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Abstract—In this paper we investigate the bifurca-
tion and chaos in a fractional-order simplest electrical
circuit composed of only three circuit element: a linear
passive capacitor, a linear passive inductor and a nonlin-
ear active memristor with two degree polynomial mem-
ristance and a second order exponent internal state.
It is shown that this fractional circuit can exhibit rich
nonlinear dynamics such as a Hopf bifurcation, double
scroll chaotic attractor, four scroll chaotic attractor
and new chaotic attractor which is not observed in the
integer case. Finally, the presence of chaos is confirmed
by the application of the recently introduced 0-1 test.

I. INTRODUCTION

The fractional calculus is more than 300 years old with
the first written note dated to 1695 [1]. Several physical
phenomena can be described more accurately by fractional
differential equations rather than integer-order models [2].
In the past, the lack of methods for solving fractional differ-
ential equations was the reason for using only integer-order
models. Nowadays, a number of techniques are available for
approximating fractional derivatives and integrals [3].
There are several definitions of fractional derivatives and
integrals [4], for example for a sufficiently smooth function

The Riemann-Liouville fractional integral of order o > 0
is given by

@ 1 ¢ a—1

Jaf(t)—m/a (t—9)*""f(s)ds, t>a.
The Riemann-Liouville

RLDe f is defined by

BLDyf=D"Jr=f, m=[a]

fractional-order derivative

The Caputo fractional-order derivative aD{*t is defined by
oDFf(t) = J" D™ f(t), m = [a]

The Griinwald-Letnikov fractional-order derivative is given
by
= Ia+1)
GL na : —a k
DY f(t) = lim h -1 —_ t—kh).
DL = " D) (s ) st

Fractional-order derivatives of a periodic function cannot
be a periodic function [5], as a consequence of this prop-
erty, the time-invariant fractional-order systems do not
have any non-constant periodic solution. In [6] we have
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proposed a solution for this problem by imposing a simple
modification to the Griinwald-Letnikov definition.
Memristor is a new electrical element which has been
predicted and described in 1971 by Leon O. Chua [8]
and for the first time realized by HP laboratory in 2008
[9]. Chua proved that memristor behavior could not be
duplicated by any circuit built using only the other three
elements (resistor, capacitor, and inductor) In [7] we have
generalized the definition of fractance (which was first in-
troduced in 1983) and after that, introduced the paradigm
of memfractance which is fitted for circuit elements with
memory such as memristor, meminductor, memcapaci-
tor and second-order memristor. We have defined a new
element called memfractor which possesses interpolated
characteristics between those four circuit elements and
proved a generalized Ohm’s law. Due to the nonlinearity
of memristor element, memristor-based circuits can easily
generate a chaotic signal. In 2010, Muthuswamy and Chua
[10] proposed a memristor based circuit comprising only
three elements: a linear passive inductor, a linear passive
capacitor, and a nonlinear active memristor with a second
degree polynomial memristance

M(=(t)) = B(*(t) = 1) (1)

connected in series, which has been shown to be the
simplest circuit capable of generating a one scroll chaotic
attractor. In order to generate a double scroll and a four
scroll chaotic attractor the authors Teng et al. [11] replaced
the second degree polynomial memristance by a fourth
degree polynomial memristance

M(=(t) = 62%(t) +~2%(t) — B

and set the exponent of the internal state function of
memristor to second order.

5= —ip(t) —az(t) +i%(t)2(t).

In this paper we investigate the bifurcation and chaos
in a fractional-order version of the proposed memristor-
based simplest chaotic circuit with two degree polynomial
memristance and a second order exponent internal state.

II. SIMPLEST MEMRISTOR-BASED CHAOTIC CIRCUIT

The proposed simplest circuit in this paper can gen-
erate a double scroll Fig.(1-a) and a four-scroll chaotic
attractor Fig.(1-b) by using only a second degree poly-
nomial memristance as in [10] and setting the exponent
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Fig. 1. a) Double scroll chaotic attractor for L = 3H, C = 1F, «
0.9 8 =10.1, v = 0.4 b) 4-scroll chaotic attractor for L = 3H, C
1Fa=09, =3, y=04.

of the internal state function of the memristor to second
order. The dynamic of the circuit is described by the
mathematical model

T = ay
y = —blz+M(2)y (2)
z = —y—oaz+yz

where z(t) = V(t) is the voltage across the capacitor,

y(t) = IL(t) is the current through the inductor, z(t)
denotes the internal state variable of the memristor, a =
1/C the is inverse capacitance, b = 1/L is the inverse
inductance and the memristor function is given by

M(2(t)) = v2%(t) - B

The simulation of system (2) has been done using the
fourth order Runge-Kuta algorithm with the parameters
values L =3H,C = 1F,a = 0.9, = 10.1 and v = 0.4 for
Fig.(1-a) and L =3H,C = 1F,a = 0.9, =3 and v = 0.4
for Fig.(1-b)

III. FRACTIONAL-ORDER SIMPLEST MEMRISTOR-BASED
CHAOTIC CIRCUIT

In this paper we present the fractional-order memristor-
based circuit and investigate its dynamics by mean of
stability theory and numerical schemes.

