
HAL Id: hal-01337140
https://hal.science/hal-01337140

Submitted on 24 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verifying Programs with Arrays and Lists
Julien Braine, Laure Gonnord, David Monniaux

To cite this version:
Julien Braine, Laure Gonnord, David Monniaux. Verifying Programs with Arrays and Lists. [Intern-
ship report] ENS Lyon. 2016. �hal-01337140�

https://hal.science/hal-01337140
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Verifying Programs with Arrays and Lists

Julien BRAINE

M2’s internship with Laure Gonnord and David Monniaux. February-June 2016

Abstract

Automatically verifying safety properties of programs is a tough problem that has been tackled
using many different approaches: rewriting systems, abstract interpretation, SMT solving, . . .

Most techniques restrict themselves to programs operating on boolean and integer values and
transposing them to infinite data structures such as arrays has not yet been satisfyingly achieved.

Recent work in Monniaux and Gonnord [2016] suggests the use of abstract interpretation to
transpose programs containing arrays into Horn clauses that do not contain arrays. The major
innovation of their work is that they use Horn clauses which are more general than programs, to
obtain better results.

In this work, we first set the work of Monniaux and Gonnord in a more general framework
that allows us to extend their abstractions, simplify the expressions they generate, and analyze the
precision of their abstraction.

Finally we extend their abstractions so that we can the analyze lists and experiments show that
we succeed to analyze several classical examples, including sorting algorithms.

Contents

1 Introduction 1

2 From programs to Horn problems 2

3 To language independent Horn problems 3
3.1 Conversions: definition and issues . 3
3.2 Conversions to a language independent theory . 3

4 Constructing formal conversions 6
4.1 Abstractions . 6
4.2 New approach: a step by step conversion of Horn clauses . 7

5 To the theory of Horn solvers 12
5.1 Related work: array abstraction . 12
5.2 Contributions: new abstractions . 15

6 Implementation and experiments 18

7 Conclusion and perspectives 19

1 Introduction

Avoiding bugs when writing programs has always been tough for many reasons: programmers must
think, for example, about integer overflows, unpredicted user input and memory management.
Several methods exist to avoid bugs: good coding habits and proper documentation but only
automated error checking can prove their absence.

The latter requires us to define what an error is. There are errors defined by the programming
language such as out of bound array accesses, and there are errors due to the semantics of the
program. The former errors can be directly checked, however, the latter requires the user to
add specifications. In Example 1, the user adds specifications in the form of assertions ensuring
the semantics and then the bug checking tool can add automatic assertions due to well-known
errors.

Example 1 (Array Initialization in C++)

void i n i t (s td : : vector<int>& a) {
i n t i , j ;
for (i =0 ; i<a . s i z e () ; i ++){

a s s e r t (i >=0 && i<a . s i z e ()) ;
a [i] = 0 ;

}
j = std : : rand () ;
i f (j >=0 && j<a . s i z e ()) {

a s s e r t (j >=0 && j<a . s i z e ()) ;
a s s e r t (a [j] == 0) ;

}
}

Initial code of the function

User added specifications

Automatically added assertions

Once specifications have been given, there are several ways to detect bugs:
• The simplest technique consists in modifying the program such that, during its execution, when

an assertion fails, its saves an execution trace and files an error report so that the bug can
be removed. Although the end-user experiences the bug, this method is a good solution for
programs that do not have high security or quality of service requirements.
• Another technique consists in running tests on the program, hoping that they will catch most

bugs. The end user does not experience any issues when a bug is caught with this technique,
but there is no guarantee that all bugs are caught.
• The technique we will be focusing on this work, called static analysis, does not suffer from those

flaws: we run the program symbolically, covering all possible execution traces and checking
that no assertion fails. The main issue is that there exists no program that can check that
no possible execution fails: the problem is undecidable. Static analysis is most suited for high
security programs such as in avionics and programmers might have to help the analyzer.

During the life cycle of a given software, a combination of these techniques is usually used, weighted
by time development and security requirements: these techniques serve different purposes.

Static analysis is mainly used to ensure that there are no bugs in a program whereas other techniques
are used to detect bugs within programs. In this work, we focus on the design of static analyzers
that over-approximate the behaviors of programs, and prove their safety. They will either return
that there is no bug in a program, or “don’t know”.

Within the perimeter of this work are two categories of techniques to analyze programs:
• Abstract interpretation (Cousot and Cousot [1977]) consists in abstracting (possibly infinite)

sets of possible values by an abstract object (for instance intervals, polyhedra, . . .) and map

1

operations on programs to operations on the abstract object. The analysis then returns that
there is a possible error when one of the values of the abstract object makes an assertion fail.
The Astree tool (Cousot et al. [2005]) has successfully applied this technique to analyze many
industrial size critical programs.
• Logic based solving consists in writing (an approximation of) the semantics of a program as a

logic formula that is then solved by a SAT Modulo Theory solver(SMT) such as Z31, Z3-Spacer2

and Eldarica3.

These techniques have been extensively studied on programs containing bounded data (or numeric
data) but have not been able to successfully analyze programs using unbounded data structures
such as arrays, lists, trees or graphs. Building on Monniaux and Gonnord [2016], we convert
analyses on unbounded data structures to analyses on bounded structures.

Technique We use abstract interpretation to convert logic formulas, called Horn problems, on
unbounded data structures into Horn problems on bounded data structures, that can then be solved
by state-of-the-art SMT solvers.

Contribution The contributions of this work are:
• A framework for abstract interpretation on Horn clauses. This framework is used to increase

the generality of current abstractions, to construct new abstractions and simplify proofs.
• An explicit abstract interpretation for linear data structures such as lists.
• An implementation that succeeds to prove the correctness of some sorting algorithms.

Organization of report In Section 2, we convert programs into logic formulas called Horn
clauses. Then, Section 3 explains the conversion of these Horn clauses into a common base language.
In Section 4 we give the framework for abstract interpretation on Horn clauses, then used in Section
5 to give abstractions that convert Horn clauses on unbounded data into Horn clauses over bounded
data. Finally, in Section 6, we describe our implementation and give the experimental results.

2 From programs to Horn problems

A Horn problem is a special subset of first order formula that can capture the semantics of a
program. A Horn problem over a theory T is a formula that can be written in the following
form.

∃P1, . . . Pn,
∧
i

∀vi1 , ..., vikCi

where :
• P1, . . . , Pn are existentially quantified functions, called predicates, from types of T to Bool.
• vi1 , . . . , vik are variables with types in T
• Ci is a clause in the form cond1 ∧ cond2 ∧ ...∧ condj ⇒ result and each condition and the result

is either a predicate applied to variables or a formula in the theory of T .

The simplest way to visualize Horn problems is through programs. A program can be transformed
into a Horn problem that captures its semantics, that is to say into a Horn problem that is unsat-
isfiable if and only if there is an execution of the program such that an assertion fails. A possible

1https://github.com/Z3Prover
2https://bitbucket.org/spacer/code
3https://github.com/uuverifiers/eldarica/

2

https://github.com/Z3Prover
https://bitbucket.org/spacer/code
https://github.com/uuverifiers/eldarica/

transformation consists in three steps:
1. Retrieve the control flow graph(CFG) of the program, on Example 1 this gives Example 1.1.
2. Interpret a state of the CFG as a predicate indicating the possible variable values at that state.
3. Interpret each edge e of the CFG as a relation R between the values at the source of e and the

target of e, creating the clause : ∀vars, vars′, Source(vars) ∧R(vars, vars′)⇒ End(vars′).

We give the result of this transformation applied to Example 1 in Example 1.2. As such, the Horn
problem in Example 1.2 can not be run on a SMT solver: SMT solvers do not deal with the theory
of a programming language. In the next sections, we convert Horn problems generated by the
conversion from a CFG, to Horn problems that can be run on a SMT solver.

3 To language independent Horn problems

In practice, Horn solvers do not run on theories that express all program operations. The basic
theory, we call Basic, on which Horn solvers run simply have types Int = Z, Real = R, Bool =
{0, 1} and tuple types (that is to say pairs, triples, . . .) with usual arithmetical operations4.

In this section, we convert Horn problems to a language independent theory that will be converted
to the Basic theory later on.

