and an observed dataset that corresponds to a new covariate X, predicting the
associated value of Y implies following the path of the binary rules. The outcome of the prediction is the
allocated value of the leaf where this dataset ends after following this path.

The RF method consists in aggregating (or bagging) randomized regression trees. A large number of
trees are trained on bootstrap samples of the training dataset and furthermore a subset of ntry covariates
among the k available covariates are randomly considered at each split. The predicted value of a regression
RF is determined by averaging the B predictions over its B tree components.

2.3 ABC parameter inference using random forest

2.3.1 Motivations and main principles

The particular choice of RF as a (non-parametric) estimation method in a regression setting is justified by
the robustness of both random forests and quantile methods to “noise”, that is, to the presence of irrelevant
predictors, even when the proportion of such covariates amongst the entire set of proposed predictors is
substantial (Marin et al., 2017). By comparison, the method of K-nearest neighbour classifiers lacks such
characteristics (Biau et al., 2015). In the setting of building an ABC algorithm without preliminary selection
of some summary statistics, our conjecture is that RF allows for the inclusion of an arbitrary and potentially
large number of summary statistics in the derivation of the forest and therefore that it does not require the
usual preliminary selection of summary statistics. When implementing this approach, we hence bypass
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the selection of summary statistics and include a large collection of summary statistics, some or many of
which being potentially poorly informative if not irrelevant for the regression. For earlier considerations on
the selection of summary statistics, see Joyce and Marjoram (2008); Nunes and Balding (2010); Jung and
Marjoram (2011); Fearnhead and Prangle (2012) and the review paper of Blum et al. (2013) where different
dimension reduction techniques are compared.

A regression RF produces an expected predicted value for an arbitrary transform of θ , conditional on an
observed dataset. This prediction is the output of a piece-wise constant function of the summary statistics.
RF aggregates trees, partitions the feature space (here the space of summary statistics) in a way tuned to the
forecast of a scalar output, i.e., a one dimensional functional of the parameter. This partition and prediction
are done without requiring the definition of a particular distance on the feature space and is hence not
dependant of any type of tolerance level. From an ABC perspective, each tree of a RF provides a partition of
the summary space that is adapted for the forecasting of a scalar transform h(θ) of the parameter θ . In the
following subsection we present how to compute quantities of interest in a context of parameter inference,
thanks to the calculation of weights.

2.3.2 Calculation of weights and approximation of the posterior expectation

Assume we have now grown a RF made of B trees that predicts τ = h(θ) ∈ R using η(y) and the training
sample (η(y(t)),τ(t))t=1,...,N , where τ(t) = h(θ (t)). In the examples below, we will consider the case where
h is the projection on a given coordinate of θ . Each of these B trees produces a partition of the space of
summary statistics, with a constant prediction of the expected value of τ on each set of the partition. More
precisely, given b-th tree in the forest, let us denote n(t)b the number of times the pair (η(y(t)),τ(t)) is repeated
in the bootstrap sample that is used for building the b-th tree. Note that n(t)b is equal to zero when the pair
does not belong to the bootstrap sample. These pairs form the so-called out-of-bag sample of the b-th tree.
Now, let Lb(η(y)) denote the leaf reached after following the path of binary choices given by the tree, which
depends on the value of η(y). The number of items of the bootstrap sample that fall in that leaf is

∣∣Lb(η(y))
∣∣= N

∑
t=1

n(t)b 1
{

η(y(t)) ∈ Lb(η(y))
}
,

where 1 denotes the indicator function, and the mean value of τ of that leaf of the b-th tree is

1∣∣Lb(η(y))
∣∣ N

∑
t=1

n(t)b 1
{

η(y(t)) ∈ Lb(η(y))
}

τ
(t).

Averaging these B predictions of τ leads to an approximation of the posterior expected value of τ , also
denoted mean value of τ , which can be written as follows:

Ẽ
(
τ
∣∣η(y)

)
=

1
B

N

∑
t=1

B

∑
b=1

1∣∣Lb(η(y))
∣∣n(t)b 1

{
η(y(t)) ∈ Lb(η(y))

}
τ
(t).

As exhibited by Meinshausen (2006), the above can be seen as a weighted average of τ along the whole
training sample of size N made by the reference table. In fact, the weight of the t-th pair (η(y(t)),τ(t)) given
η(y) is

wt(η(y)) =
1
B

B

∑
b=1

1∣∣Lb(η(y))
∣∣n(t)b 1

{
η(y(t)) ∈ Lb(η(y))

}
.
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2.3.3 Approximation of the posterior quantile and variance

The weights wt(η(y)) provide an approximation of the posterior cumulative distribution function (cdf) of τ

given η(y) as

F̃(τ | η(y)) =
N

∑
t=1

wt(η(y))1{τ(t) < τ}.

Posterior quantiles, and hence credible intervals, are then derived by inverting this empirical cdf, that is by
plugging F̃ in the regular quantile definition

Q̃α{τ | η(y)}= inf
{

τ : F̃(τ | η(y))≥ α

}
.

This derivation of a quantile approximation is implemented in the R package quantregForest and the
consistency of F̃ is established in Meinshausen (2006).

An approximation of Var(τ | y) can be derived in a natural way from F̃ , leading to

V̂ar(τ | η(y)) =
N

∑
t=1

wt(η(y))

(
τ
(t)−

N

∑
u=1

wu(η(y))τ(u)

)2

.

2.3.4 Alternative variance approximation

Regarding the specific case of the posterior variance of τ , we propose a slightly more involved albeit man-
ageable version of a variance estimate. Recall that, in any given tree b, some entries from the reference
table are not included since each tree relies on a bootstrap sample of the training dataset. The out-of-
bag simulations, i.e. unused in a bootstrap sample, can be exploited toward returning an approximation
of E{τ | η(y(t))}, denoted τ̂

(t)
oob. Indeed, given a vector of summary statistics η(y(t)) of the training dataset,

passing this vector down the ensemble of trees where it has not been used and mean averaging the associated
predictions provide such an approximation. Since

Var(τ | η(y)) = E
(
[τ−E{τ | η(y)}]2 | η(y)

)
,

we advocate applying the original RF weights wt(η(y)) to the out-of-bag square residuals (τ(t)− τ̂
(t)
oob)

2,
which results in the alternative approximation

Ṽar(τ | η(y)) =
N

∑
t=1

wt{η(y)}(τ(t)− τ̂
(t)
oob)

2.

Under the same hypotheses as Meinshausen (2006), this estimator converges when N→∞. Indeed, τ̂
(t)
oob and

∑
N
t=1 wt(η(y))τ(t) tends to the same posterior expectation. Hence, the two variance estimators above men-

tioned are equivalent. A comparison between different variance estimators is detailed in the supplementary
material. Owing to the results of this comparative study, we choose to use the above alternative variance
estimator when presenting the results from two examples.

As a final remark, it is worth stressing that the approximation of the posterior covariance between a pair
of parameters can be achieved thanks to a total of three RFs. The details of that statistical extension are
presented in the Section 2 of the supplementary material.
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2.3.5 A new R package for conducting parameter inferences using ABC-RF

When several parameters are jointly of interest, our recommended global strategy consists in constructing
one independent RF for each parameter of interest and estimate from each RF several summary measure-
ments of the posterior distribution (i.e. posterior expectation, quantiles and variance) of each parameter.
Additional RFs might be constructed, however, if one is interested by estimating posterior covariance be-
tween pair of parameters.

