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Abstract This paper introduces a new method for es-

timating the angular difference between two tomographic

projections belonging to a set of projections taken at

unknown directions in 2D and 3D. Our method relies on

the projection neighbor selection in projection moment

space, the calculation of the angular differences between

these neighboring projections using moment properties

and a projection moment neighborhood graph. The ac-

curacy and the robustness of our method are shown on

a test database including fifty 2D and 3D gray-level im-

ages at different resolutions and with different levels of

noise.

Keywords computed tomography · tomographic

reconstruction · unknown direction · Euclidean

distance · angular difference · moment

1 Introduction

Tomographic reconstruction is a process for recovering

an object from a finite set of projections acquired by

various techniques such as CT, MRI and PET scanning

in medical imaging, or electron microscopy in structural

biology. There are many well-known tomographic re-

construction methods that can be categorized into three

groups : Fourier methods, backprojection methods and

algebraic methods. The details of these methods can

be found in [11]. In most cases of tomographic recon-

struction, the projection directions are known and then
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can be used to perform the reconstruction. However,

there are some cases in which the projection directions

are unknown, for example when studying the particles

in cryo-electron microscopy or when the studied ob-

ject moves during the acquisition. Thus, the projection

directions need to be estimated in the tomographic re-

construction process of these cases. During this process,

the Euclidean distance between two projections is often

used for projection set clustering or refinement [25,4,

7,6]. Instead of using the Euclidean distance for pro-

jection refinement, the cross-correlation coefficient [26]

can be used to measure the distances between two pro-

jections, but the projection refinements obtained using

the Euclidean distance or the cross-correlation coeffi-

cient are not different as shown in [9]. The Euclidean

distance is also used in [3] as a cost for simultaneously

drive the estimation of the projection directions and the

object reconstruction.

However, the relation between the projection direc-

tion angular differences and the projection Euclidean

distance is not monotonic, nor even one-to-one, even

when the two projection directions are close. Thus, us-

ing such a non-monotonic distance measure when clas-

sifying or refining the projections may lead to errors.

To tackle this problem, we propose in this paper a

new method that can estimate the angular difference

between two projections in both the 2D and the 3D

cases. The problem of the angular difference estimation

in 2D is different from that in 3D. Thus, the two cases

need to be treated separately.

In 2D, formulae for the angular difference estima-

tion have already been developed based on the rela-

tionship between the object moments and its projec-

tion moments. This relationship, known as the moment

method for the projection direction estimation, is well
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studied in [20,1,2]. Here, our objective is different. We

focus on the angular difference estimation between two

projections without knowing nor estimating the projec-

tion directions. Our developed formulae are not robust

when the angular difference between two projections

is large. Therefore, these formulae are just applied to

estimate the angular differences between neighboring

projections. In order to find the neighbors of each pro-

jection, local adaptive thresholds are proposed in the

projection moment space. The given thresholds cor-

respond to the assumption that the projection direc-

tions are uniformly distributed on the semicircle. How-

ever, other distributions can be used instead. After esti-

mating the angular differences between the neighboring

projections, we build a weighted neighborhood graph

whose vertices are the projections and whose edges con-

nect the neighboring projections and are weighted by

the estimated angular difference. Finally, the angular

difference between any two projections on the neigh-

borhood graph is calculated by using a shortest path

algorithm [5].

In 3D, the angular reconstruction method [26,24]

is often used to find the projection directions and can

be applied to estimate the angular differences between

projections. The method is based on the central-slice

theorem in which two projections share one common

line in the Fourier’s space. This common line is perpen-

dicular to the projection directions and the combination

of common lines between sets of three projections en-

ables us to find any projection direction. Further history

of this method can be found in [27,8,17,15]. However,

searching the common lines between projections is time

consuming and may lead to accumulative errors when

the common lines are not correctly identified. We there-

fore prefer to extend to 3D our approach based on the

2D version of the moment method described in [20,10].