3.1 Conversions: definition and issues

Definition 3.1 A Horn problem conversion from a source theory to a target theory is a function
that to a Horn problem over the source theory associates a Horn problem over the target theory.

For a conversion conv to be useful, we require two properties:
• Soundness: conv(H) satisfiable⇒ H satisfiable. Ensures that when an analysis returns that

there are no bugs, then there are no bugs in the original program.
• Precision : H satisfiable conv(H) satisfiable. Ensures the relevance of checking for a bug

when an analysis returns that there is potentially a bug.

In the rest of this section, we do not simplify the theories on which Horn problems are, we only
convert them to a language independent theory without any loss of precision: we use conversions
called complete, that is to say conversions c such that ∀H, c(H)⇔ H.

3.2 Conversions to a language independent theory

The goal of this section is to convert a Horn problem over a theory of a programming language
into a Horn problem over a language independent theory we call Fundamental, containing the
Basic theory and language independent unbounded data structures. However, doing so is a full
research topic on its own 5 and we focus on giving the intuition of the conversions involved, the
main contribution of this document starting once we have reached Fundamental. Example 1.3
illustrates the expected result of this section on Example 1.2.

4The Basic theory is the theory well dealt by all solvers, though many solvers have extensions.
5Some tools such as SeaHorn https://seahorn.github.io/ and FramaC http://frama-c.com/ provide support for

developping such abstractions.

3

https://seahorn.github.io/
http://frama-c.com/

Example 1.1 (CFG of program depicted in Example 1)

i Initstart i For

i Assert a Store

j Init j If

j Assert a Assert

Invalid

Return
i = 0

i < size(a)

i ∈ [0, size(a)[

i 6∈ [0, size(a)[

write(a, i, 0)

i ≥ size(a) j = rand()

j ∈ [0, size(a)[

j 6∈ [0, size(a)[

j ∈ [0, size(a)[

j 6∈ [0, size(a)[

access(a, j) 6= 0

access(a, j) == 0

Example 1.2 (Automated Basic Horn problem associated to CFG of Example 1.1)

Types : (((i, j, a), (i′, j′, a′)) ∈ (int× int×Array < int >)2

Formula : ∃i Init, i For, i Assert, a Store, j Init, j If, j Assert, a Assert, Return

∧



∀i, j, a, true =⇒ i Init(i, j, a)

∀i, i′, j, j′, a, a′, i Init(i, j, a)
∧ 

i′ = 0
j′ = j
a′ = a

 =⇒ i For(i′, j′, a′)

∀i, j, a, i Assert(i, j, a)
∧

(0 > i ∨ i ≥ size(a)) =⇒ false

∀i, i′, j, j′, a, a′, a Store(i, j, a)
∧ 

i′ = i
j′ = j

a′ = write(a, i, 0)

 =⇒ i For(i′, j′, a′)

∀i, j, a, a Assert(i, j, a)
∧

access(a, i) 6= 0 =⇒ false

Example 1.3 (Complete conversion from array to Function of Horn problem of Example 1.2)
We use simplified notation: quantifiers are assumed.

Types ((i, j, (af , asize)), (i
′, j′, (a′f , a

′
size))) ∈ (int× int× (int× Function<Int, int>))2

i Init⇒ i For i′ = 0 ∧ j′ = j ∧ (a′f , a
′
size) = (af , asize)

i Assert⇒ false 0 > i ∨ i ≥ size(a)

a Store⇒ i For i′ = i ∧ j′ = j ∧ (a′f , a
′
size) = (store(af , i, 0), asize)

a Assert⇒ false select(af , i) 6= 0

4

3.2.1 Converting non pointer types: bool, int, floats and primitive structures

bool conversion The conversion for bool is very simple as the Horn basic theory has the Bool
type which is exactly equivalent, therefore, there is nothing to do.

int conversion int in most programming languages is bound, therefore there is no exact equiv-
alent type in the basic Horn theory6: the Int Horn type is infinite. We convert int to Int and do
each operation modulus INT MAX.

float conversion The Horn basic theory7 does not have floating point numbers but contains
reals. The Real type is suited for specifications that do not depend on rounding errors, but general
specifications require another approach: use an exponent and a mantissa integer, and convert the
operations on floating point numbers to operations on the couple (exponent, mantissa).8

primitive structures Primitive structures are equivalent to the tuple of their elements. We
abstract a primitive structure into the tuple of its abstracted elements.

3.2.2 Converting unbounded structured data types: arrays, lists, trees, graphs

In most programs data types are bounded either by the available memory or some big number
such as INT MAX. However, abstracting data types bounded by such numbers by the tuple of
its elements does not give an effective solution for performance reasons.

array<T> conversion We introduce the mathematical type Function<Int, T> in the Funda-
mental theory9 and consider that an array is just a function and a size. We define two operations
on Function<Int, T> to mimic the access and write operations on array<T>:
• select(f, index) which returns f(index).
• store(f, index, value) which returns a function g identical to f except that g(index) = value.

Converting arrays to functions then consists in replacing :
• a ∈ array<T> by (size, f) ∈ int× Function<Int, T>
• access(a, i) by (size, select(f, i))
• write(a, i, v) by (size, store(f, i, v))
• size(a) by size

This conversion applied to Example 1.2 gives the Horn problem in Example 1.3.

list<T> conversion Lists are almost semantically equivalent to arrays: they describe a linear
data structure and the main difference is not in the semantics, but in the implementation which
gives different operation complexity. The only operations that are semantically specific to lists are
the insert and erase operations, and we need to introduce the equivalent operations on functions
within the Fundamental theory.

Trees, DAGs, Graphs, . . . conversions Concerning trees and graphs or even other unbounded
data structures such as DAGs, we keep the same idea: expand the Fundamental theory with the
underlying infinite data structure and its operations and manage the finite aspect by adding size

6Some solvers have bit-vectors that can be used for bounded integers.
7Some solvers can deal with floating point arithmetic.
8This conversion is naive and causes solving time issues. Finding a good conversion is a full research topic.
9This has already been done in some solvers.

5

integers. In the case of trees for example, one would want to enlarge the theory with infinite depth
and width trees and the operations insert, erase, select and store on those trees.

3.2.3 Pointers

We do not deal with unstructured data in this work. However, in many cases pointers are the
implementation of semantically structured data dealt within this work. Some cases have solutions:
argument passing as pointers (or references) can be dealt with the copy and return idiom, pointers
allocated with malloc have the semantics of array, . . . Other cases, such as retrieving lists and trees
represented by pointers, can be handled using shape analysis (Jones and Muchnick [1982]) and
separation logic (Reynolds [2002]) for example. These concerns are not tackled in this work and
can be researched upon and dealt with independently.

4 Constructing formal conversions

In the previous section we gave informal examples of conversions and although the abstractions
behind those conversions are fairly intuitive, properly defining these conversions can be difficult.
The goal of this section is to construct conversions from abstractions.

4.1 Abstractions

A general abstraction from a variable of type Source to a type Target is a Galois connection
G : P(Source) −−−→←−−−α

γ
P(Target) and a set of abstract operations (Cousot and Cousot [1977]). In-

tuitively G formalizes how states of the CFG representing possible values of Source now represent
possible values of Target. The abstract operations then correspond to defining the edges of the
CFG as a relationship between values of Target instead of values of Source.

In this work, we do not abstract sets of possible values of Source by single values of Target as done
in polyhedral abstract interpretation Cousot and Halbwachs [1978]: simplifying sets of possible
values is dealt by the SMT solver during predicate calculation. Instead, we abstract single values
of complex types into possibly multiple values of simple types: we use one to many abstractions
and the informal array to function conversion of Section 3.2.2 is defined in Abstraction 1.