Our R library abcrf was initially developed for Bayesian model choice using ABC-RF as in Pudlo et al.
(2016). The version 1.7 of abcrf includes all the methods proposed in this paper to estimate posterior
expectations, quantiles, variances (and covariances) of parameter(s). abcrf version 1.7 is available on
CRAN. We provide in the Section 3 of the supplementary material, a commented R code that will allow non
expert users to run random forest inferences about parameters using the abcrf package version 1.7.

3 Results from two examples

We illustrate the performances of our ABC-RF method for Bayesian parameter inference on a Normal toy-
example and on a realistic population genetics example. In the first case and only in that case, approxima-
tions of posterior quantities can be compared with their exact counterpart. For both examples, we further
compare the performances of our methodology with those of earlier ABC methods based on solely rejec-
tion, adjusted local linear (Beaumont et al., 2002), ridge regression (Blum et al., 2013), and adjusted neural
networks (Blum and François, 2010).

For both illustrations, RFs were trained based on the functions of the R package ranger (Wright et al.,
2017) with forests made of B = 500 trees, with ntry = k/3 selected covariates (i.e. summary statistics) for
split-point selection at each node, and with a minimum node size equals to 5 (Breiman, 2001, and see Sec-
tion 3.3 Practical recommendations regarding the implementation of the ABC-RF algorithm). The other
ABC methods in the comparison were based on the same reference tables, calling the corresponding func-
tions in the R package abc (Csilléry et al., 2012; Nunes and Prangle, 2015) with its default parameters.
ABC with neural network adjustment require the specification of the number of layers composing the neu-
ral network: we opted for the default number of layers in the R package abc, namely 10. A correction
for heteroscedasticity is applied by default when considering regression adjustment approaches. Note that
regression corrections are univariate for local linear and ridge regression as well as for RF, whereas neural
network - by construction - performs multivariate corrections.

3.1 Normal toy example

We consider the hierarchical Normal mean model

yi | θ1,θ2 ∼N (θ1,θ2),

θ1 | θ2 ∼N (0,θ2),

θ2 ∼ IG (4,3),

where IG (κ,λ ) denotes an inverse Gamma distribution with shape parameter κ and scale parameter λ . Let
y = (y1, . . . ,yn) be a n-sample from the above model. Given these conjugate distributions, the marginal
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posterior distributions of the parameters θ1 and θ2 are closed-forms:

θ1 | y∼T

(
n+8,

nȳ
n+1

,
2
(
3+ s2/2+nȳ2/(2n+2)

)
(n+1)(n+8)

)

θ2 | y∼ IG
(

n
2
+4,3+

s2

2
+

nȳ2

2n+2

)
,

where ȳ is the sample mean and s2 = ∑
n
i=1(yi− ȳ)2 the sum of squared deviations. T (ν ,a,b) denotes the

general t distribution with ν degrees of freedom (Marin and Robert, 2014).
From the above expressions and for a given sample y, it is straightforward to derive the exact values of

E(θ1 | y), Var(θ1 | y), E(θ2 | y), Var(θ2 | y) and posterior quantiles for the two parameters. This provides
us with a benchmark on which to assess the performances of ABC-RF. For the present simulation study,
we opted for a reference table made of N = 104 replicates of a sample of size n = 10 and k = 61 summary
statistics. Those statistics included the sample mean, the sample variance, the sample median absolute
deviation (MAD), all possible sums and products with these three elements resulting in eight new summary
statistics and 50 additional independent (pure) noise variables that were generated from a uniform U[0,1]
distribution. The performances of our method were evaluated on an independent test table of size Npred =
100, produced in the same way as the reference table. Current ABC methods (rejection, adjusted local linear,
ridge and neural network) all depend on the choice of a tolerance level pε corresponding to the proportion
of selected simulated parameters with lowest distances between simulated and observed summary statistics.
On this example we consider a tolerance level of pε = 0.01 for ABC with rejection, and pε = 0.1 for the
ABC methods with adjustment.

Figure 1 compares the exact values ψ1(y) = E(θ1 | y), ψ2(y) = E(θ2 | y), ψ3(y) = Var(θ1 | y) and
ψ4(y) = Var(θ2 | y) with the estimates obtained from the ABC-RF approach. It shows that the proposed
estimators have good overall performances for both ψ1(y) and ψ2(y), although one can see that ψ2(y) tends
to be slightly overestimated. Our estimators perform less satisfactorily for both ψ3(y) and ψ4(y) but remain
acceptable. Figure 2 shows furthermore that the quantile estimation are good for θ1 if less accurate for θ2.

We then run an experiment to evaluate the precision of the marginal posterior approximation provided
by ABC-RF for the parameter θ1, using two different test datasets and 40 independent reference tables.
As exhibited in Figure S3, results are mixed. For one dataset, the fit is quite satisfactory, with the RF
approximation showing only slightly fatter tails than the true posterior density distribution function (Figure
S3; upper panel). For the other dataset, we obtain stronger divergence both in location and precision of the
posterior density distribution function (Figure S3; lower panel).

Using the same reference table, we now compare our ABC-RF results with a set of four earlier ABC
methods, namely, ABC methods based on straightforward rejection, adjusted local linear, ridge regression
and adjusted neural networks. Normalized mean absolute errors are used to measure performances. The
normalization being done by dividing the absolute error by the true value of the target. A normalized ver-
sion offers the advantage of being hardly impacted when only a few observations get poorly predicted.
Table 1 shows that the ABC-RF approach leads to results better than all other ABC methods for all quan-
tities of interest. Expectations and quantiles are noticeably more accurately predicted. Figure 3 compares
differences between estimated and true values of the posterior variances ψ3(y), ψ4(y). It shows the global
underestimation associated with earlier ABC methods, when compared to ABC-RF, the latter only slightly
overestimating the posterior variance. Finally, by looking at the width of the boxplots of Figure 3, we deduce
that our ABC-RF estimations exhibits a lower estimation variability.
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Figure 1: Scatterplot of the theoretical values ψ1(y) = E(θ1 | y), ψ2(y) = E(θ2 | y), ψ3(y) = Var(θ1 | y) and
ψ4(y) = Var(θ2 | y) for the Normal model with their corresponding estimates ψ̃1, ψ̃2, ψ̃3, ψ̃4 obtained using
ABC-RF. Variances are represented on a log scale.
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RF Reject ALL ARR ANN
ψ1(y) = E(θ1 | y) 0.18 0.32 0.34 0.31 0.42
ψ2(y) = E(θ2 | y) 0.05 0.10 0.14 0.17 0.17

ψ3(y) = Var(θ1 | y) 0.25 2.21 0.70 0.69 0.48
ψ4(y) = Var(θ2 | y) 0.25 0.43 0.66 0.70 0.97

Q0.025(θ1|y) 0.34 1.61 0.69 0.84 0.50
Q0.025(θ2|y) 0.04 0.13 0.34 0.55 0.80
Q0.975(θ1|y) 0.25 1.35 0.53 0.70 0.60
Q0.975(θ2|y) 0.10 0.14 0.20 0.20 0.42

Table 1: Comparison of normalized mean absolute errors (NMAE) of estimated quantities of interest ob-
tained with ABC-RF and other ABC methodologies. RF, Reject, ALL, ARR and ANN stand for random
forest (ABC-RF), rejection, adjusted local linear, adjusted ridge regression and adjusted neural network
methods, respectively. The smallest NMAE values are in by bold characters.
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Figure 3: Boxplot comparison of the differences between our predictions for Var(θ1 | y) and Var(θ2 | y) and
the corresponding true values, using ABC-RF and other ABC methods. RF, ALL, ARR and ANN notations
as in the legend of Table 1). The closer to the y = 0 axis, the better the predictions. Boxplots above this axis
imply overestimation of the predictions and below underestimation.
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3.2 Human population genetics example

We now illustrate our methodological findings with the study of a population genetics dataset including
50000 single nucleotide polymorphic (SNP) markers genotyped in four human population samples (The
1000 Genomes Project Consortium, 2012; see details in Pudlo et al., 2016). The four populations include
Yoruba (Africa; YRI), Han (East Asia; CHB), British (Europe; GBR) and American individuals of African
ancestry (North America; ASW). The considered evolutionary model is represented in Figure 4. It includes a
single out-of-Africa event with a secondarily split into one European and one East Asian population lineage
and a recent genetic admixture of Afro-Americans with their African ancestors and with Europeans. The
model was robustly chosen as most appropriate among a set of eight evolutionary models, when compared
using ABC-RF for model choice in Pudlo et al. (2016).