In [20], the author shows that the moment method is

fast and does not lead to the accumulation of errors as

in the common line based method.

While our previous work [18] only solved the 2D case

of angular difference estimation, here we (i) extend it to

3D, (ii) explain more in details the mathematical proofs

and (iii) provide more experimental results. The rest of

this paper is organized as follows: in Section 2, some

background notions are provided. Then, in Section 3,

we deal with the angular difference estimation in 2D

tomography and we extend our results to 3D in Sec-

tion 4. The performance of our method is carried out

in Section 5 for both 2D and 3D images. Finally, the

conclusion is given in Section 6.

2 Background notions

We introduce in this section the notions of projection

and moment in both the 2D and 3D cases. In the fol-

lowing, an object in Rn for n = 2 or 3 corresponds to

a Lebesgue measurable function f : Rn → [0, 1] such

that the support Sf of f , that is the closure of the set

{x ∈ Rn | f(x) 6= 0}, is a compact subset of Rn. Then,

we define the centroid G of the function f , also known

as the center of mass [14], as follows:

G =

∫
v f(v) dv∫
f(v) dv

.

The group of the rotations around the origin in Rn is

noted SO(n). In SO(2), the rotation through the angle

θ around the origin is characterized by its matrix Rθ:

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

In SO(3), the matrix of the rotation through the angles

(ϕ, θ, ψ) around x axis, y axis and z axis is

Rϕ,θ,ψ = (C1, C2, C3),

where

C1 =

 cos θ cosψ

sinϕ sin θ cosψ + cosϕ sinψ

− cosϕ sin θ cosψ + sinϕ sinψ

 ,

C2 =

 − cos θ sinψ

− sinϕ sin θ sinψ + cosϕ cosψ

cosϕ sin θ sinψ + sinϕ cosψ

 and

C3 =

 sin θ

− sinϕ cos θ

cosϕ cos θ

 .

2.1 Tomography in 2D

Firstly, we present the definition of the projection in 2D.

Given an object in R2 (2D Cartesian coordinates), the

projection of the object in the direction defined by the

angle θ ∈ R is obtained by rotating the coordinating

system by an angle θ, then by projecting the object

along the new Oy axis, onto the new Ox axis. This

is similar to a rotation of the object by an angle −θ
and then a projection of the object onto the Ox axis.

The definition of the projection in 2D is therefore the

following:

Definition 1 Let f : R2 → [0, 1] be a 2D object and

let θ ∈ R. The projection Pf (θ) in the direction θ ∈ R
is defined by

Pf (θ)(x) =

∫
R
f(ρ−θ(x, y)) dy,

where (ρθ(x, y))T = Rθ (x, y)T , Rθ ∈ SO(2).
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Let us now recall that the moment of a measurable

function g : R→ R, with order d ∈ N, is given by

µd(g) =

∫
R
xdg(x) dx. (1)

We note µf,d(θ) the dth order moment of the projec-

tion Pf (θ). The case of the second-order projection mo-

ments Pf (θ) is physically meaningful since it relates to

the inertia moments of the function f and enables us

to calculate the rotation of f as shown in [20]. The fol-

lowing property proved in [16] shows that the dth-order

projection moment is a trigonometric polynomial of de-

gree d as a function of the projection direction θ.

Property 1 ([16]) Let d ∈ N. The dth order moment of

a projection Pf (θ) can be presented as

µf,d(θ) =
∑

0≤k≤d
k≡d mod 2

ak cos(kθ) + bk sin(kθ) , (2)

where ak, bk ∈ R.

From Property 1, we have µf,d(θ + π) = (−1)d µf,d(θ).

Then all |µf,d| are π-periodic for any d > 0. Moreover,

for any interval [a, a + π) on the circle R/2π and for

any θ in R/2π, we necessarily have either θ or θ + π

in [a, a + π). Since our method relies on the absolute

moments, in the sequel we can assume that the angles

lie in [−π/2, π/2), that is, we identify the projections

Pf (θ) and Pf (θ+π) (which are such that Pf (θ+π)(x) =

Pf (θ)(−x) for any x).