Definition 4.1 Let φ be a function from Source → P(Target). φ induces a Galois connec-

tion G : P(Source) −−−→←−−−α
γ
P(Target) called one to many abstraction associated to φ defined by:{

α(concrete ∈ P(Source)) =
⋃

c ∈ concrete
φ(c)

γ(abstracted ∈ P(Target)) = {c ∈ Source, φ(c) ⊆ abstracted}
Abstraction 1 (One to many Galois connection for array to function conversion)

φ(a ∈ array<int>) = {(size, f), size = size(a), ∀i ∈ [0, size(a)[, f(i) = a[i]}
Concrete operation Abstract operation

access(a, i) (size, select(f , i))
write(a, i, v) (size, store(f , i, v))
size(a) size

A common method replaces each operation cop(vars) by an operation aop(vars
#), vars# represent-

ing an abstraction of vars, as has been done in Abstraction 1. In many cases described in Section
5.1, there is no precise enough abstract operation and most papers suggest abstracting edges of

6

the form P1(vars) ∧ vars′ = cop(vars) ⇒ P2(vars′) instead of operations. This approach creates
several unwanted consequences:
• Horn problems that have several predicates in their clauses conditions can not be transformed

into clauses of the form P1(vars)∧vars′ = cop(vars)⇒ P2(vars′). Although this is not an issue
for Horn problems directly induced by programs, we can no longer compose conversions that
take advantage of several predicates in the clause’s conditions.
• The performance might be impacted when Horn problems are transformed, as edges with mul-

tiple composed operations such as var = read(store(a, i, v), j) must be separated into several
edges, adding temporary variables and predicates.

Furthermore, when a clause of the form P1(vars)∧ vars′ = cop(vars)⇒ P2(vars′), representing an

edge is abstracted by a clause such as P#
1 (vars#

1) ∧ P#
1 (vars#

2) ⇒ P#
2 (vars′#), as has been done

in Monniaux and Gonnord [2016], several problem arise:
• The semantics of the abstractions are harder to grasp as an edge is abstracted into a clause that

is not an edge, thus proving soundness is much harder.
• Local abstraction, operation abstraction on clause level quantified parameters, and global ab-

straction, the abstractions of predicates that are quantified at the top level, are mixed up.
Understanding whether the precision loss is due to operation abstraction or φ is thus harder.
• Modularity is impacted: what if we only wish to abstract only some operations or predicates ?

The major contributions of this section are:
• An approach in which abstractions can be defined that does not suffer from the above issues.
• An explicit algorithm for conversions induced by abstractions.

4.2 New approach: a step by step conversion of Horn clauses

Our approach is defined for one to many abstractions φ. The key idea is to make an explicit use of
φ, allowing us to separate the abstractions of predicates from the abstractions of operations. The
major steps of the conversion are given through the pseudo-code given in Algorithm Convert[1],
and will be developed later on.

Algorithm 1: Convert[1]: Conversion induced by abstraction algorithm

Input: HornProblem H, Variable v, Expr → Expr AbsExpr
foreach Clause C ∈ H do AbsOp[2](C,AbsExpr, v); // v in each clause is limited to φ(v)

foreach Predicate P ∈ H do AddAbsPredicate[3](P); // Abstract predicates P# created

foreach Clause C ∈ H do UseAbsPredicate[4](C); // P and φ within clause’s removed

Finalize[5]() ; // The Horn problem is over the target theory

We illustrate the new approach through Example 2 on which we execute each major step of the
Algorithm Convert[1] with Abstraction 1 as parameter.

Example 2 (Example on which we demonstrate the new approach)

Functionality Increments cell i of an array a and checks that it has been incremented

Types ((i, j, a), (i′, j′, a′)) ∈ (int× int× array<int>)2

Start⇒ false i ≥ size(a) (Clause 1)
Start⇒ Increase i < size(a) ∧ i′ = i ∧ j′ = read(a, i) ∧ a′ = a (Clause 2)
Increase⇒ Check i′ = i ∧ j′ = j ∧ a′ = write(a, i, read(a, i) + 1) (Clause 3)
Check ⇒ false j + 1 6= read(a, i) (Clause 4)

7

4.2.1 AbsOp[2] procedure

To improve expressiveness of operation abstraction, we abstract expressions of the form tmp =
cop(args) instead of operations cop(args), giving us the added expressiveness of relations. Although
the idea is similar to abstracting a whole edge P1(vars)∧ vars′ = cop(vars)⇒ P2(vars′), there are
two main differences in our abstract expressions:
• We only abstract tmp = cop(args) and not an edge, that is to say that the abstract expression

must only involve tmp and args.
• We explicitly use φ in the abstractions as shown in Example 2.1, allowing us to keep the concrete

predicates and abstract them later on.

We do not involve predicates in the transformation and we avoid the many disadvantages described
in Section 4.1 of directly abstracting edges. The expressiveness of abstracting expressions in such
a way is equivalent to the expressiveness of edge abstraction10 and the main issue is finding a
way to abstract predicates and remove the uses of φ. The formal abstract expressions induced by
Abstraction 1 are given in Example 2.1.

Example 2.1 (Abstract expressions of array to function conversion)

Concrete expression Abstract expression

var = write(a, i, v) ∃(varsize, varf), (asize, af),∧
{

(varsize, varf) ∈ φ(var) ∧ (asize, af) ∈ φ(a)
(varsize, varf) = (asize, store(af , i, v))

var = read(a, i) ∃(asize, af), (asize, af) ∈ φ(a) ∧ var = select(af , i)

var = size(a) ∃(asize, af), (asize, af) ∈ φ(a) ∧ var = asize

The main idea in Algorithm AbsOp[2] is to Replace any expression of the form tmp = cop(args) by
its abstract expression. To do so, we first need to Normalize the clause to decompose expressions
into several expressions of the form tmp = cop(args) and Rearrange the clause into standard form
after having replaced the expressions. In fact, this last step requires that the only quantifiers within
the abstract expressions are existential quantifiers placed at the beginning 11. Furthermore, in order
for Algorithm Convert[1] to succeed, we require that expressions of the form var# ∈ φ(var) only
appear positively in abstract expressions, but we have not met cases where this is an issue.

Algorithm 2: AbsOp[2]: abstracting expressions

Input: Clause C, Expr → Expr AbsExpr
Normalize(C); // All expressions are either predicates or tmp = cop(args)

foreach Expression e ∈ C do Replace(e,AbsExpr(e)); // All expressions are abstracted

Rearrange(C); // The clause is in Horn standard format

Each step of Algorithm AbsOp[2] applied on Clause 3 is given in Example 2.2.

Soundness and precision analysis The normalization and the rearranging steps are complete
conversions, therefore the soundness and the precision of the global conversion are equivalent to
the soundness and completeness of the replace conversion. The replace conversion is sound (resp.
complete) if and only if the abstract expression implies (resp. is equivalent to) the concrete expres-
sion.

10We can generate any Horn problem that was generated through edge conversion after all the steps of the conver-
sion.

11This ensures that the problem remains a Horn problem.

8

Example 2.2 (Steps of Algorithm AbsOp[2] on Clause 3)

Edge Increase⇒ Check

Input i′ = i ∧ j′ = j ∧ a′ = write(a, i, read(a, i) + 1)

Normalized i′ = i ∧ j′ = j ∧ tmp1 = read(a, i) ∧ tmp2 = tmp1 + 1 ∧ a′ = write(a, i, tmp2)

Replaced ∧


i′ = i ∧ j′ = j ∧ tmp2 = tmp1 + 1
∃(asize, af) ∈ φ(a), tmp1 = select(af , i)
∃(asize, af) ∈ φ(a), (a′size, a

′
f) ∈ φ(a′), (a′size, a

′
f) = (asize, store(af , i, tmp2))

Rearranged ∧
{

(asize, af) ∈ φ(a) ∧ (a′size, a
′
f) ∈ φ(a′) ∧ i′ = i ∧ tmp2 = tmp1 + 1

j′ = j ∧ tmp1 = select(af , i) ∧ (a′size, a
′
f) = (asize, store(af , i, tmp2))

(Clause 5)

4.2.2 AddAbsPredicate[3] procedure

Predicates are the existentially quantified functions expressing the set of possible values at a pro-
gram state, when using Horn clauses induced by programs. When using an abstraction, we abstract
a concrete predicate representing a set of possible concrete values S1 at a program state by predicate
representing a set of possible abstract values S2 = α(S1) =

⋃
v∈S1

φ(v).

For a predicate P , we CreatePredicate an abstract predicate P# such that (1) expressing that
P# is an abstraction of P is verified.

∀args, v, (v# ∈ φ(v)⇒ (P#(args, v#)⇔ P (args, v))) (1)

In fact, (1) can be rewritten as a conjunction of two clauses that we AddClause directly in the Horn
problem giving the Algorithm AddAbsPredicate[3].