We here focused our investigations on two parameters of interest in this model: (i) the admixture rate ra
(i.e. the proportion of genes with a non-African origin) that describes the genetic admixture between indi-
vidual of British and African ancestry in Afro-Americans individuals; and (ii) the ratio N2/Na between the
ancestral effective population size Na and African N2 (in number of diploid individuals), roughly describing
the increase of African population size in the past. Considering ratios of effective population sizes allows
preventing identifiability issues of the model.

We used the software DIYABC v.2.0 (Cornuet et al., 2008, 2014) to generate a reference table of size
200000, with N = 199000 datasets being used as training dataset and Npred = 1000 remaining as test
datasets. RFs are built in the same way as for our Normal example and make use of the k = 112 sum-
mary statistics provided for SNP markers by DIYABC, (see Pudlo et al., 2016, and the Section 5 of the
supplementary material).

Due to the complexity of this model, the exact calculation of any posterior quantity of interest is infea-
sible. To bypass this difficulty we compute NMAE using simulated parameters from the test table, rather
than targeted posterior expectations. Here, 95% credible intervals (CI) are deduced from posterior quantile
estimate of order 2.5% and 97.5%. Performances are measured via mean range and coverage, with cover-
age corresponding to the percentage of rightly bounded parameters. For example a 95% CI should provide
coverage equal to 95% of the test table.

Figure 5 and Table 2 (see also Figure S4) illustrate the quality of the ABC-RF method when compared
with ABC with either rejection, local linear, ridge or neural network adjustment (with logit transforms of
the parameters for non rejection methods) using different tolerance levels (i.e., with tolerance proportion
ranging from 0.005 to 1). We recall that considering the ABC rejection method with a tolerance equals to
1 is equivalent to work with the prior. Note that, due to memory allocation issues when using ABC method
with adjusted ridge regression and a tolerance level of 1 on large reference table, we did not manage to
recover results in this specific case.

Interesting methodological features can be observed in association with this example. ABC with rejec-
tion performs poorly in terms of NMAE and provides conservative and hence wide CIs (i.e., with coverage
higher than the formal level). For ABC with adjustment, the lower the tolerance the lower the error (Table
2). The CI quality however highly suffers from low tolerance, with underestimated coverage (Figures 5
and S4). The smaller the tolerance value, the narrower the CI. Results for the ABC method with adjusted
ridge regression seems however to be unstable for the parameter N2/Na depending on the considered level
of tolerance. The ABC method using neural network and a tolerance level of 0.005 provides the lowest
NMAE for both parameters of interest. The corresponding coverages are however underestimated, equal to
87.2% for ra and 81.6% for N2/Na, when 95% is expected (lower part of Figure 5 and Figure S4). Note
that results with this method can be very time consuming to obtain when the tolerance level and the number
of layers are large. The ABC-RF method provides an appealing trade-off between parameter estimation

12



British 
(Europe) 

Han 
(Asia) 

Americans of 
African ancestry 

Yoruba 
(Africa) 

Time (backward) 
- Not at scale - 

0 

t1 

t2 

t3 

t4 

t2-d3 
t2-d4 

t3-d34 

N1 

N3 
N2 

N4 
Na 
Nbn3 
Nbn4 
Nbn34 

Effective 
population sizes 

1-ra ra 

Figure 4: Evolutionary model of four human populations considered for Bayesian parameter inference using
ABC-RF. The prior distributions of the demographic and historical parameters used to simulate SNP datasets
are as followed: Uniform[100; 10 000] for the split times t2 and t3 (in number of generations), Uniform[1;
30] for the admixture time t1, Uniform[0.05; 0.95] for the admixture rate ra (proportion of genes with a
non-African origin), Uniform[1000; 100 000] for the stable effective population sizes N1, N2, N3, N4 and
N34 (in number of diploid individuals), Uniform[5; 500] for the bottleneck effective population sizes Nbn3,
Nbn4, and Nbn34, Uniform[5; 500] for the bottleneck durations d3, d4, and d34, Uniform[100; 10 000] for
both the ancestral effective population size Na and t4 the time of change to Na. Conditions on time events
were t4>t3>t2. See Pudlo et al. (2016) for details. Regarding the genetic model, we simulated biallelic
polymorphic SNP datasets using the algorithm proposed by Hudson (2002) (cf “-s 1” option in the program
ms associated to Hudson (2002)). This coalescent-based algorithm provides the simulation efficiency and
speed necessary in the context of ABC, where large numbers of simulated datasets including numerous
(statistically independent) SNP loci have to be generated (see Supplementary Appendix S1 of Cornuet et al.
(2014) for additional comments on Hudson?s algorithm).
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Method Tolerance level ra NMAE N2/Na NMAE
RF NA 0.018 0.053
RF∗ NA 0.019 0.053
Reject 0.005 0.151 0.355
Reject 0.01 0.178 0.454
Reject 0.1 0.322 1.223
Reject 0.4 0.574 2.025
Reject 1 0.856 4.108
ALL 0.005 0.028 0.166
ALL 0.01 0.028 0.249
ALL 0.1 0.035 0.139
ALL 0.4 0.044 0.170
ALL 1 0.062 0.209
ARR 0.005 0.027 0.220
ARR 0.01 0.027 0.317
ARR 0.1 0.035 0.140
ARR 0.4 0.044 0.163
ARR 1 − −
ANN 0.005 0.007 0.037
ANN 0.01 0.007 0.038
ANN 0.1 0.013 0.064
ANN 0.4 0.016 0.123
ANN 1 0.025 0.095

Table 2: Comparison of normalized mean absolute errors (NMAE) for the estimation of the parameters
ra and N2/Na using ABC-RF (RF) and ABC with rejection (Reject), adjusted local linear (ALL) or ridge
regression (ARR) or neural network (ANN) with various tolerance levels for Reject, ALL, ARR and ANN.
NA stands for not appropriate. The smallest NMAE values are in by bold characters. NA stands for not
appropriate. RF∗ refers to results obtained using ABC-RF when adding 20 additional independent noise
variables generated from a uniform U[0,1] distribution. RF refers to results without noise variables.

14



84.7 91.6
95

96.5
95.3

99.5
99.4

98.7

97.5

95.8

100 100

ALL Reject RF RF*

0.
00

5
0.

01 0.
1

0.
4 1

0.
00

5
0.

01 0.
1

0.
4 1   

0.00

0.25

0.50

0.75

Tolerance (% of simulations)

M
ea

n 
le

ng
th

 o
f t

he
 in

te
rv

al

80

85

90

95

100

Coverage

87.2 91 96.3 96.4 95.7 90.5 93.7
97.2

96.7 100 100

ANN ARR RF RF*

0.
00

5
0.

01 0.
1

0.
4 1

0.
00

5
0.