2.2 X-ray tomography in 3D

The projection in 3D can be obtained by an extension

of the 2D case presented above. The principal difference

is that the 3D object is rotated around the x, y and z

axis by the three angles −ϕ, −θ and −ψ, respectively

and the object is projected onto the (xOy) plane. Thus,

the projection in 3D is defined as follows.

Definition 2 Let f : R3 → [0, 1] be a 3D object and

let ϕ, θ, ψ ∈ R. The projection Pf (ϕ, θ, ψ) of f in the

direction (ϕ, θ, ψ) is defined by

Pf (ϕ, θ, ψ)(x, y) =

∫
R
f(ρ−(ψ,θ,ϕ)(x, y, z))dz, (3)

where
(
ρa(x, y, z)

)T
= Ra (x, y, z)T , Ra ∈ SO(3).

The direction vector of the projection is the unit vector

obtained by rotating the z unit vector by Rϕ,θ,ψ:

vP(ϕ, θ) = Rϕ,θ,ψ (0, 0, 1)T

= (sin θ,− sinϕ cos θ, cosϕ cos θ)T.
(4)

Note that the projection direction vector vP(ϕ, θ) does

not depend on the angle ψ which controls the rotation

of the projection in its plane.

Also note that (ϕ, θ, ψ) 7→ Pf (ϕ, θ, ψ) is a periodic

function of period 2π in ϕ, θ, ψ and Pf (ϕ, θ, ψ)(x, y) =

Pf (ϕ, θ+π,−ψ)(−x, y) = Pf (ϕ+π,−θ, −ψ)(x,−y) =

Pf (ϕ, θ, ψ+π)(−x,−y). In addition, our method in 3D

relies on the projection moments that are invariant to

the signs of x and y. Thus we can assume ϕ, θ, ψ ∈
[−π/2, π/2).

Next, let recall that the moment of a measurable

function g : R2 → R, with order (c, d) ∈ N2 is given by

µc,d(g) =

∫
R

∫
R
xc yd g(x, y) dx dy. (5)

We note µf,c,d(ϕ, θ, ψ) the projection moment of

Pf (ϕ, θ, ψ) with order (c, d). For simplicity, we write

P, µd and µc,d instead of Pf , µf,d and µf,c,d when no

confusion can occur. The projection moments with or-

ders (2, 0), (0, 2) are related to the inertia moments of

f and the 3D rotation of f can be calculated from this

relationship as shown in [20]. The next proposition ex-

tends Property 1 to the 3D case.

Proposition 1 Let f : R3 → [0, 1] be a 3D object. Let

ϕ, θ, ψ ∈ R and c, d ∈ N. The moment of order (c, d)

of the projection Pf (ϕ, θ, ψ) of the function f , in the

direction (ϕ, θ, ψ), is a trigonometric polynomial as a

function of the projection direction.

The proof is given in B.1.

3 Angular difference estimation in 2D

3.1 Angular difference estimation problem

Let f be a 2D object whose centroid is at the origin,

n ∈ N and Θ = {θ1, . . . , θn} ⊆ [−π/2, π/2) be a set

of unknown directions. We denote by Π the set of the

related projections: Π = {P(θi) | 1 ≤ i ≤ n}. The

angular difference between two projections is

dang(P(θi),P(θj)) = min(|θi − θj |, π − |θi − θj |).