Algorithm 3: AddAbsPredicate[3]: adding abstract predicates

Input: Predicate P , HornProblem H, Type AbstractType
CreatePredicate(H,P#, AbstractType); // Predicate P# created

Let CPα = ∀arg, v, v#, v# ∈ φ(v) ∧ P (arg, v)⇒ P#(arg, v#) ; // Condition forcing α(P) ⊆ P#

Let CPγ = ∀arg, v, v#, v# ∈ φ(v) ∧ P#(arg, v#)⇒ P (arg, v) ; // Condition forcing P ⊇ γ(P#)

AddClause(H,CPα) AddClause(H,CPγ)

Applying AddAbsPredicate[3] on the Increase predicate of Example 2 gives Example 2.3.

Example 2.3 (Added clauses by AddAbsPredicate[3] on Increase of Example 2)

Clause CIncreaseα: (asize, af) ∈ φ(a) ∧ Increase(i, j, a)⇒ Increase#(i, j, asize, af)

Clause CIncreaseγ : (asize, af) ∈ φ(a) ∧ Increase#(i, j, asize, af)⇒ Increase(i, j, a)

Soundness and precision analysis The conversion is sound as the original problem is contained
within the new problem. The conversion is complete if and only if γ ◦α = Id. In practice, we only
lose precision if P is a solution to the original problem and γ(α(P)) is not.

4.2.3 UseAbsPredicate[4] procedure

Once abstract predicates have been added, the goal is to replace concrete predicates by abstract
predicates, first in the result of each clause, then in the conditions of each clause. The first step
consists in using (1) to define the complete conversion: Replace, in the result of a clause, P (args, v)
by P#(args, v#) when v# ∈ φ(v) is in the conditions.

9

The second step follows the same idea and the first attempt for the second step conversion gives:
replace, in the condition of a clause, P (args, v) ∧ v# ∈ φ(v) by P#(args, v#). We extend the idea
for any number of predicates and uses of φ. For n predicates and k uses of φ, the conversion consists
in replacing (2) by (3).

 ∧
i∈[0,n]

Pi(argsi, v)

∧
 ∧
j∈[0,k]

v#
k ∈ φ(v)

 (2)
∧

i∈[1,n],j∈[0,k]

P#
i (argsi, v

#
j) (3)

Although this conversion is sound, it is not complete: we do not have (2) ⇔ (3). In fact, we have

(2)⇔ ((3)∧AreAbstractionsk(v#
1 , . . . , v

#
k)) with AreAbstractionsk(v

#
1 , . . . , v

#
k)) equivalent to (4)

∃v,∀j ∈ [0, k], v#
j ∈ φ(v) (4)

Therefore, the second step conversion consists in replacing (2) by (3)∧AreAbstractionsk(v#
1 , . . . , v

#
k)).

We combine the first and second step, we get Algorithm UseAbsPredicate[4].

Algorithm 4: UseAbsPredicate[4]: replacing concrete predicates by abstract predicates

Input: Clause C, Int(k) → (V ariablek) → Expr AreAbstractions
Let ∀params, conditions(params) ∧ v# ∈ φ(v)⇒ P (args, v) = C ; // Decomposition of C

Replace(C,∀params, conditions(params) ∧ v# ∈ φ(v)⇒ P#(args, v#)) ; // First step done

foreach Predicate Pi such that P (argsi, v) ∈ C do

foreach Variable v#
j such that (v#

j ∈ φ(v)) ∈ C do AddCondition(C,P#
i (argsi, v

#
j)) ;

RemoveCondition(C,Pi(argsi, v)) ; // Pi(argsi, v) replaced by ∧jP#
i (argsi, v

#
j)

end // All Pi are abstracted

Replace(v#
1 ∈ φ(v) ∧ . . . ∧ v#

k ∈ φ(v), AreAbstraction(k)(v#
1 , . . . , v

#
k)) ; // φ’s removed

However, if AreAbstractions is written as in (4), we introduce a concrete variable as well as
many uses of φ. We wish to write AreAbstractions without using any concrete variables. In
all the abstractions we have seen so far, we have been able to define AreAbstractionsk for any
needed k without using any other variables than v#

1 , . . . , v
#
k . To give some insight of how simple

AreAbstractions can be, we give AreAbstractions in Example 2.4 for Abstraction 1.

Example 2.4 (AreAbstractions for array to function conversion)

AreAbstractions1(size, f) size ≥ 0

AreAbstractionsk((size1, f1), . . . , (sizek, fk))
∧

j∈[1,k]

sizej ≥ 0 ∧ ∀i, f1(i) = f2(i) = · · · = fk(i)

Remark: for k > 1, AreAbstractionsk is not a valid Horn condition. Fortunately, there is no need
for k > 1 with the abstract expressions defined in Example 2.1 as they use at most one existentially
quantified abstraction of a given concrete variable.

We apply UseAbsPredicate[4] on Clause 5 of Example 2.2 to get Example 2.5.

Soundness and precision analysis The conversion is sound (respectively complete) if and only

if (1) is implied by the Horn problem and AreAbstractionk(v
#
1 , . . . , v

#
k) is implied by (respectively

equivalent to) (4).

10

Example 2.5 (Result of UseAbsPredicate[4] on Clause 5)

Increase#(i, j, asize, af) ∧


asize ≥ 0 ∧ a′size ≥ 0 ∧ tmp2 = tmp1 + 1
i′ = i ∧ j′ = j ∧ tmp1 = select(af , i)
(a′size, a

′
f) = (asize, store(af , i, tmp2))

⇒ Check#(i′, j′, a′size, a
′
f)

4.2.4 Finalize[5] procedure

At this point, there should be no uses of concrete variables or any concrete predicates, but in
clauses equivalent to (1). Therefore the Algorithm Finalize[5] simply consists in, for all con-
crete predicate P , RemoveClause clauses equivalent to (1) and then RemoveUnusedPredicates

and RemoveUnusedVariables from the quantifier lists, thus removing all concrete predicates and
variables.

Algorithm 5: Finalize[5]: Wipe concrete variables and predicates out

Input: HornProblem H
foreach Predicate P ∈ H do

Let CPα = ∀arg, v, v#, v# ∈ φ(v) ∧ P (arg, v)⇒ P#(arg, v#);

Let CPγ = ∀arg, v, v#, v# ∈ φ(v) ∧ P#(arg, v#)⇒ P (arg, v);
RemoveClause(H,CPα) RemoveClause(H,CPγ) ; // (1) removed from H

end // No more concrete predicates used

RemoveUnusedPredicates(H) ; // Concrete predicates removed

foreach Clause C ∈ H do RemoveUnusedVariables(C); // Concrete variables removed

Algorithm Finalize[5] is the last step of the Convert[1] and we the final result of Example 2, is
given in Example 2.6.

Soundness and precision analysis The conversion is sound if P is only used in clauses implied
by (1): assume the result of the conversion is satisfiable, then the initial problem is satisfiable
by taking P = γ(P#). The conversion is complete as we do not lose precision by removing
clauses.

4.2.5 Conclusion

Although there are many steps when using this abstraction technique, the final result is usually
close to what one would expect from abstract interpretation techniques. In Example 2.6, we give
the result of Algorithm Convert[1] applied on Example 2.

Example 2.6 (Result of array abstraction on Example 2 using Algorithm Convert[1])

Types:
((i, j,asize,af), (i

′, j′,a′size,a
′
f)) ∈ (int× int× int× Function<Int, int>)2

(tmp, tmp1, tmp2) ∈ int× int× int
Start#(i, j,asize,af) ∧asize ≥ 0 ∧ tmp = asize ∧ i ≥ tmp ⇒ false

Start#(i, j,asize,af) ∧


asize ≥ 0 ∧ a′size ≥ 0
tmp = asize ∧ i < tmp ∧ i′ = i
j′ = select(af , i) ∧ (a′size,a

′
f) = (asize,af)

 ⇒ Increase#(i′, j′,a′size,a
′
f)

Increase#(i, j,asize,af) ∧


asize ≥ 0 ∧ a′size ≥ 0 ∧ i′ = i ∧ j′ = j
tmp1 = select(af , i) ∧ tmp2 = tmp1 + 1
(a′size,a

′
f) = (asize, store(af , i, tmp2))

 ⇒ Check#(i′, j′,a′size,a
′
f)

Check#(i, j,asize,af) ∧asize ≥ 0 ∧ tmp = select(af , i) ∧ j + 1 6= tmp ⇒ false

11

Although one of the advantages of this abstraction technique is that each conversion is independent,
allowing more flexibility when needed, most uses of our framework only require defining three
elements to abstract Source by Target :
1. A function φ from Source to P(Target).
2. Abstract expressions absexpr(cop, tmp, args) for expressions of the form tmp = cop(args), using
φ such that tmp = cop(args)⇒ absexpr(cop, tmp, args).