01 0.
1

0.
4 1   

0.00

0.25

0.50

0.75

Tolerance (% of simulations)

M
ea

n 
le

ng
th

 o
f t

he
 in

te
rv

al

80

85

90

95

100

Coverage

Figure 5: Range and coverage comparison of approximate 95% credible intervals on the admixture param-
eter ra (Figure 4) obtained with ABC-RF (RF) and with earlier ABC methods : rejection (Reject), adjusted
local linear (ALL) or ridge regression (ARR) or neural network (ANN) with various tolerance levels for Re-
ject, ALL, ARR and ANN. Coverages values are specified by bar colors and superimposed values. Heights
indicate CI mean lengths. Results for ALL, Reject and RF are presented in the upper figure whereas those
for ANN, ARR and RF are in the lower figure. See Figure S4 for a similar representation of results for the
parameter N2/Na. RF∗ refers to results obtained using ABC-RF when adding 20 additional independent
noise variables generated from a uniform U[0,1] distribution. RF refers to results without noise variables.
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quality (ABC-RF is the method with the second lowest NMAE values in Table 2) and slightly conservative
CIs (Figures 5 and S4). Similar results and methodological features were observed when focusing on the
90% CI (results not shown). It is also worth stressing that not any calibration of any kind of a tolerance
level parameter are needed with ABC-RF, which is an important plus for this method. On the opposite,
earlier ABC methods require calibration to optimize their use, such calibration being time consuming when
different levels of tolerance are used.

For the observed dataset used in this study, posterior expectations and quantiles of the parameters of
interest ra and N2/Na are reported in Table 3. Expectation and CI values substantially vary for both param-
eters, depending on the method used. The impact of the tolerance levels is noteworthy for both the rejection
and local linear adjustment ABC methods. The posterior expectation of ra obtained using ABC-RF was
equal to 0.221 with a relatively narrow associated 95% CI of [0.112,0.287]. The latter estimation lays well
within previous estimates of the mean proportion of genes of European ancestry within African American
individuals, which typically ranged from 0.070 to 0.270 − with most estimates around 0.200 −, depend-
ing on individual exclusions, the population samples and sets of genetic markers considered, as well as the
evolutionary models assumed and inferential methods used (reviewed in Bryc et al., 2015). Interestingly, a
recent genomic analysis using a conditional random field parametrized by random forests trained on refer-
ence panels (Maples et al., 2013) and 500000 SNPs provided a similar expectation value of ra for the same
African American population ASW (i.e. ra = 0.213), with a somewhat smaller 95% CI (i.e. [0.195,0.232]),
probably due to the ten times larger number of SNPs in their dataset (Baharian et al., 2016).

The posterior expectation of N2/Na obtained using ABC-RF was equal to 4.508 with a narrow associ-
ated 95% CI of [3.831,5.424]. Such values point to the occurrence of the substantial ancestral demographic
and geographic expansion that is widely illustrated in previous Human population genetics studies, includ-
ing African populations (e.g. Henn et al., 2012). Although our modeling setting assumes a naı̈ve abrupt
change in effective population sizes in the ancestral African population, the equivalent of N2/Na values in-
ferred from different methods and modeling settings fit rather well with our own posterior expectations and
quantiles for this parameter (e.g. Schiffels and Durbin, 2014).

In contrast to earlier ABC methods, the RF approach is deemed to be mostly insensitive to the presence
of covariates whose the distributions does not depend on the parameter values (i.e. ancillary covariates)
(e.g. Breiman, 2001; Marin et al., 2012). To illustrate this feature, we have added 20 additional independent
noise variables generated from a uniform U[0,1] distribution (results designated by RF∗) in the reference table
generated for the present Human population genetics example. We found that the presence of such noise
covariates do not impact the results in terms of NMAE, coverage and only slightly on parameter estimation
for the observed dataset (Tables 2 and 3, and Figures 5 and S4). For the rest of the article, no noise variables
were used.

3.3 Practical recommendations regarding the implementation of the ABC-RF algorithm

We mainly consider in this section two important practical issues, namely the choice of the number of
simulations (N) in the reference table and of the number of trees (B) in the random forest. For sake of
simplicity and concision, we focus our recommendations on the above human population genetics example
(subsection 3.2). We stress here that, although not generic, our recommendations fit well with other exam-
ples of complex model settings that we have analysed so far (results not shown). We also stress that for
simpler model settings substantially smaller N and B values were sufficient to obtain good results. Finally,
we provide practical comments about the main sources of variabilities in inferences typical of the ABC-RF
methodology.
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ra

Method Tol. level Expectation Q0.025 Q0.05 Q0.95 Q0.975
RF NA 0.221 0.112 0.134 0.279 0.287
RF∗ NA 0.225 0.112 0.142 0.282 0.290
Reject 0.005 0.223 0.061 0.069 0.364 0.389
Reject 0.01 0.220 0.060 0.070 0.389 0.418
Reject 0.1 0.276 0.062 0.074 0.511 0.543
Reject 0.4 0.388 0.068 0.086 0.739 0.791
Reject 1 0.502 0.073 0.095 0.906 0.928
ALL 0.005 0.278 0.219 0.229 0.322 0.337
ALL 0.01 0.257 0.232 0.238 0.274 0.278
ALL 0.1 0.207 0.170 0.171 0.233 0.237
ALL 0.4 0.194 0.144 0.152 0.233 0.241
ALL 1 0.196 0.115 0.126 0.278 0.299
ARR 0.005 0.260 0.252 0.254 0.265 0.266
ARR 0.01 0.252 0.239 0.242 0.260 0.262
ARR 0.1 0.211 0.171 0.178 0.239 0.244
ARR 0.4 0.196 0.140 0.149 0.241 0.251
ARR 1 − − − − −
ANN 0.005 0.227 0.221 0.223 0.232 0.234
ANN 0.01 0.226 0.219 0.221 0.231 0.233
ANN 0.1 0.228 0.217 0.220 0.236 0.239
ANN 0.4 0.232 0.216 0.221 0.242 0.248
ANN 1 0.206 0.183 0.187 0.227 0.233

N2/Na

Method Tol. level Expectation Q0.025 Q0.05 Q0.95 Q0.975
RF NA 4.508 3.831 3.959 5.153 5.424
RF∗ NA 4.594 3.821 3.910 5.241 6.552
Reject 0.005 6.282 2.937 3.223 10.086 11.337
Reject 0.01 6.542 2.746 3.116 10.837 11.852
Reject 0.1 8.001 2.131 2.574 15.690 18.531
Reject 0.4 11.605 1.795 2.331 28.011 38.532
Reject 1 23.483 0.672 1.185 84.649 147.657
ALL 0.005 30.041 1.256 1.879 83.369 174.340
ALL 0.01 9.289 3.946 4.586 16.686 20.361
ALL 0.1 8.235 5.736 5.995 11.573 12.719
ALL 0.4 10.752 4.588 4.996 21.656 27.300
ALL 1 7.222 5.684 5.829 9.631 10.475
ARR 0.005 10.528 4.395 5.677 19.224 22.722
ARR 0.01 8.264 5.020 5.485 12.544 13.313
ARR 0.1 8.394 5.643 5.948 12.075 13.313
ARR 0.4 10.802 6.113 6.505 17.487 20.511
ARR 1 − − − − −
ANN 0.005 5.746 5.512 5.563 5.937 5.982
ANN 0.01 6.148 5.883 5.934 6.353 6.420
ANN 0.1 25.921 23.857 24.250 27.672 28.133
ANN 0.4 8.515 7.652 7.810 9.147 9.436
ANN 1 7.021 5.692 5.856 8.677 9.370