Our main goal in this work is to estimate the angular

difference dang between any two projections from the set

Π. In [20], Salzman shows that it is possible to compute

the direction θ associated with the projection P(θ) by

using the following equation:

sin2(θ) =
|µ2(θ)− µm2 |
µmax
2 − µmin

2

, (6)

where µmax
2 = maxθ∈R µ2(θ), µmin

2 = minθ∈R µ2(θ) and

µm2 = µmax
2 if the origin of the angles is set such that
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µ2(0) = µmax
2 or µm2 = µmin

2 if the origin of the angles

is set such that µ2(0) = µmin
2 . Note that we always may

assume in the proofs that the origin is set such that

dang(P(θi),P(θj)) = |θi − θj |.
Since there are two possible values of θ ∈ [−π/2, π/2)

in Equation (6)), Salzman uses odd order moments to

disambiguate the angle values. The angular difference

between two projections can be estimated by substract-

ing the two arcsines caculated from (6). However, due to

the high slope of the function x 7→ arcsin(
√
x) near the

abscissae 0 and 1, the calculation of dang(P(θi),P(θj))

derived from (6) is not robust to noise when the mo-

ment of one of the projections is close to µmin
2 or µmax

2 ,

especially as the exact values of µmin
2 and µmax

2 can-

not be known precisely. Instead, we construct a graph

G = (V,E) whose vertices are the projections P(θi) and

whose edges link projections with close moments (Sec-

tion 3.2). Then, each edge of the graph G is weighted

by the corresponding angular difference (Section 3.3).

Rather than computing this difference directly from

Equation (6), we use a Taylor expansion. As shown in

Section 5.1.2, this leads our method to be more robust

to noise. Finally, we measure the angular difference be-

tween any two projections as the length of the shortest

path between these projections in the graph G.

The steps of the angular difference estimation are

summarized in Algorithm 1 (Section 3.4).

In the following section, we explain how to select

the projection pairs that are linked by an edge in the

graph G.

3.2 Projection neighbors (edges of the graph G)

The aim of this section is a method for selecting the

neighbors of a given projection from the projection set

Π. As the projection moment is a trigonometric polyno-

mial function of the angle (Property 1), two close angles

yield two close moments for any order due to the con-

tinuity of the moment w.r.t. the angle. However, the

converse is false since the moment is non-monotonic as

a function of the angle. Thus, the neighbors of each pro-

jection should be found by comparing their dth-order

moments for several values of d.

For each used order d and each moment µd(θ) of a

given projection P(θ), an interval of size 2εd(θ), cen-

tered on |µd(θ)| is set for finding at least one moment

corresponding to a neighbor of the given projection

P(θ). The calculation of the threshold εd(θ) is shown

in Proposition 2. The reader will find its proof in A.2.

Proposition 2 Let f : R2 → [0, 1] be a 2D object and

let p ∈ [0, 1]. Assuming that the projection directions

are uniformly distributed on [−π/2, π/2), for each mo-

ment µd(θ) of order d, there exists an interval centered

on |µd(θ)| and of size 2εd(θ) in which can be found, with

probability p, at least one moment µd(θ
′) with θ′ 6= θ

and θ′ neighboring θ in Θ. The half-width εd(θ) is such

that

εd =
π

2

(
1− (1− p)

1
n−1
)
× d max

θ∈R
(|µd(θ)|) . (7)

Remark 1 When the probability distribution function

of the angles is known — let us denote it by λ — the

reader can check that the proof of Proposition 2 can

easily be modified and, instead of Equation (7), leads

to

εd = πk × d max
θ∈R

(|µd(θ)|) ,

where k ∈ Λ−1
(
1
2 (1−p)

1
n−1
)

with Λ the non-decreasing

function δ 7→
∫ 1−δ
δ

λ ? (λ ◦ (−id))(t) dt, id the identity

and ? the convolution.

The issue with Equation (7) is that the exact value

of max
θ∈R

(|µd(θ)|) is not known. It can only be estimated

from the finite set of projections Π by max{|µd(θ)| | θ ∈
Θ}. However, as it will be shown in Proposition 3, the

error due to this estimation is quadratically convergent

toward 0 as the number of projections increases. Then

these errors induce a negligible error on the half-width

εd(θ).