3. Expressions AreAbstractionsk such that (4)⇒ AreAbstractionk(v
#
1 , ..., v

#
k).

The precision analysis our framework entails is divided into three parts:
1. The precision of the Galois connection: how close is γ ◦ α from Id.
2. The precision of abstract expressions: how close is absexpr(cop, tmp, args) from tmp = cop(args).
3. The precision with which we express the image of φ: how close is AreAbstraction from (4).

Inducing one of the main advantage of this framework, a three step reflection:
1. Can I have a more expressive target type ? In the case of infinite data structures to finite

data structure abstractions, we will never have γ ◦ α = Id. However, one can usually improve
precision by making the finite data structure bigger12.

2. Can I improve the precision of my abstract expressions ? In most cases we encountered so far,
abstract expressions can be complete.

3. Can I improve the precision of AreAbstractions ? In all cases we encountered so far, we can
define a complete AreAbstractionsk for any needed k.

In the next Section, we define abstractions to convert problems over unbounded data into problems
over bounded data, and we will keep in mind this three step reflection when constructing the
conversions.

5 To the theory of Horn solvers

Section 3.2 has allowed us to transform a Horn problem over a theory of a programming language
into a Horn problem over the Fundamental theory that contains the Basic theory, functions and
possibly many other infinite mathematical structures.

In this section, we focus on abstracting types that belong to the Fundamental theory into types
of the Basic theory. These abstractions are incomplete as we abstract infinite data by finite data
and we use the technique in Section 4.2 to give precise abstractions.

5.1 Related work: array abstraction

There are several defined abstractions to prove specifications on structured unbounded data and
the main focus has been on arrays. In Section 3.2 we transformed arrays to functions with store
and select operations, and in this section, we adapt previous work to our context: we abstract
functions and we formalize abstractions within the framework presented in Section 4.2. Doing so
increases the generality of previous work as they will work on all Horn problems, and gives us a
better precision analysis.

12This is done repeatedly in Section 5.1, either by using more slices or more distinguished cells

12

5.1.1 Cell coalescing

Cell coalescing consists in viewing a function as the set of its values. Intuitively, the store operation
just adds the stored value to the set and the select operation just returns the set, giving the
Abstraction 2.

Abstraction 2 (Cell coalescing abstraction of functions)

φ(f ∈ Function<Ind, V al>) = {y ∈ V al|∃x, y = f(x)}
Concrete expression Abstract expression

g = store(f, i, v) ∃yg ∈ φ(g), (yg = v ∨ yg ∈ φ(f))

val = select(f, i) val ∈ φ(f)

AreAbstractionsk(y1, . . . , yk) = true

Cell coalescing is a very imprecise abstraction: the abstract domain does not depend on any
indexes whereas the operations do. In practice cell coalescing is very limited as one can not prove
cell initialization: g = store(f, i, v); assert(select(g, i) == v); fails.

5.1.2 Slices

There are several definitions of slice analysis for functions, but the basic idea is to split the in-
dex domain of the function into several segments and apply cell coalescing within each of those
sets.

The method to determine the number of sets used and the bounds of each segment vary on the
analysis, but the goal on loops is usually to separate indexes that have already gone through the
loop and indexes that have not yet. Taking an example where the domain is split into in three
segments]−∞, j[, {j},]j,∞[, with j a variable, gives Abstraction 3.

Abstraction 3 (Slice abstraction of functions)

φ(f ∈ Function<Int, V al>) = {(y1, y2, y3)|y1 ∈ f(]−∞, j[) ∧ y2 = f(j) ∧ y3 ∈ f(]j,∞[)

Concrete expression Abstract expression

g = store(f, i, v)

∃(yf1 , y
f
2 , y

f
3) ∈ φ(f), (yg1 , y

g
2 , y

g
3) ∈ φ(g)

∧


i < j ⇒ ((yg1 , y

g
2 , y

g
3) = (yf1 , y

f
2 , y

f
3) ∨ (yg1 , y

g
2 , y

g
3) = (v, yf2 , y

f
3))

i = j ⇒ (yg1 , y
g
2 , y

g
3) = (v, yf2 , y

f
3)

i > j ⇒ ((yg1 , y
g
2 , y

g
3) = (yf1 , y

f
2 , y

f
3) ∨ (yg1 , y

g
2 , y

g
3) = (yf1 , y

f
2 , v))

val = select(f, i)

∃(yf1 , y
f
2 , y

f
3) ∈ φ(f)

∧


i < j ⇒ val = yf1
i = j ⇒ val = yf2
i > j ⇒ val = yf3

AreAbstractionsk((y
1
1, y

1
2, y

1
3), . . . , (yk1 , y

k
2 , y

k
3)) = y1

2 = ... = yk2

Slice abstraction is extremely dependent on how the domain is split into segments: if the current
variable read or written to is not is a singleton segment, then cell coalescing is applied and we have
the same problems. In our framework, we get that the select operation and the store operation
are only complete when i = j. Therefore, our framework naturally entails that dividing the slices
should be done according to the variable being read or written on.

13

Furthermore, even if some variants of slice abstraction have relations between slices, a sorting invari-
ant would require as many slices as there are cells in the array, which is not a viable option.

5.1.3 Cell abstraction

Monniaux and Alberti [2015] made a program to program transformation abstracting a function
f to its set of cells (x, f(x)). Intuitively, the store(f, i, v) operation replaces the couple (i, f(i))
by (i, v) and select(f, i) returns a value val such that the couple (i, val) is in the cells of f , giving
Abstraction 4 with abstract select Expression 1.

However, the select abstract expression is incomplete and the transformation fails to prove simple
programs such as array initialization with loop check13 does not contain any bugs. In Monniaux
and Gonnord [2016], using the added expressiveness of Horn clauses, the select abstract expression
is replaced by Expression 2, making the select expression complete.

Abstraction 4 (“One distinguished cell abstraction” of functions)

φ(f ∈ Function<Int, V al>) = {(x, y)|y = f(x)}
Concrete expression Abstract expression

g = store(f, i, v) ∃(xg, yg) ∈ φ(g) ∧
{
i = xg ⇒ yg = v
i 6= xg ⇒ (xg, yg) ∈ φ(f)

val = select(f, i)
∃(xf , yf) ∈ φ(f) ∧

{
i = xf ⇒ val = yf
i 6= xf ⇒ y = > (Expression 1)

(i, val) ∈ φ(f) (Expression 2)

AreAbstractionsk((x1, y1), . . . , (xk, yk)) =
∧
i,j
xi = xj ⇒ yi = yj

The abstraction given in Monniaux and Gonnord [2016] has complete abstract expressions and
complete AreAbstractions. Therefore, precision loss is only due to φ, that is to say that abstract
predicates must only depend on one couple (x, f(x)), instead of f which represents all couples
(x, f(x)). This allows us to express complex states such as f(0) = 0 ∧ ∀x 6= 0, f(x) = x2 + 1 by
setting P : (x, y)→ (x = 0 ∧ y = 0) ∨ (x 6= 0) ∧ y = x2 + 1. However, the dependence of predicates
on only one couple (x, f(x)) does not allow the expressiveness of states such as f is increasing
(sortedness of arrays).

Monniaux and Gonnord [2016] use the principle of many distinguished cells to solve the problem.
The idea is fairly simple: enlarge the abstract domain to several couples (x, f(x)) so that predicates
can depend on relations between cells. For example, two distinguished cells can express that f is
increasing: P : ((x1, y1), (x2, y2)) → x1 < x2 ⇒ y1 ≤ y2. A small optimization that Monniaux
and Gonnord [2016] suggest is to order the cells to avoid repetition. Abstraction 5 describes the
technique for two distinguished cells.