A. Circuit description and fractional model

In order to build the fractional-order memristor-based
circuit we replace the electrical elements (capacitor, induc-
tor and memristor) in the original circuit by its fractional
version (fractional-order capacitor, fractional-order induc-
tor and fractional order memristor) see Fig. 2. Based on
Curie’s empirical law of 1889 Westerlund et al. proposed
in 1994 a fractional-order linear capacitor model and a
fractional-order inductor [12], [13]. For a general input
voltage Vpo(t) the current through the fractional-order
capacitor is

IpC(t) = CD"Vie(t).

Then 1

DUVpe(t) = 61rFL(t).

The constant ¢; is related to the losses of the capacitor. It
should be noticed that losses and dissipation are not always
the same thing. Dissipation means generation of heat. By
losses we imply energy lost from the process under study
and not necessarily in the form of heat [12].

Ver l Ine

Le Mg
Vi Vive 5

Fig. 2. Fractional-order circuit schematic

For a general current through the fractional-order in-
ductor the voltage is

Ver(t) = LD gy .

Then

D®Ipp = %VFL(t)-

The constant ¢ is related to the “proximity effect”.
When an alternating current flows through an electrical
conductor, the current distribution is not uniform. One
of the most important electromagnetic phenomenons that
dramatically affects the current distribution within any
current-carrying conductor, is the electromagnetic prox-
imity effect. A table of various coils and their real orders
g2 is described in [14]. For a general current through the
fractional-order memristor the voltage is [15]

{ Vv = M(2(t))ipm(t), 3)
D%2(t) = ipp(t) —az(t) +i%,,2(8).

Applying Kirchhoff’s voltage law we obtain

D®ipp(t) = —% (Ve (t) + M(2(t))irr(t)).

Using the previous notations of state variable we obtain

Dty = ay,
Dy = —b(z+M(2))y, (4)
DBz = —y—az+y 2.

B. Stability analysis

In this subsection the parameters are set to a = 1,
b=1/3,a«=0.9,v = 0.4, with 8 > 0. we consider the case
where all the fractional orders have the same value ¢ =
g2 = g3 = q €]0,2[ are considered as control parameters.
By setting the left-hand side of Eq. (4) to zero, we obtain
the only one equilibrium point E = (0,0,0). The stability
of E can be investigated using the theorem 2 in [16] and
the proposition 2.3 in [17].

Theorem 1: The fractional-order system (4) is asymp-
totically stable if all the eigenvalues A of the Jacobian
matrix J satisfy the condition

largV)| > £
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Unstable region

Fig. 3. Stability region of the fractional-order system (4) in the
(B — q) plane

The Jacobian matrix of system (4) at E is

0 1 0
1B
-3 3 0
“1—0.9

Its characteristic equation is

A% — (é —0.9)\2 + 125, +0.3 =0,
3 3
or equivalently
1
(A +0.9)(\2 — 5y +-)=0.
3 3
The eigenvalues are A\; = —0.9 < 0 and

+ /B2 —-12
if B S [2\/5, +OO[, then )\273 = % >0

in this case E is unstable for every value of the
commensurate order ¢ €]0, 2],

+ \/12 2
if 3 €]0,2v/3], then/\zg—ﬂ J b
case F is asymptotically stable for the values of
V12 — 52

B
B satisfying

, in this

2
g and B satisfying, ¢ < = |[tan™!
™

and unstable for the values of ¢ an

o< 2 lan1 (m—ﬁ
T

B

The stable and unstable regions in the (8 — ¢) plane
Fig.3, are separated by the curve of equation ¢ =

2t _
— |tan
™ B

C. Bifurcation analysis

In [18] we have proposed a fractional-order Hopf bifur-
cation conditions which state that the system (4) under-
goes a Hopf bifurcation through the equilibrium F at the
value 5* of g if

i) the Jacobian matrix has two complex-
conjugate eigenvalues Az3 and one real
A1 <0,
11) m2,3(qa B*) = 07
Omo 3 ‘
iii - 0,
) | A

If 8 €]0,2/3[. Then, the first condition is satisfied. Namely
+ j4/12 — 32
0.9 <0 and Agy = DEIVIZZS

For 3* solution of ms 3(gq, 3*) = 0 we have

mi(a.8) = a5 — lare(

we have \; =

Oma 3 B 1 —24 40
0B =g\ 1425505 ) \2(8%)2/12 - (B°)? '

Then, all the proposed conditions are satisfied for every
solution of mg 3(q, 8*) = 0.