In conclusion, given a projection Pi, Equation (7)

allow us to find the sets Jid of the projection neigh-

bors for distinct moment orders. The final result Ji is

obtained by intersecting the sets Jid. Then, an edge is

added in the graph G between Pi and each projection

in Ji.

3.3 Angular difference formulae

Hereafter, we present in Definition 3 the weights that we

put on the edges of the graph. These weights are derived

from Equation (6) by finite Taylor series expansions. In

Proposition 4, we give bounds on the error due not

only to the finite expansion but also to the unknown

extremum moments that intervene in Equation (6). The

first result of this section is Proposition 3 that gives an

upper bound on the difference between the theoretical

extremum moments µmax2 , µmin2 and the empirical ones

µ̃max2 , µ̃min2 .

In the sequel of the Section 3.3, we use the following

notations and assumptions (in order to make the state-

ments of the section less cumbersome, these hypotheses

will not be systematically recalled).
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Notations and assumptions of Section 3.3

– Θ = {θ1, . . . , θn} ⊂ [−π2 ,
π
2 ): a set of directions such

that θ1 < . . . < θn. We set θ0 = θn − π (thus,

θ0 < θ1).

– ∆(Θ) = max
1≤i≤n

(θi − θi−1).

– M = {µ2(θi) | θi ∈ Θ},
– µ̃max

2 = max(M) and µ̃min
2 = min(M).

– θ̃max = argmax(M) and θ̃min = argmin(M).

– ∆(M) = max
µ∈M

min
µ′ 6=µ
|µ− µ′|: maximum difference be-

tween a moment and its nearest neighbor.

The following proposition provides upper bounds on

the difference between empirical extremal moments and

theoretical ones. It is valid in 2D as in 3D.

Proposition 3 Let d ≥ 2. The errors on µmaxd and

µmind due to the use of the empirical extremums µ̃maxd ,

µ̃mind are less than 1
4d

2∆(Θ)2(µmaxd − µmind ).

Proof Let θmaxd ∈ [−π/2, π/2), resp. θ̃maxd ∈ Θ, such

that

µd(θ̃
max
d ) = max

θi∈Θ
{µd(θi)} ,

µd(θ
max
d ) = max

θ∈[−π/2,π/2)
{µd(θ)} .

Then, θmaxd ∈ [θi, θi+1] for some i such that 0 ≤ i < n.

Put µmaxd = µd(θ
max
d ), resp. µ̃maxd = µd(θ̃

max
d ).

Then, µmaxd − µ̃maxd ≤ µd(θ
max
d ) − µd(θi). The finite

Taylor series with the Lagrange remainder term is de-

veloped for µd at θ = θmaxd where its derivative is null.

We derive

µmaxd − µ̃maxd ≤ µd(θmaxd )− µd(θi)

≤ 1

2
(θmaxd − θi)2 max

θ∈R

∣∣∣∣ d2µd
dθ2

∣∣∣∣ . (8)

Then, as θmaxd ∈ [θi, θi+1], we have

µmaxd − µ̃maxd ≤ 1

2
∆(Θ)2 max

θ∈R

∣∣∣∣ d2µd
dθ2

∣∣∣∣ .
As µd is a trigonometric polynomial of degree d, we

derive from Bernstein’s inequality that

µmaxd − µ̃maxd ≤ 1

4
d2∆(Θ)2 (µmaxd − µmind ) .

Similarly, we get

µ̃mind − µmind ≤ 1

4
d2∆(Θ)2 (µmaxd − µmind ) .

We have seen that the errors on the extremum mo-

ments are asymptotically negligible as the number of

projections grows. So, we can consider building the weights

of the graph G from the Taylor expansions of Equa-

tion (6). We distinguish two kinds of edges in G: the

edges between projections whose 2nd-order moment is

less than a threshold a(M) (resp. greater than a thresh-

old b(M)) and the edges between the projections whose

2nd-order moments lie between a(M) and b(M). The

relative positions of µmin2 , µmax2 , µ̃min2 , µ̃max2 , a(M) and

b(M) are shown in Figure 1. The values of a(M) and

b(M) have to be set according to Proposition 4 in order

to ensure the convergence of the edge weights toward

the angular difference.