The main expressiveness limit of distinguished cell abstraction is program states that depend on
an unbounded number of cells. For example, the program state “The sum of all the cells of the
function is equal to 42” depends on all the cells of the function and the abstract predicate will
always be false. This seems to be a general limit of Horn clauses on bounded data and we believe
there is no abstraction with better expressiveness.

13This is Example 1 with a loop within the user specifications instead of a rand().

14

Abstraction 5 (“Two distinguished cell abstraction” of functions)

φ(f ∈ Function<Int, V al>) = {((x1, y1), (x2, y2)), x1 < x2 ∧ y1 = f(x1) ∧ y2 = f(x2)}
Concrete expression Abstract expression

g = store(f, i, v)

∃((x1
g, y

1
g), (x

2
g, y

2
g)) ∈ φ(g)

∧


i > x2

g ⇒ ((x1
g, y

1
g), (x

2
g, y

2
g)) ∈ φ(f)

i = x2
g ⇒ ∃xf , yf , ((x1

g, y
1
g), (xf , yf)) ∈ φ(f) ∧ y2

g = v
x2
g > i > x1

g ⇒ ((x1
g, y

1
g), (x

2
g, y

2
g)) ∈ φ(f)

i = x1
g ⇒ ∃xf , yf , ((x2

g, y
2
g), (xf , yf)) ∈ φ(f) ∧ y1

g = v
x1
g > i⇒ ((x1

g, y
1
g), (x

2
g, y

2
g)) ∈ φ(f)

val = select(f, i) ∃(xf , yf), ((i, val), (xf , yf)) ∈ φ(f)

AreAbstractionsk(((x
1
1, y

1
1), (x2

1, y
2
1)), . . . , ((x1

k, y
1
k), (x

2
k, y

2
k))) =

∧
i
x1
i < x2

i

∧
i,j,b1,b2

xb1i = xb2j ⇒ yb1i = yb2j

The main contributions of the work in Section 4.2 to these abstractions are:
• Simplified abstract expressions.
• A generalization to all Horn clauses.
• A proof that with the given φ, there can be no more improvement.

5.2 Contributions: new abstractions

Monniaux and Gonnord [2016] gave us what seems like the best abstractions for arrays, that is to
say functions with operations store and select once in the Fundamental theory. Thus, our focus has
been on abstracting other structures from the Fundamental theory into the Basic theory.

One of the main advantage of the Fundamental theory is that we only need to abstract infinite
structures whose skeleton does not change: inserting and removing data does not change the
skeleton of an infinite list or of an infinite tree: we only need to change the index to which the
values correspond. This remark radically changes the point of view of the abstractions we will
define: instead of expressing an insertion or a removal of data, we only update the indexes.

5.2.1 Abstracting infinite lists

In fact, within the Fundamental theory, list<V al> has become a pair (int, Function<Int, V al>)
representing the size and the functionality of the infinite list. The operations on lists can be mapped
to the operations store, select, insert and erase on Function<Int, V al> with:

• insert(f, i, v) returns a function g such that ∀k,


k < i⇒ g(k) = f(k)
k = i⇒ g(k) = v
k > i⇒ g(k) = f(k − 1)

• erase(f, i) returns a functions g such that ∀k,
{
k < i⇒ g(k) = f(k)
k ≥ i⇒ g(k) = f(k + 1)

We use cell abstraction defined in Section 5.1.3 to abstract Function<Int, V al>, and we add
abstract expressions for insert and erase, giving Abstraction 6. The main idea is that adding or
removing a value in the middle of an infinite function just consist in shifting the indexes of the rest
of the data. The added abstract expressions are complete and the scheme can be extended to any
number of distinguished cells.

15

Abstraction 6 (insert and erase expressions for one distinguished cell abstraction)

φ(f ∈ Function<Int, V al>) = {(x, y)|y = f(x)}
Concrete expression Abstract expression

g = insert(f, i, v) ∃(xg, yg) ∈ φ(g) ∧


xg < i⇒ (xg, yg) ∈ φ(f)
xg = i⇒ yg = v
xg > i⇒ (xg − 1, yg) ∈ φ(f)

g = erase(f, i) ∃(xg, yg) ∈ φ(g) ∧
{
xg < i⇒ (xg, yg) ∈ φ(f)
xg ≥ i⇒ (xg + 1, yg) ∈ φ(f)

AreAbstractionsk((x1, y1), . . . , (xk, yk)) =
∧
i,j
xi = xj ⇒ yi = yj

This is a major contribution as Function<Ind, V al> with the store, select, insert and erase op-
erations, enables us to abstract C++ containers: vectors, lists, deque, maps, multimaps, sets,
multisets. . . We can even abstract compound structures such as list<array<int>> by applying
this abstraction recursively.

Furthermore, the precision limit of the abstraction is not a big problem on such structures as
most algorithms on such structures do not require an unbounded number of distinguished cells:
most invariants only depend on the relation index to value and not so much on relations between
many cells. As with arrays, we have enough precision to prove many sorting algorithms, searching
algorithms, . . . The sortedness of insertion sort can be proved through Example 3, which represents
a simplified output of Algorithm 1 with two distinguished cell abstraction.

We have given a general technique to abstract linear data structures. In the next section, we give
research directions to abstract non linear data structures.

5.2.2 Research directions: trees, graphs, . . .

Our whole technique relies on Abstraction 4. Intuitively, the select and store operations allow us
to abstract arbitrary containers that do not change structure. In Abstraction 6, we extended that
scheme to linear containers by masking the change of structure through an index shift.

We generalize this scheme and define abstractions on containers of type V al as Function<L, V al>
where L is a labeling of the structure we abstract. In the case of arrays and lists, L is Int.

We must then abstract operations that modify the structure of L by operations on L. For example,
in lists we abstracted the erase operation by a shift in the indexes, that is to say as a shift in the
labeling. For example, binary trees have several classical labelings Rastello [2012]:
• The labeling for which we already have abstractions is list<Bool>: each node position is

described by a list of left/right indications from the top node. Insertions and deletions within
the tree are mapped to operations on labels: insertions and deletions on list<Bool> correspond
to insertions and deletions of a tree using list<Bool> as label type. However, this abstraction
fails: The domain is Function<Function<Int,Bool>, V al> and after abstraction, the abstract
value of a tree becomes several triples (depth, right/left, val) depending on the number of
distinguished cells used. We can not express the parent/child relationships between two such
triples, which is necessary for many algorithm on trees.
• Labelings from depth or breadth first search algorithms seem adequate: insertion and deletion

correspond to index shifts and the precision loss is small: we can express parent/child rela-
tions with two distinguished cells and thus prove many algorithms. The main issue with this
abstraction is that a given labeling corresponds to many trees, creating a loss of precision.

16

Example 3 (Insertion sort)

(a) C++ code with Section 3.2 conversion in comments

std : : l i s t <int> i n s e r t i o n s o r t (const std : : l i s t <int>& l) { //`size ≥ 0
std : : l i s t <int> re s ; //ressize ≥ 0
std : : l i s t <int > : : c o n s t i t e r a t o r l i t = l . begin () ; //lit′ = 0
while (l i t != l . end ()) { //lit 6= `size

i n t val = ∗ l i t ; //val′ = select(`f , lit)
std : : l i s t <int > : : i t e r a t o r r e s i t = re s . begin () ; //resit′ = 0
while (r e s i t != r es . end ()) { //resit 6= ressize

i n t read = ∗ r e s i t ; //read′ = select(resf , resit)
i f (read>val) break ; //read > val⇒ res Insert
r e s i t ++; //resit′ = resit+ 1

} //resit = ressize
r es . i n s e r t (r e s i t , val) ; //res′size = ressize + 1 ∧ res′f = insert(resf , resit, val)

l i t ++; //lit′ = lit+ 1
} //lit = `size
return r es ; //x < y ∧ resf (x) > resf (y)⇒ false

}

(b) Final result of function abstraction with two distinguished cells

`size ≥ 0 ∧ `1x < `2x ⇒ Start(`size, `
1
x, `

1
y, `

2
x, `

2
y)