Table 3: Estimation of the two parameters of interest ra and N2/Na for the observed human population
genetics dataset using ABC-RF (RF), and ABC with rejection (Reject), adjusted local linear (ALL) or ridge
regression (ARR) or neural network (ANN) with various tolerance levels (Tol. level) for Reject, ALL, ARR
and ANN. NA stands for not appropriate. RF∗ refers to results obtained using ABC-RF when adding 20
additional independent noise variables generated from a uniform U[0,1] distribution. RF refers to results
without noise variables.
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NMAE

N (×103) 10 25 50 75 100 150 199
ra 0.028 0.023 0.021 0.020 0.019 0.018 0.018
N2/Na 0.080 0.067 0.059 0.057 0.055 0.053 0.053

OOB MSE

N (×103) 10 25 50 75 100 150 199
ra (×10−4) 1.670 1.176 0.914 0.823 0.745 0.695 0.664
N2/Na (×103) 0.194 0.179 0.143 0.125 0.115 0.111 0.110

Table 4: Comparison of normalized mean absolute errors (NMAE) and out-of-bag mean squared errors
(OOB MSE) for the estimation of the parameters ra and N2/Na obtained with ABC-RF, using different
reference table sizes (N). We use the test table mentioned in subsection 3.2. The number of trees in the RF
is 500.

N (×103) 10 25 50 75 100 150 199
ra expectation 0.231 0.222 0.224 0.223 0.222 0.223 0.221
ra Q0.025 0.097 0.095 0.102 0.104 0.106 0.109 0.112
ra Q0.975 0.317 0.309 0.305 0.305 0.289 0.292 0.287
N2/Na expectation 4.538 4.588 4.652 4.530 4.475 4.483 4.508
N2/Na Q0.025 3.651 3.679 3.782 3.802 3.751 3.840 3.831
N2/Na Q0.975 6.621 6.221 6.621 5.611 5.555 5.315 5.424

Table 5: Estimation of the parameters ra and N2/Na for the observed population genetics dataset with ABC-
RF, using different reference table sizes (N). The number of trees in the RF is 500.

Reference table size − We consider a reference table made of N = 199000 simulated datasets. However,
Table 4 shows a negligible decrease of NMAE when using N = 100000 to N = 199000 datasets. Table 5 also
exhibits small variations between predictions on the observed dataset, especially for N ≥ 7500. The level of
variation thus seems to be compatible with the random variability of the RF themselves. Altogether, using a
reference table including 100000 datasets seems to be a reasonable default choice. It is worth stressing that
the out-of-bag mean squared error can be easily retrieved and provides a good indicator of the quality of the
RF without requiring the simulation of a (small size) secondary test table, which can hence be estimated at
a low computational cost (Table 4).

Number of trees − A forest including 500 trees is a default choice when building RFs, as this provides a
good trade-off between computation efficiency and statistical precision (Breiman, 2001; Pudlo et al., 2016).
To evaluate whether or not this number is sufficient, we recommend to compute the out-of-bag mean squared
error depending on the number of trees in the forest for a given reference table. If 500 trees is a satisfactory
calibration, one should observe a stabilization of the error around this value. Figure 6 illustrates this rep-
resentation on the human population genetics example and points to a negligible decrease of the error after
500 trees. This graphical representation is produced via our R package abcrf.

Minimum node size (maximum leaf size)− We recall that splitting events during a tree construction stop
when a node has less than Nmin observations, in that case, the node becomes a leaf. Note that the higher Nmin
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NMAE

Nmin 1 2 3 4 5 10 20 50 100 200 500
ra 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.021 0.023 0.027 0.033
N2/Na 0.054 0.055 0.054 0.055 0.055 0.055 0.055 0.058 0.062 0.068 0.082

OOB MSE

Nmin 1 2 3 4 5 10 20 50 100 200 500
ra (×10−4) 0.745 0.739 0.744 0.739 0.745 0.760 0.783 0.925 1.129 1.480 2.280
N2/Na (×103) 0.114 0.116 0.115 0.115 0.115 0.116 0.119 0.131 0.153 0.183 0.252

Table 6: Comparison of normalized mean absolute errors (NMAE) and out-of-bag mean squared errors
(OOB MSE) for the estimation of the parameters ra and N2/Na obtained with ABC-RF, using different
minimum node sizes (Nmin). We use the reference table of size N = 100000 and the test table mentioned in
subsection 3.2. The number of trees in the RF is 500.

the quicker RF treatments. In all RF treatments presented here, we used the default size Nmin = 5. Table
6 illustrates the influence of Nmin on the human population genetics example and highlights a negligible
decrease of the error for Nmin lower than 5.

Finally, we see no reason to change the number of summary statistics sampled at each split ntry within a
tree, which is traditionally chosen as k/3 for regression when k is the total number of predictors (Breiman,
2001).

Variability in the ABC-RF methodology − The ABC-RF methodology is associated with different
sources of variabilities the user should be aware of. Using a simulated reference table is the main source,
RF being the second. Indeed, predicting quantities of interest for the same test dataset with two different
reference tables of equal size N will result in slightly different estimates. This variation has been previously
highlighted in Figure S3 dealing with the analysis of the Normal toy example. We recall RF are composed
of trees trained on bootstrap samples, each one considering ntry covariates randomly selected amongst the k
available at each split. This random aspects of RF results in variability. In practice, a good user habit should
be to run ABC-RF more than once on different training datasets to ensure that the previously mentioned
variabilities are negligible. If this variability is significant, we recommend considering a reference table of
higher size.

4 Discussion

This paper introduces a novel approach to parameter estimation in likelihood-free problems, relying on the
machine-learning tool of regression RF to automatise the inclusion of summary statistics in ABC algorithms.
Our simulation experiments demonstrate several advantages of our methodological proposal compared with
earlier ABC methods.

While using the same reference table and test dataset for all compared methods, our RF approach ap-
pears to be more accurate than previous ABC solutions. Approximations of expectations are quite accurate,
while posterior variances are only slightly overestimated, which is an improvement compared with other
approaches that typically underestimate these posterior variances. The performances for covariance approx-
imation are quite encouraging as well, although the method is still incomplete and need further developments
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Figure 6: Relations between the number of trees in the forest and the ABC-RF out-of-bag mean squared
errors, for a reference table of size N = 100000 in the human population genetics example.

on this particular point (more details are given in Section 2 of the supplementary material). We found that
quantile estimations depend on the corresponding probability and we believe this must be related to the
approximation error of the posterior cumulative function F(x | η(y)). More specifically, we observed that
upper quantiles may be overestimated, whereas lower quantiles may be underestimated (Figure 2), indicating
fatter tails in the approximation. Hence, credible intervals produced by the RF solution may be larger than
the exact ones. However from a risk assessment point of view, this overestimation aspect clearly presents
less drawbacks than underestimation of credible intervals. Altogether, owing to the various models and
datasets we analysed, we argue that ABC-RF provides a good trade-off in terms of quality between param-
eter estimation of point estimators (e.g. expectation, median or variance) and credible interval coverage. A
comparison of computing times is given in Section 8 of the supplementary material.

Throughout our experiments, we found that, contrary to earlier ABC methods, the RF approach is mostly
insensitive to the presence of covariates whose the distributions does not depend on the parameter values (an-
cillary covariates). Therefore, we argue that the RF method can deal with a very large number of summary
statistics, bypassing any form of pre-selection of those summaries. Interestingly, the property of ABC-RF to
extract and adaptively weight information carried by each of the numerous summary statistics proposed as
explanatory variables can be represented by graphs, showing the relative contribution of summary statistics
in ABC-RF estimation for each studied parameter (see Section 7 of the supplementary material for details).