Fig. 1: Relative positions of µmin2 , µmax2 , µ̃min2 , µ̃max2 ,

a(M) and b(M) in the noiseless case.

Definition 3 (Local angular difference weight) For

two neighboring directions θi, θj , the weight wi,j be-

tween the two corresponding projections P(θi),P(θj)

is set as follows.

– if µ2(θi) < a(M) and µ2(θj) < a(M),

wi,j =
|
√
µ2(θi)− µ̃min

2 −
√
µ2(θj)− µ̃min

2 |√
µ̃max
2 − µ̃min

2

; (9)

– if µ2(θi) > b(M) and µ2(θj) > b(M),

wi,j =
|
√
µ̃max
2 − µ2(θi)−

√
µ̃max
2 − µ2(θj)|√

µ̃max
2 − µ̃min

2

; (10)

– else,

wi,j =
|µ2(θj)− µ2(θi)|√

(µ̃max
2 − µ2(θξ))(µ2(θξ)− µ̃min

2 )
, (11)

where ξ ∈ {i, j} and |µ2(θξ) − µ̃max2 +µ̃min2

2 | is mini-

mal.

Proposition 4 gives conditions on a(M) and b(M) to

have the computed weight wi,j converging toward the

angular difference as ∆(Θ) tends to 0.

Proposition 4 If the thresholds a(M) and b(M) are

such that a(M)− µ̃min
2 and µ̃max

2 − b(M) are asymptoti-

cally bounded both from above and below by ∆(M)α for

some α ∈ (0, 2/3), then, for any 0 ≤ i, j < n such that

|θi − θj | ∈ O(∆(Θ)),

– if µ2(θi) ∈ [a(M), b(M)] or µ2(θj) ∈ [a(M), b(M)],

wi,j = dang

(
P(θi),P(θj)

)
+ o
(
∆(Θ)

)
;

– else,

wi,j = dang

(
P(θi),P(θj)

)
+O

(
∆(Θ)

)
.
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The proof of Proposition 4 is given in A.3.

The estimation errors when using only one of the

three formulae of the weight wi,j in Definition 3 are

shown in Figure 2 in which the estimation error is cal-

culated by

|wi,j − dang

(
P(θi),P(θj)

)
| / dang

(
P(θi),P(θj)

)
.

We see that, Formula (9) gives a better result than the

others for the projection pairs lying close to µmin2 . Sim-

ilarly with Formula (10) for the projection pairs lying

close to µmax2 and Formula (11) for the projection pairs

that are far enough from µmin2 and µmax2 . Therefore, the

combination of these three formulae gives us a good es-

timation result. The setting of the two thresholds a(M)

and b(M) for separating these three formulae is given

in the next section.

µ2(θ)

0,2

0,4

0,6

0,8

1

e
s
ti
m

a
ti
o
n
 e

rr
o
r

Formula (10)
Formula (9)
Formula (11)

µmin

2 µmax

2

Fig. 2: Angular difference estimation errors caused by

the three formulae given in Definition 3.

3.4 Angular difference estimation algorithm

We propose an algorithm for the estimation of the an-

gular difference between any two projections from the

projection set Π. We first calculate the dth-order mo-

ments of the projections in Π for d ∈ {2, 3, 4, 5}. Then,

the neighbors of each projection P(θ) are found thanks

to the moment intervals |µd(θ)| ± εd(θ) described in

Section 3.2. The threshold εd(θ) is calculated using For-

mula (7) in Proposition 2 by setting the probability p

to 0.95. Note that there are different sets of neighbor-

ing projections found according to the different orders

of moment. The final result of the neighbor search is

then obtained by intersecting these sets of neighboring

projections. Here, the order d is set to 2, 3, 4 and 5

since the higher order moments are sensitive to noise

and do not improve the search result.