Start(`size, `
1
x, `

1
y, `

2
x, `

2
y) ∧ ressize ≥ 0 ∧ res1x < res2x ∧ . . . ⇒ lit Init(. . . , ressize, res

1
x, res

1
y, res

2
x, res

2
y)

lit Init(. . .) ∧ lit′ = 0 ∧ . . . ⇒ l While(. . .)

l While(. . .) ∧ lit 6= `size ∧ . . . ⇒ val Init(. . .)

val Init(. . . , `1x, `
1
y, `

2
x, `

2
y, . . .) ∧ lit 6= `1x ∧ val Init(. . . , lit, val′, `2x, `

2
y, . . .) ∧ . . . ⇒ resit Init(. . .)

val Init(. . . , `1x, `
1
y, `

2
x, `

2
y, . . .) ∧ lit = `1x ∧ val′ = `1y ∧ . . . ⇒ resit Init(. . .)

resit Init(. . .) ∧ resit′ = 0 ∧ . . . ⇒ res While(. . .)

res While(. . .) ∧ resit 6= ressize ∧ . . . ⇒ read Init(. . .)

read Init(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit 6= res1x ∧ read Init(. . . , resit, read′, res2x, res

2
y, . . .) ∧ . . . ⇒ If(. . .)

read Init(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit = res1x ∧ read′ = res1y ∧ . . . ⇒ If(. . .)

If(. . .) ∧ read > val ∧ . . . ⇒ res Insert(. . .)

If(. . .) ∧ read ≤ val ∧ . . . ⇒ res Incr(. . .)

res Incr(. . .) ∧ resit′ = resit + 1 ∧ . . . ⇒ res While(. . .)

res While(. . .) ∧ resit = ressize ∧ . . . ⇒ res Insert(. . .)

res Insert(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit > res2x ∧ res′size = . . . ⇒ lit Incr(. . .)

res Insert(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit = res2x ∧ res

′2
y = val ∧ . . . ⇒ lit Incr(. . .)

res Insert(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit = res2x ∧ res

′1
x = res2x ∧ res

′1
y = val ∧ res

′2
x = res2x + 1 ∧ . . .⇒ lit Incr(. . .)

res Insert(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit < res2x ∧ res

′2
x = res2x + 1 ∧ . . . ⇒ lit Incr(. . .)

res Insert(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit = res21 ∧ res

′2
x = res2x + 1 ∧ res

′1
y = val ∧ . . . ⇒ lit Incr(. . .)

res Insert(. . . , res1x, res
1
y, res

2
x, res

2
y, . . .) ∧ resit < res21 ∧ res

′2
x = res2x + 1 ∧ res

′1
x = res1x + 1 ∧ . . . ⇒ lit Incr(. . .)

lit Incr(. . .) ∧ lit′ = lit + 1 ∧ . . . ⇒ l While(. . .)

l While(. . .) ∧ lit = `size ∧ . . . ⇒ Return(. . .)

Return(. . .) ∧ 0 ≤ res1x < res2x < ressize ∧ res1y > res2y ⇒ false / ∗ Sortedness ∗ /
We use `1x, `

1
y, `

2
x, `

2
y as an abstraction of `f and res1

x, res
1
y, res

2
x, res

2
y for resf . To increase

readability, disjunctions within expressions are separated into several clauses, equalities have been
propagated, and the final condition has been simplified.

17

We have not yet implemented any of these abstractions and we leave the proper analysis, imple-
mentation and tests of these abstractions for future work.

6 Implementation and experiments

Implementation We separated the implementation in two parts:
• The front end that takes as input a mini-Java program (a variation of While with array, lists,

and assertions), and outputs a Smtlib2 file14 describing a Horn problem in a theory close to
Fundamental.
• The back-end that takes as input a Smtlib2 file describing a Horn problem in a theory close

to Fundamental and outputs a Smtlib2 file describing a Horn problem in the Basic theory.
The front end is an adaptation of the Vaphor tool (Monniaux and Gonnord [2016]) to which we
added lists, multidimensional arrays and composed operations15. We entirely developed the back-
end from scratch following the technique described in Section 4.2 in 1.5k lines of Ocaml. There
are slight differences as the theory around AreAbstractions had not been developed yet, but the
overall result for function abstraction is equivalent.

Furthermore, the back-end is modular and independent of the front end, and can be used to test
many other abstractions. The main purpose of the implementation is to serve as proof of concept
for abstractions to come so that abstractions can then be implemented within Horn solvers or code
analysis tools such as SeaHorn.

Various tools can solve systems of Horn clauses in the Basic theory. In this work, we tried Z316

with the PDR fixed point solver [Hoder and Bjørner, 2012], Z3 with the Spacer solver [Komu-
ravelli et al., 2013, 2014],17 and Eldarica[Rümmer et al., 2013].18 Since program verification is
undecidable, such tools, in general, may fail to terminate, or may return “unknown”.

Experiments We tested our analyzer on several examples from the literature:
• array benchmarks from the literature, [Dillig et al., 2010], [Bjørner et al., 2013], are in Table 1.
• classical algorithms on arrays and lists, including bubble sort and insertion sort in Table 2.

There has been no real tests on Horn problems that were not induced by programs as we have not
been able to find examples of such Horn problems. The output is equivalent to the experiments of
Monniaux and Gonnord [2016], the abstraction being the same.

Conversion tool limitations The front end suffers from limitations due to the Vaphor tool as
the code was not completely rewritten:
• It does not deal with types other than integers, booleans, arrays and lists.
• Although it deals with multidimensional arrays, it does not deal with compound structures such

as lists of arrays.

Horn solver limitations The Horn problems we retrieve from our technique are very close to
those of Monniaux and Gonnord [2016] and suffer from the same Horn solver limitation: unreliable
solving times as Horn solvers rely on backtracking and a simple change in the variable declaration

14http://smtlib.cs.uiowa.edu/
15The VapHor tool used edge abstraction and could not deal with composed operations.
16https://github.com/Z3Prover hash 7f6ef0b6c0813f2e9e8f993d45722c0e5b99e152; due to various problems we pre-

ferred not to use results from later versions.
17https://bitbucket.org/spacer/code hash 7e1f9af01b796750d9097b331bb66b752ea0ee3c
18https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc

18

https://github.com/Z3Prover
https://bitbucket.org/spacer/code
https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc

Table 1: Comparison on the array benchmarks of [Dillig et al., 2010].

(Average) timing are in seconds, CPU time. Abstraction with N = 1. “sat” means the property was proved, “unsat” that it
could not be proved. “hints” means that some invariants had to be manually supplied to the solver (e.g. even/odd

conditions). A star means that we used another version of the solver. Timeout was 5 mn unless otherwise noted. The machine
has 32 i3-3110M cores, 64 GiB RAM, C/C++ solvers were compiled with gcc 4.8.4, the JVM is OpenJDK 1.7.0-85.

Benchmark
Z3/PDR Z3/Spacer Eldarica

Comment
Res Time Res Time Res Time

Correct problems, “sat” expected
array copy sat 0.42 sat 0.23 timeout(300s)
array init2d sat 1.12 sat 0.44 timeout(300s)
array init2i sat 0.56 sat 0.22 timeout(300s)
array initcte sat 0.15 sat 0.08 timeout(300s)
array partialcopy sat 0.46 sat 0.60 timeout(300s)
array reverse sat 82.32 sat 0.26 sat 36.61
array strcpy sat* 4.31 sat 0.30 sat 18.21
array strlen sat 0.20 sat 0.11 sat 27.39
array swapncopy sat 1.73 sat 0.86 timeout(300s)
arrayappend sat 61.40 sat 0.78 sat 17.17
arrayfind sat 0.20 sat 0.11 sat 10.76
arrayfindnonnull sat 0.28 sat 0.25 sat 14.10
memcpy sat 0.44 sat 0.23 timeout(300s)
array initeven timeout(300s) timeout(300s) timeout(300s)
array initeven hinted sat 0.03 sat 0.02 sat 4.74 Hinted
array swapncopy twice timeout(300s) sat 15.46 timeout(300s)
array swapncopy twice hinted sat 0.13 sat 0.08 sat 12.64 Hinted
mergeinterleave sat 8.49 sat 207.02 sat 77.95
mergeinterleave hinted sat 0.19 sat 0.05 sat 10.54 Hinted

Incorrect problems, “unsat” expected
array copyodd buggy unsat 0.05 unsat 0.02 unsat 7.29
array initeven buggy unsat 0.05 unsat 0.03 unsat 5.50
array reverse buggy unsat 0.52 unsat 0.71 unsat 57.69
array swapncopy buggy unsat 0.93 unsat 0.19 unsat 32.08
mergeinterleave buggy unsat 0.54 unsat 0.22 unsat 26.77

Table 2: Other array-manipulating programs, including various sorting algorithms.