As an alternative, Papamakarios and Murray (2016) propose to approximate the whole posterior dis-
tribution by using Mixture Density Networks (MDN, Bishop, 1994). The MDN strategy consists in using
Gaussian mixture models with parameters calibrated thanks to neural networks. The strategy of Papa-
makarios and Murray (2016) is to iteratively learn an efficient proposal prior (approximating the posterior
distribution), then to use this proposal to train the posterior, both steps making use of MDN. This strategy
can be easily applied when the prior is uniform or Gaussian, but other prior choices can involve difficulties.
This is because in such cases, it might be difficult to simulate from the corresponding proposal. The approx-
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imation accuracy of the posterior as a Gaussian mixture model depends of the number of components and
the number of hidden layers of the networks. Those two parameters require calibration. Finally, by using
MDN, one loses the contribution of summary statistics provided by RF and thus some useful interpretation
elements. Despite these remarks, this promising method remains of interest and is worth mentioning.

The RF method focuses on unidimensional parameter inference. Multi-objective random forest (Kocev
et al., 2007) could be a solution to deal with multidimensional parameter using RF. However, our attempts
based on the later methodology were so far unfruitful (results not shown). An alternative approach could
be based on using the RF strategies to approximate some conditionals distributions and then recover the
joined posterior using either a Gibbs sampler (based on approximated full conditionals) or a Russian rule
decompositions to which a product of embedded full conditionals is associated. We are presently comparing
the two strategies on simulated datasets.

In population genetics, which historically corresponds to the field of introduction of ABC methods,
next generation sequencing technologies result in large genome-wide datasets that can be quite informative
about the demographic history of the genotyped populations. Several recently developed inferential methods
relying on the observed site frequency spectrum appear particularly well suited to accurately characterizing
the complex evolutionary history of invasive populations (Gutenkunst et al., 2009; Excoffier et al., 2013).
Because of the reduced computational resources demanded by ABC-RF and the above-mentioned properties
of the method, we believe that ABC-RF can efficiently contribute to the analysis of massive SNP datasets,
including both model choice (Pudlo et al., 2016) and Bayesian inference about parameters of interest. More
generally, the method should appeal to all scientific fields in which large datasets and complex models are
analysed using simulation-based methods such as ABC (e.g. Beaumont, 2010; Sisson et al., 2017).
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Supplementary Information
ABC random forests for Bayesian parameter

inference

1 Comparing three methods of variance estimation of parameters

We here compare three methods to estimate posterior variance of a parameter transformation of interest τ

using ABC-RF. Two of them have already been explained in the main text (i.e. method 1 and 3 below).

• Method 1: One reuses the original random forest (RF) weights wt(η(y)) to the out-of-bag square
residuals (τ(t)− τ̂

(t)
oob)

2, giving the variance estimator

Ṽar(τ | η(y)) =
N

∑
t=1

wt(η(y))(τ(t)− τ̂
(t)
oob)

2.

• Method 2: A similar estimator can be obtained by building a new RF thanks to the training sample
(η(y(t)),

(
τ(t)− τoob)

2
)

t=1,...,N , resulting in the estimator

Var#(τ | η(y)) =
N

∑
t=1

w̃t(η(y))(τ(t)− τ̂
(t)
oob)

2,

where w̃t(η(y)) is the computed weights of this newly trained RF. This estimator is based on the
expression of the posterior variance as a conditional expectation:

Var(τ | η(y)) = E
(
[τ−E(τ | η(y))]2 | η(y)

)
and the fact that such a RF is able to estimate this posterior expectation. This approach is more
expensive due to the additional RF requirement.

• Method 3: The variance estimator is based on the cumulative distribution function (cdf) approxima-
tion,

V̂ar(τ | η(y)) =
N

∑
t=1

wt(η(y))

(
τ
(t)−

N

∑
u=1

wu(η(y))τ(u)

)2

.

We here compare these three estimators on the Normal toy example detailed in the main text with h the
projection on both coordinates of the parameter vector θ (see Section 3.1 of the main text). We find that the
three estimators behave similarly; boxplots are alike and all tend to overestimate posterior variances (Figure
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S1). Results summarized in Table S1 also supports this similarity in NMAE terms. Because the estimator 1
appears to show slightly lower errors for both parameter θ1 and θ2, we decided to use it in the two examples
detailed in the main text.
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Figure S1: Boxplot comparison of differences between our predictions for Var(θi | y) and the true values
with the three methods of variance estimation: by reusing weights (method 1, boxplot 1), by building a new
RF on square residuals (method 2, boxplot 2) and by using the estimation of the cumulative distribution
function (method 3, boxplot 3).

Method 1 2 3
Var(θ1 | y) 0.25 0.28 0.30
Var(θ2 | y) 0.25 0.47 0.25

Table S1: Comparison of normalized mean absolute errors (NMAE) of estimate variances when using three
methods, (see legend of Figure S1 and Section 1 of the supplementary material). The smallest NMAE values
are in bold characters.
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2 Study of covariances of parameters using random forests

2.1 Methodology

We are here interested in another estimate that is frequently produced in a Bayesian analysis, that is the
posterior covariance between two univariate transforms of the parameter, τ = h(θ) and σ = g(θ) say,
Cov(τ,σ | η(y)). Since we cannot derive this quantity from the approximations to the marginal posteri-
ors of τ and σ , we propose to construct a specific RF for this purpose. With the same notations used in the
main text, we denote approximations of posterior expectations for τ and σ , produced by out-of-bag infor-
mations, by τ̂

(t)
oob and σ̂

(t)
oob. We use the product of out-of-bag errors for τ and σ in the empirical covariance,

and consider (τ(t)− τ̂
(t)
oob)(σ

(t)− σ̂
(t)
oob) as the response variable. With the previously introduced notations,

the corresponding RF estimator is

C̃ov(τ,σ | η(y)) =
1
B

B

∑
b=1

1∣∣Lb(η(y))
∣∣ ∑

t:η(y(t))∈Lb

n(t)b (τ(t)− τ̂
(t)
oob)(σ

(t)− σ̂
(t)
oob).

This posterior covariance approximation requires a total of three regression RFs: one for each parameters
and one for the covariance approximation.

2.2 Toy regression example

We now apply our RF methodology to a toy regression example for which its non-zero covariance between
parameters is the main quantity of interest, hence we consider the case were g and h are the projections on
a given coordinate of the parameter vector θ . For a simulated n×2 design matrix X = [x1,x2], we consider
the Zellner’s hierarchical model (Marin and Robert, 2014, chapter 3)

(y1, . . . ,yn) | β1,β2,σ
2 ∼Nn(Xβ ,σ2Id),

β1,β2 | σ2 ∼N2(0,nσ
2(X>X)−1),

σ
2 ∼ IG (4,3),

where Nk (µ,Σ) denotes the multivariate normal distribution of dimension k with mean vector µ and co-
variance matrix Σ, and IG (κ,λ ) an inverse Gamma distribution with shape parameter κ and scale parameter
λ . Provided X>X is invertible, this conjugate model leads to closed-form marginal posteriors (Marin and
Robert, 2014)

β1,β2 | y∼T2

(
n

n+1
(X>X)−1X>y,

3+ y>(Id−X(X>X)−1X>)y/2
4+n/2

n
n+1

(X>X)−1,8+n
)
,

σ
2 | y∼ IG

(
4+

n
2
,3+

1
2

y>(Id−X(X>X)−1X>)y
)
,

where Tk (µ,Σ,ν) is the multivariate Student distribution of dimension k, with location parameter µ , scale
matrix Σ and degree of freedom ν .