Next, the angular differences between the neighbor-

ing projections are estimated through the three formu-

lae given in Definition 3. In order to separate the use of

these three formulae, a(M) is set to µ̃min2 + ∆(M)1/2

and b(M) is set to µ̃max2 − ∆(M)1/2 according to the

conditions in Proposition 4.

Then, we build a neighborhood graph whose vertices

are the projections, whose edges connect the neighbor-

ing projections and are weighted by the estimated an-

gular differences. Eventually, the angular difference be-

tween any two projections on the graph is estimated

by using a shortest path algorithm such as Dijkstra’s

algorithm. The estimation process is summarized in Al-

gorithm 1.

Algorithm 1: 2D Angular difference estimation

Data: Π = {P(θi) | 1 ≤ i ≤ n}.
Result: estimation of

dang(P(θi),P(θj)), 1 ≤ i, j ≤ n, i 6= j.

1. G← ∅, D← {2, . . . , 5}.
2. Calculate {µd(θi)}i=1...n then {εd(θi)}i=1...n,

for any d ∈ D.
3. For each index i,

3.1. Jid ← {j | |µd(θi)| − εd(θi) ≤ |µd(θj)| ≤
|µd(θi)|+ εd(θi)}, ∀d ∈ D.

3.2. Ji ←
⋂

Jid.
3.3. For each j ∈ Ji, G← G ∪ {(i, j, wi,j)}.

4. Shortest Path Algorithm(G).

3.5 Dealing with noise

This section addresses the problem of noise that usu-

ally contaminates the projections during the acquisition

process. Assuming that the noise is modeled as a white

centered Gaussian noise, we first denoise the projection

set using a method developped by Wu and Singer [22].

Even if the whole step of this method is not applied,

it is nevertheless called here the Wu-Singer denoising

method. The main idea of this method is to analyze

the projection set using a PCA decomposition [13] com-

bined with an optimized Wiener filter and a graph de-

noising technique [28].

Noise also propagates to the projection moments

and leads to computational errors not only in the search-

ing formula exhibited in Proposition 2 but also in the es-

timation formulae given in Definition 3. Assuming noisy

projections P̂(θ) = P(θ)+E(θ), where E(θ) ∼ N (0, σ2)

is a Gaussian noise vector with zero mean and vari-

ance σ2 on each coordinate, we can easily prove that

the dth-order moment µ̂d(θ) of a noisy projection fol-

lows the Gaussian distribution with mean µd(θ) and
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variance Σ2, where

Σ =

 1∫
−1

x2d σ2 dx


1
2

=
σ√

d+ 1/2
.

As the noise can increase the gap between the theo-

retical extremal moments and the empirical ones, it is

necessary to estimate the former. Under the assump-

tion of a uniform angle distribution, we derive from (6)

the probability density function of µ2 as follows:

P (µ2) =
1

π
× 1

2
√

(µmax2 − µ2)(µ2 − µmin2 )
. (12)

When the angle distribution is not uniform, one has

to replace 1/π in the above formula by

f

(
arcsin

(√
(µ2 − µmin2 )/(µmax2 − µmin2 )

))
,

where f is the p.d.f. of the angles. Then, the probability
density function of µ̂2 is obtained by the convolution
between P and the probability density function of the
Gaussian noise with zero mean and variance Σ2.

P̂ (µ̂2) =

µmax
2∫

µmin
2

P (µ2)
1

√
2πΣ

exp

(
−(µ̂2 − µ2)2

2Σ2

)
dµ2 . (13)

Figure 3 shows the shapes of P and P̂ at different levels

of noise. Note that the relative positions of µmin2 , µmax2 ,

µ̃min2 , µ̃max2 , a(M) and b(M) in case of even moderate

noise will likely be changed as in Figure 4 (compare

with Figure 1).