For example if ¢ = 0.9, then, §* = 0.5419. is a Hopf
bifurcation point.

If we consider the fractional order ¢ as a control pa-
rameter then we have 6733’3 =5 #0.
Hence, all the solutions ¢* of mg3(¢*,8) = 0 with 5 €
]0,2v/3[ are Hopf bifurcation points.
For example if 8 = 3, we obtain that, ¢* = % is a Hopf
bifurcation point. In order to illustrate the above results
we present some numerical results.

1) Bifurcation versus the parameter B: Fig.4 illustrates
the bifurcation diagram of y versus the parameter 8 over
the range 0 < 8 < 4 where the fractional-order is ¢ = 0.9.
From this figure we can see that when 0 < < 0.54
the equilibrium point F is locally asymptotically stable
(stationary behavior), when 0.55 < 8 < 1.83 the equi-
librium point E is unstable and the system exhibits a
periodic behavior, which is in agreement with the the-
oretical results,furthermore the cycle created via Hopf
bifurcation, bifurcate in turn when § = 1.054 and two
period-one limit cycles appear (coexistence of two limit
cycles for 8 €]1.054,1.83[ as shown in figure 5 ). When
B €]1.83,2.11[U]2.16, 3.31[U]3.5, 3.54[ the system exhibits
a chaotic behavior, alternated with a periodic behavior for
B €]2.11,2.16[U]3.31, 3.5].

2) Bifurcation versus the parameter q: Fig.6 illustrates
the bifurcation diagram of y versus the fractional-order
q over the range 0 < g < 1.7. On this figure we can
see that when 0 < ¢ < % the equilibrium point FE is
locally asymptotically stable (stationary behavior), when
0.33 < g < 0.89 the equilibrium point E losses its stability
and the system exhibits a periodic behavior, which is in

agreement with the theoretical results, when 0.89 < ¢ <
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Fig. 5.
q=0.9

Coexistence of two period-one limit cycles for § = 1.5 and

Y
IR
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Fig. 6. Bifurcation versus the fractional-order g for g =3

1.6 the system exhibits a chaotic behavior. Note that here
when varying the fractional order the system can display
a double scroll chaotic attractor or a four scroll chaotic
attractor. Furthermore when 1.4 < ¢ < 1.7 the system can
display a new chaotic attractor not observed in the integer
order case see Fig.7.

D. The “0-17 test for detecting the chaos

An efficient binary test for chaos, called 70 — 1 test”,
has been recently proposed [19] and applied to fractional
systems in [20]. The idea underlying the test is to construct
a random walk-type process from the data and then to
examine how the variance of the random walk scales with
time. Specifically, consider a set of discrete data, sampled
at times n = 1,2,3,..., representing a one-dimensional
observable data set obtained from the system dynamics.
This algorithm consists of the following steps

1) Choose a random value ¢ € (%, %) and define the
new coordinates

A new chaotic attractor for 8 =3, ¢=1.6

1000 -

)

L L .
“200 [ 200 100 600 500 1000 1200

P (m)

Fig. 8.
q=1.6,

Unbounded Brownian-like trajectories indicating chaos for

and
n

Qe(n) =Y é(j)sin(0(5)-
j=1
J
Where 0(5) = je+ > ¢(i), 7=1,2,3,..n.
i=1
2)  Calculate the mean square displacement

1 N
Me(n) = lim =3 (Pe(j +n) = Pe(j))”

N —o0 -
Jj=1

+H(Qc(j +n) — Qc(j))Qa

where n € [1, &]
3) Define: K = median(K,.) where

cov(€, A)
var(&)var(A))

e[-1,1],

with

E=1(1,2,3,..ncut), A= (Mc(1),M(2),..Mc(ncut))

and Ny = Tound(%)
4)  Interpret outputs: When K is close to 0, the
motion is classified as regular (i.e. periodic or
quasi-periodic); when K is close to 1, the motion

is classified as chaotic.

Besides the computation of the rate K, the inspec-
tion of the dynamics of the (P.(n),Q.(n)) trajectories
provides a simple visual test of whether the system dy-
namics is chaotic or not. Namely, bounded trajectories in
the (P.(n),Q.(n)) plane imply regular dynamics, whereas
Brownian-like (unbounded) trajectories imply chaotic dy-
namics [19].

In order to analyse the dynamic of the fractional system
(4), the “0 — 1 test” has been applied directly to the time
series data.

For ¢ = 1.6, we obtain K = 0.877 ~ 1. Then the
dynamics is chaotic. Moreover, Fig.8 depicts Brownian-like
(unbounded) trajectories in (P.(n), Q.(n)) plane.