A star means that we used a previous version of the solver.

Benchmark
Z3/PDR Z3/Spacer Eldarica Distinct

Res Time Res Time Res Time number

bin search sat 0.38 timeout(300s) Exception N=1
find mini sat 2.99 sat 1.16 sat 58.97 N=1
bubble sort sat 4.42 sat 3.17 sat 68.86 N=2
insert sort sat* 146.42 timeout(300s) timeout(300s) N=2

order, or in the pseudo-random number generator can change execution time by over a factor 100.
Guiding the solver by asserting simple invariants (e.g. 0 ≤ k < i for a loop from k to i− 1) greatly
improves the reliability of the solvers.

Like Monniaux and Gonnord [2016], we believe that solving times should not be regarded too
closely: research on Horn solvers is recent and the solving times might change drastically in the
years to come through the combination of abstract interpretation and SMT solving. The purpose of
our experimental evaluation is not to benchmark solvers relative to each other, but to show that our
abstraction, even though it is incomplete, is powerful enough to lead to fully automated proofs of
correctness of nontrivial manipulations of linear data structures, including sorting algorithms.

7 Conclusion and perspectives

We proposed a generic approach to verify specifications on programs containing unbounded data
structures. This approach has been applied to arrays and lists: arrays have been fully tested

19

on algorithms requiring non trivial invariants, such as sorting algorithms, and lists have been
implemented but not thoroughly tested. We expect to have solid test results on lists in the very
near future.

The limitations of the approach can be divided into three categories: limitations due to program
conversions and mainly pointers as described in Section 3.2, limitations due to unbounded data
abstraction as explained in Section 5 and limitations due to Horn solvers.

Converting programs in real world programming languages to Horn clauses over a theory that does
not involve memory is a tough task and the work in Section 3.2 does not cover it. In fact, we expect
this step to be at least as hard as converting a program into a functional language as it requires
the static analyzer to abstract pointers. There is active research on the topic: alias analyses, shape
analyses, separation logic, . . . and tools such as SeaHorn and FramaC, and we do not expect this
limitation to be the main issue.

The second limitation has been the main focus of our work. We have succeeded in defining what are
probably the best possible abstractions on Horn clauses for lists and arrays and gave a framework
as well as research directions to abstract general unbounded data structures. Furthermore, we gave
an implementation and experiments that show that our abstractions succeed in proving non trivial
algorithms.

However, our technique can not prove specifications such as “the sum of the array is equal to 42”
as this requires a number of distinguished cells equal to the size of the array. We believe this is a
limit of abstract interpretation and that such specifications can not be proven through the use of
abstract interpretation only, or at least without major drawbacks. We intend to investigate another
technique which consists in expressing local changes instead of global changes: we may not be able
to express that the sum of an array is equal to 42, but we can express that the store operation
adds stored val − old val to the sum of the array. By introducing a variable representing the sum
of the array and modifying it at each store operation, we can prove that the sum of the array is
equal to 42. A similar technique has been applied in Monniaux and Gonnord [2016] to prove that
the multiset of values is unchanged by a sorting algorithm.

Another issue is extending the abstract interpretation of unbounded data structures into bounded
data structure. We succeeded for lists and arrays and we seem close to succeeding for trees. How-
ever, finding abstract interpretation on graphs that could prove shortest path algorithms remains
an untouched research topic. In the near future, we intend to analyze, implement and test the tree
abstraction using depth/breadth first search labeling described in Section 5.2.2.

Finally, a major issue of our approach is that Horn solvers still have unreliable solving times. The
main reason for this issue is that Horn solvers calculate predicates by backtracking and refining
predicates when the current solution is unsatisfiable. This technique is subject to huge variance as
choosing the value of predicates when backtracking occurs is done through heuristics.

There has been major improvement on Horn solvers in the past years and we expect improvements
in the years to come. Mainly, we expect that invariants that can be calculated through abstract
interpretation, for example in the polyhedron model, will not require backtracking and predicate
refinement.

20

References

N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified Horn clauses. In
Static Analysis Symposium (SAS), pages 105–125, 2013. doi: 10.1145/2695664.2695784.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Principles of Programming Languages
(POPL), pages 238–252, 1977. doi: 10.1145/512950.512973.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In Principles of Programming Languages (POPL), pages 84–96, 1978. doi: 10.1145/512760.
512770.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
analyzer. In European symposium on programming (ESOP), number 3444 in Lecture Notes in
Computer Science, pages 21–30, 2005. ISBN 978-3-540-25435-5. doi: 10.1007/978-3-540-31987-0
3.

I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates. In European
Conference on Programming Languages and Systems (ESOP), pages 246–266, 2010. doi: 10.
1007/978-3-642-11957-6 14.

K. Hoder and N. Bjørner. Generalized property directed reachability. In Theory and Applications
of Satisfiability Testing (SAT), volume 7317 of LNCS, pages 157–171. Springer, 2012. ISBN
978-3-642-31611-1. doi: 10.1007/978-3-642-31612-8 13.

N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’82, pages 66–74, New York, NY,
USA, 1982. ACM. ISBN 0-89791-065-6. doi: 10.1145/582153.582161. URL http://doi.acm.org/
10.1145/582153.582161.

A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic Abstraction in SMT-Based
Unbounded Software Model Checking. In Computer-aided verification (SAS), volume 8044, pages
846–862. Springer, 2013. ISBN 978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8 59.

A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive programs. In
A. Biere and R. Bloem, editors, Computer-aided verification (SAS), volume 8559 of LNCS, pages
17–34. Springer, 2014. ISBN 978-3-319-08866-2. doi: 10.1007/978-3-319-08867-9 2.

D. Monniaux and F. Alberti. A simple abstraction of arrays and maps by program translation.
In Static analysis (SAS), volume 9291 of Lecture Notes in Computer Science, pages 217–234.
Springer Verlag, 2015. ISBN 978-3-662-48287-2. doi: 10.1007/978-3-662-48288-9. URL https:
//hal.archives-ouvertes.fr/hal-01162795.

D. Monniaux and L. Gonnord. Cell morphing: from array programs to array-free Horn clauses.
Working paper, Apr. 2016. URL https://hal.archives-ouvertes.fr/hal-01206882.

F. Rastello. On Sparse Intermediate Representations: Some Structural Properties and Appli-
cations to Just-In-Time Compilation. University works, Dec. 2012. URL https://hal.inria.fr/
hal-00761555. Habilitation à diriger des recherches, École normale supérieure de Lyon.

21

http://doi.acm.org/10.1145/582153.582161
http://doi.acm.org/10.1145/582153.582161
https://hal.archives-ouvertes.fr/hal-01162795
https://hal.archives-ouvertes.fr/hal-01162795
https://hal.archives-ouvertes.fr/hal-01206882
https://hal.inria.fr/hal-00761555
https://hal.inria.fr/hal-00761555

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1483-9. URL http://dl.
acm.org/citation.cfm?id=645683.664578.

P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for Horn-clause verification. In
N. Sharygina and H. Veith, editors, Computer-aided verification (CAV), volume 8044 of LNCS,
pages 347–363. Springer, 2013. ISBN 978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8 24.

22

http://dl.acm.org/citation.cfm?id=645683.664578
http://dl.acm.org/citation.cfm?id=645683.664578

	Introduction
	From programs to Horn problems
	To language independent Horn problems
	Conversions: definition and issues
	Conversions to a language independent theory

	Constructing formal conversions
	Abstractions
	New approach: a step by step conversion of Horn clauses

	To the theory of Horn solvers
	Related work: array abstraction
	Contributions: new abstractions

	Implementation and experiments
	Conclusion and perspectives