In our simulation experiment, we concentrate on the non zero covariance of the posterior distribution
namely Cov(β1,β2 | y). A reference table of N = 10000 replicates of a n-sample with n = 100 is generated.
We then create k = 60 summary statistics: the maximum likelihood estimates of β1, β2, the residual sum of
squares, the empirical covariance and correlation between y and x1, covariance and correlation between y and
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RF ARR ANN
Cov(β1,β2 | y) 0.26 0.85 0.64

Table S2: Comparison of normalized mean absolute errors (NMAE) of estimate posterior covariances be-
tween β1 and β2 using random forest (RF), adjusted ridge regression (ARR) and adjusted neural network
(ANN) ABC methods. The smallest NMAE value is in bold characters.
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Figure S2: Boxplot comparison of differences between prediction and true values for Cov(β1,β2 | y) using
random forest (RF), adjusted ridge regression (ARR) and adjusted neural network (ANN) ABC methods.

x2, the sample mean, the sample variance, the sample median, and 50 independent noise variables simulated
from a uniform distribution U[0,1]. These noise variables were introduced to be in a sparse context.

Similarly to the Normal example of the main text, we assess the performance of our approach using an
independent (Monte Carlo) test dataset of size Npred = 100 and compare estimation accuracy with the ABC-
RF approach from the ones with adjusted ridge regression and neural network ABC methodologies. RF
are once again built with B = 500 trees, ntry = k/3 and minimum node size equals to 5 and ABC methods
rely on the R package abc with a tolerance parameter equals to 0.1 for ABC methods with adjustment.
ABC with neural network adjustment require the specification of the number of layers composing the neural
network. We use again 10 layers, the default number of layers in the R package abc. For local linear or ridge
regression the corrections are univariate. That is not the case for neural networks which, by construction,
perform multivariate correction.

Covariance estimation is a novel feature in this example, Table S2 shows that the ABC-RF approach
does better in NMAE terms. As exhibited in Figure S2, ABC-RF overestimates covariances when earlier
ABC methods underestimate it. Results are quite encouraging even though we believe the method might
still be improved.
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3 A basic R code to use the abcrf package version 1.7

We provide some basic R lines of code to use the R package abcrf and conduct RF inference about param-
eters. There are two possibilities to read simulated data: the user wants to use a reference table simulated
from the software DIYABC v.2.1.0 (Cornuet et al., 2014) recorded within a .bin file associated with its
.txt header file, or the simulated reference table is only contained within a .txt file. Of course if the
model is simple enough, the user can simulate the reference table himself using its own simulator program.
In the following, we assume θ is a vector of p parameters and k summary statistics are considered. The #
symbol means the text on its right is a comment and ignored by R. We here focus on a single parameter of
interest labelled “poi”.

Installing and loading the R package abcrf

install.packages("abcrf") # To install the abcrf package (version 1.7)

library(abcrf) # To load the package.

Reading data: option 1 - using a .bin and .text files obtained using DIYABC

We assume the reference table is recorded within the reftable.bin file and its corresponding header in
the header.txt file. The function readRefTable is used to recover the data.

data <- readRefTable(filename = "reftable.bin", header = "header.txt")

# data is a list containing the scenarios (or models) indices, the matrix

# with the parameters, the summary statistics and other informations.

# We are here interested in the simulated data of the scenario 1.

index1 <- data$scenarios == 1 # To store the model 1 indexes.

# We then create a data frame composed of the parameter of interest poi and

# the summary statistics of the scenario 1.

data.poi <- data.frame(poi = data$params[index1, "poi"],

sumsta = data$stats[index1, ])

Reading data: option 2 - using a .txt file

We assume that the reference table is recorded within yourTxtFile.txt file, composed of a first column
corresponding to the scenario indices, p columns of parameters and k columns of summary statistics, the
first row is the column labels. The field separator character being a white space.

data <- read.table(file = "youTxtFile.txt", header = TRUE, sep = "")

# data is a matrix. The first column is the model indices, the next p are

# the p parameters, the last k are the summary statistics.

index1 <- data[ , 1] == 1 # To store the model 1 indexes.

# We then create a data frame composed of the parameter of interest poi and
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# the summary statistics of model 1. p and k have to be defined.

data.poi <- data.frame(poi = data[index1, "poi"],

sumsta = data[index1, (p+2):(p+k+1)])

Subsetting your dataset

If required, subsetting your datasets stored in data.poi can be easily done with the following line.

data.poi <- data.poi[1:10000, ]

# If you are interest in the 10000 first datasets.

Training a random forest

The random forest of the ABC-RF method is built thanks to the regAbcrf function, its principle argu-
ments being a R formula and the corresponding data frame as training dataset. Additional arguments are
available, especially the number of trees (ntree, with default values ntree = 500), the minimum node
size (min.node.size, with default value min.node.size = 5), and the number of covariates randomly
considered at each split (mtry). See the regAbcrf help for further details.

model.poi <- regAbcrf(formula = poi~., data = data.poi, ntree = 500,

min.node.size = 5, paral = TRUE)

# The used formula means that we are interested in explaining the parameter

# poi thanks to all the remaining columns of data.poi (i.e. all the

# summary statistics).

# The paral argument determine if parallel computing will be activated

# or not.

Graphical representations to access the performance of the method

The evolution of the out-of-bag mean squared error depending on the number of tree can be easily repre-
sented with the err.regAbcrf function (e.g. Figure 6 of the main text).

errorOOB <- err.regAbcrf(object = model.poi, training = data.poi,

paral = TRUE)

The contribution of summary statistics in ABC-RF estimation for the parameter of interest can be retrieved
with the plot function applied to an object resulting from regAbcrf.

plot(x = model.poi, n.var = 25)

# The contributions of the 25 most important summary statistics are

# represented (e.g. Figure S5).

Making predictions

Finally, given a data frame obs.poi containing the summary statistics you want the predictions of posterior
quantities of interest for a given dataset (usually the observed dataset). When using DIYABC, note that the
summary statistics of the observed dataset are recorded in a file name statobs.txt. The predict method
can be used for this purpose. The column names need to be the same than those in the summary statistics of
data.poi.
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# Reading the observed dataset with

obs.poi <- read.table("statobs.txt", skip=2)

# If obs.poi is not a dataframe or the column names do not match,

# you can use the following lines:

obs.poi <- as.data.frame(obs.poi)

colnames(obs.poi) <- colnames(data.poi[ ,-1])

# Prediction is complete by

pred.obsPoi <- predict(object = model.poi, obs = obs.poi,

training = data.poi, quantiles = c(0.025,0.975),

paral = TRUE)

# The 2.5 and 97.5 order quantiles are computed by specifying

# quantiles = c(0.025,0.975).

# pred.obsPoi is a list containing predictions of interest.

# Posterior mean can be retrieved by

pred.obsPoi$expectation

# Posterior variance by

pred.obsPoi$variance

# Posterior quantiles by

pred.obsPoi$quantiles

A graphical representation of the approximate posterior density of poi given obs.poi can be obtained
using the densityPlot function.

densityPlot(object = model.poi, obs = obs.poi, training = data.poi, paral = TRUE)
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4 Supplementary figures for the Normal toy example
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Figure S3: Comparisons of the true posterior density distribution function of θ1 in the Normal model with a
sample of 40 ABC-RF approximations of the posterior density (using RF weights), based on 40 independent
reference tables and for two different test datasets (upper and lower panels). True posterior densities are
represented by red lines.
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5 Summary statistics available in the software DIYABC v.2.1.0 for SNP data

For single nucleotide polymorphic (SNP) markers, the program DIYABC v.2.1.0 (Cornuet et al., 2014) pro-
poses a set of summary statistics among those used by population geneticists. These summary statistics are
mean values, variance values and proportion of null values across loci, which allow a rough description of
the allelic spectrum. Such summary statistics characterize a single, a pair or a trio of population samples.