For ¢ = 0.7, we obtain K = —0.012 =~ 0. Then the
dynamics is regular. Moreover, Fig. 9 depicts bounded
trajectories in the (P.(n),Q.(n)) plane.
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Fig. 9. Bounded trajectories indicating regular dynamic for ¢ = 0.7,

IV. CONCLUSION

In this work, we have investigated the dynamical behav-
iors of the simplest fractional-order electrical circuit that
utilizes only three elements in series including a memristor.
A second degree polynomial memristance and a second
order exponent internal state are used in this circuit to
increase complexity of the attractor. A theoretical analysis
of the system dynamics has been performed using phase
portraits, bifurcation diagrams and the 0 — 1 test that has
confirmed the presence of chaos in the considered system.

REFERENCES

[1] D. Cafagna, “Fractional calculus: a mathematical tool from the
past for present engineers,” in IEEE Ind. Electron. Mag. 1, 2007,
pp. 35 — 40.

[2] R. Hilfer, Applications of Fractional Calculus in Physics. World
Scientific, Singapore, 2000.
[3] H. Sun, A. Abdelwahed and B. Onaral, “Linear approximation

for transfer function with a pole of fractional order,” in IEEE
Trans. Autom. Control 29, 1984, pp. 441 — 444.

[4] 1. Podlubny, Fractional differential equations. Academic Press,
San Diego, 1999.

[6] M. S. Tavazoei and M. Haeri, “A proof for non existence of
periodic solutions in time invariant fractional order systems,”
in Automatica. 45, 2009, pp. 1886 — 1890.

[6] M-S. Abdelouahab and N. Hamri, “The Grunwald-Letnikov
Fractional-Order Derivative with Fixed Memory Length,” in
Mediterranean Journal of Mathematics, doi 10.1007/s00009-015-
0525-3 , 2015, pp. 1-16.

[7] M-S. Abdelouahab, R. Lozi and L.O. Chua, ”Memfractance: A
Mathematical Paradigm for Circuit Elements with Memory,” in
Int. J. Bifurc. Chaos, Vol. 24, No. 9, 2014, 29 pages.

[8] L. O. Chua, “Memristor-the missing circuit element,” in IEEE
Transactions on Circuit Theory. 18, 1971, pp. 507 — 519.

[9] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams,” The missing memristor found,” Nature. 453, 2008,pp.
80 — 83.

[10] B. Muthuswamy and L. O. Chua, “Simplest chaotic circuit,”in
Int.J. Bifurc. Chaos. 20(5), 2010, pp. 1567 — 1580.

[11] L. Teng , H. H. C. Iu , X. Wang and X. Wang, “Chaotic
behavior in fractional-order memristor-based simplest chaotic
circuit using fourth degree polynomial,” in Nonlinear Dyn. 77,
2014, pp. 231 — 241.

[12] S. Westerlund and S. Ekstam, ”Capacitor theory,” in IEEFE
Transactions on Dielectrics and Electrical Insulation. vol. 1 (5),
1994, pp. 826 — 839.

(13]

14]

(15]

(16]

(17]

(18]

19]

20]

S. Westerlund, “Dead Matter Has Memory!,” Kalmar, Sweden:
Causal Consulting, 2002.

I. Schafer and K. Kruger, ”Modelling of lossy coils using frac-
tional derivatives,” in J. Phys. D: Appl.Phys. vol. 41, 2008, pp.
1-8.

C. Coopmans, I. Petras and Y.Q. Chen, “Analogue fractional
order generalized memristive devices,” In Proc. of the ASME
2009 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference,
IDETC/CIE 2009 August 30 - September 2, 2009, San Diego,
California, USA, DETC 2009-86861.

D. Cafagna and G. Grassi, “On the simplest fractional-order
memristor-based haotic system,” in Nonlinear Dyn. 70, 2012,
pp- 1185 — 1197.

M-S. Abdelouahab, N.Hamri and J. Wang, “Chaos Control of a
Fractional-Order Financial System,” in Mathematical Problems
in Engineering,2010, doi:10.1155/2010/270646, 18 pages.

M-S. Abdelouahab , N. Hamri and J. Wang, “Hopf bifurcation
and chaos in fractional-order modified hybrid optical system,”
in Nonlinear Dyn. 69, 2012, pp. 275 — 284.

G. A. Gottwald and I. Melbourne, “A new test for chaos in
deterministic systems,” in Proc. R. Soc. Lond. A 460, 2004, pp.
603 — 611.

D. Cafagna and G. Grassi, ”Hyperchaos in the fractional-order

Rossler system with lowest-order,” in Int. J. Bifurc. Chaos. 19,
2009, pp. 339 — 347.

page 5