Single population statistics

HP0_i: proportion of monomorphic loci for population i
HM1_i: mean gene diversity across polymorphic loci (Nei, 1987)
HV1_i: variance of gene diversity across polymorphic loci
HMO_i: mean gene diversity across all loci (Nei, 1987)

Two population statistics

FP0_i&j: proportion of loci with null FST distance between the two samples for populations i and j (Weir
and Cockerham, 1984)
FM1_i&j: mean across loci of non null FST distances
FV1_i&j: variance across loci of non null FST distances
FMO_i&j: mean across loci of FST distances (Weir and Cockerham, 1984)
NP0_i&j: proportion of 1 loci with null Nei’s distance (Nei, 1972)
NM1_i&j: mean across loci of non null Nei’s distances
NV1_i&j: variance across loci of non null Nei’s distances
NMO_i&j: mean across loci of Nei’s distances (Nei, 1972)

Three population statistics

AP0_i_j&k: proportion of loci with null admixture estimate when pop. i comes from an admixture between
j and k
AM1_i_j&k: mean across loci of non null admixture estimate
AV1_i_j&k: variance across loci of non null admixture estimated
AMO_i_j&k: mean across all locus admixture estimates (Choisy et al., 2004)
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6 Supplementary figures for the Human population genetics example
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Figure S4: Range and coverage comparison of approximate 95% credible intervals on the ratio N2/Na of
the Human population genetics example, obtained with ABC-RF (RF) and with earlier ABC methods :
rejection (Reject), adjusted local linear (ALL) or ridge regression (ARR) or neural network (ANN) with
various tolerance levels for Reject, ALL, ARR and ANN. Coverages values are specified by bar colors and
superimposed values. Heights indicate CI mean lengths. Na is the ancestral African effective population size
before the population size change event and N2 the African effective population size after the population
size change event (going backward in time). RF∗ refers to results obtained using ABC-RF when adding
20 additional independent noise variables generated from a uniform U[0,1] distribution. RF refers to results
without noise variables.
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7 Contribution of summary statistics in ABC-RF estimation of the parame-
ters ra and N2/Na of the Human population genetics example

In the same spirit than in Pudlo et al. (2016), a by-product of our ABC-RF-based approach is to automatically
determine the (most) relevant statistics for the estimation of each parameter by computing a criterion of
variable importance (here a variable is a summary statistic). For a summary statistic j, this measure is equal
to the total amount of decrease of the residual sum of squares (RSS) due to splits over this given summary
statistic, divided by the number of trees.

Indeed, at a given parent node where j is used, with n datasets, and for a given parameter of interest τ ,
the decrease of the RSS due to the split event is defined by the formula

n

∑
i=1

(τi− τ̄)2−

(
∑

i∈ left node
(τi− τ̄L)

2 + ∑
i∈ right node

(τi− τ̄R)
2

)
,

where τ̄ , τ̄L and τ̄R are respectively the average of parameter values of the datasets in the parent node, left
daughter and right daughter nodes. Computing this decrease among all nodes where a summary statistics j
is used, among all the trees of the forest and dividing it by the number of trees is an importance measurement
of the covariate j.

Figure S5 shows the contributions of the 30 most important summary statistics (among the 112 statistics
proposed by DIYABC) for the ABC-RF estimation of the parameters ra and N2/Na of the Human population
genetics example (see Section 3.2 of the main text). The most informative summary statistics are clearly
different depending on the parameter of interest. For the admixture rate between two sources populations
(ra), all ten most informative statistics correspond to statistics characterizing a pair or a trio of populations
(e.g. AV or FMO statistics; see Section 5 of the supplementary materials). Moreover, all those “best”
statistics include the populations ASW, GBP and YRI which correspond to the target and the two source
populations respectively. On the contrary, for the effective population size ratio N2/Na, seven of the ten
most most informative statistics correspond to statistics characterizing within population genetic variation
(e.g. HV or HMO; see Section 5 of the supplementary materials). In this case, all those “best” statistics
include the African population, which makes sense since N2 is the effective population size in the studied
African population and Na in the population ancestral to all studied populations. It is worth stressing that,
although the most informative summary statistics make sense in relation to the studied parameters it was
difficult if not impossible to a priori and objectively select those statistics. This is not an issue when using
the ABC-RF approach as the method automatically extracts the maximum of information from the entire set
of proposed statistics.
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Figure S5: Contributions of the 30 most important summary statistics for the ABC-RF estimation of the
parameters ra and N2/Na of the Human population genetics example. The contribution of each statistics is
evaluated as the total amount of decrease of the residual sum of squares, divided by the number of trees,
for each of the 112 used summary statistics provided for SNP markers by DIYABC. The higher the variable
importance the more informative the statistics. The population index(s) is indicated at the end of each
statistics. 1 = pop ASW (Americans of African ancestry), 2 = pop YRI (Yoruba, Africa), 3 = pop CHB
(Han, Asia) and 4 = pop GBP (British, Europe). For instance FMO 1&4 = mean across loci of Fst distance
between the populations 1 and 4. See also Section 5 of the supplementary materials and the Figure 4 of
the main text. Note the difference of scale for the importance criterion for parameters ra and N2/Na. This
difference can be explained by the difference of scale in parameter values. Indeed, it directly influences the
RSS. The parameter ra being bounded in [0,1] contrary to N2/Na, a higher decrease can be expected for the
ratio N2/Na than ra.
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8 Computation times required by the statistical treatments of the studied
methods processed following the generation of the reference table

We here present a comparison of the computation time requirement for the different methods studied in this
paper, when predicting estimations of the admixture rate ra in the human population genetics example. ABC
methods with rejection or adjusted with local linear regression provide the best results in terms of CPU time
even when the tolerance level is equal to 1. The ABC-RF strategy requires moderately higher computing
time. The calculation of the RF weights is the most expensive computation part (i.e. 3/4 of computation
time). ABC methods using ridge regression or neural network correction become very time consuming
when the tolerance level is high.

Method Tol. level CPU time (in minutes)
RF NA 16.64
Reject 0.005 7.54
Reject 0.01 7.54
Reject 0.1 7.78
Reject 0.4 7.98
Reject 1 9.14
ALL 0.005 7.66
ALL 0.01 7.70
ALL 0.1 8.81
ALL 0.4 9.21
ALL 1 11.32
ARR 0.005 6.71
ARR 0.01 6.97
ARR 0.1 40.57
ARR 0.4 560.39
ARR 1 −
ANN 0.005 22.31
ANN 0.01 33.60
ANN 0.1 216.61
ANN 0.4 1160.67
ANN 1 4028.63

Table S3: Comparison of the computation time (in minutes) required - after the gereration of the reference
table - for the estimation of the parameter of interest ra on a dataset test table, using ABC-RF (RF), ABC
with rejection (Reject), adjusted local linear (ALL), ridge regression (ARR) and neural network (ANN),
with various tolerance levels for Reject, ALL, ARR and ANN. The test table included 1000 pseudo-observed
datasets and the reference table included 199000 simulated datasets summarized with 112 statistics. Results
were computed on a cluster with 28 CPU cores of 2.4 GHz. NA stands for not appropriate.
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