0

0.2

0.4

0.6

0.8

1

µ
min

2 µ
max

2

Without noise

Σ = 0.02

Σ = 0.03

Σ = 0.04

Fig. 3: Probability density of the second-order noisy

moment without noise and with different variances of

noise.

The two extremal moments µmin2 and µmax2 can be
estimated using the maximum likelihood by

(µ̂min2 , µ̂max2 ) = argmax
∏
m∈M̂

P̂ (m | min M̂,max M̂) , (14)

Fig. 4: Relative positions of µmin2 , µmax2 , µ̃min2 , µ̃max2 ,

a(M) and b(M) in case of noise.

where M̂ = {µ̂2(θi) | 1 ≤ i ≤ n}.
We did not find an analytical solution for Equation (14).

It is therefore solved using the numerical approach.

The efficiency of the Wu-Singer denoising method

and the extremum estimation is shown in Section 5.

4 Estimation of angular difference in 3D

We now consider the 3D case. Let f be a 3D object

whose centroid is at the origin, n be a positive inte-

ger and Θ = {(ϕi, θi, ψi) | 1 ≤ i ≤ n} be a set of

unknown directions included in [−π/2, π/2)3. We set

Π = {P(ϕi, θi, ψi) | 1 ≤ i ≤ n}, the set of projections

associated to Θ, and V = {vP(ϕi, θi) | 1 ≤ i ≤ n}, the

set of direction vectors of Π. Our goal is to estimate

the absolute angular difference between two projections

from the set of projections Π. Since we cannot distin-

guish a projection direction from its antipodal direc-

tion, the computed angular difference will lie in R/πZ
identified with (−π/2, π/2] and its absolute value given

in [0, π/2].

The estimation procedure is almost identical to the

2D case. We first show the estimation formula of the

angular difference between the neighboring projections.

The angular difference between two projections P and

P ′ in 3D can be calculated by the inner product be-

tween the two direction vectors vP and vP′ :

dang(P,P
′
) = arccos (|vP . vP′ |) . (15)

We take from [20] the direction vector expression,

vP(ϕ, θ) =
(
v1P , v

2
P , v

3
P
)T
, (16)

where (omitting the argument (ϕ, θ, ψ) in µ2,0 and µ0,2):

viP = ±
(

(µi − µ2,0) (µi − µ0,2)

(µi − µj)(µi − µk)

)1/2

, (17)

with

– {i, j, k} = {1, 2, 3},
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– (µ1, µ2, µ3) = (µmax, µmed, µmin), where

µmax = max
(ϕ,θ,ψ)∈R

max(µ2,0, µ0,2) ,

µmed = max
(ϕ,θ,ψ)∈R

min(µ2,0, µ0,2) ,

= min
(ϕ,θ,ψ)∈R

max(µ2,0, µ0,2) ,

µmin = min
(ϕ,θ,ψ)∈R

min(µ2,0, µ0,2) .

There are four possible solutions for Equation (15)

due to the unknown signs in Equation (17). This cor-

responds to the direction vectors lying on four differ-

ent octants of the coordinate system. The solution of

Equation (15) can be unique by making the assump-

tion that both of the neighboring projections are in the

same octant. This assumption leads to very few, and

very small, errors if the number of projections is large

enough. Then, under this assumption, Equation (15)

comes down to

dang(P,P
′
) = arccos

(
3∑
i=1

|viP viP′ |

)
. (18)

We now deal with the problem of searching the neigh-

boring projections. As shown in 2D (Section 3), the

search of projection neighbors is based on the calcu-

lation of projection moment intervals for different mo-

ment orders. This approach can not be applied directly

to 3D, because the projection moments depend on the

projection rotation (by the angle ψ) which is unknown.

Thus, the moment values of two neighboring projec-

tions may be very different according to the projection

rotation. Therefore, instead of using the standard mo-

ments, we employ the seven Hu moments defined in [12]

which are invariant by rotation. These moments are lin-

ear combinations of standard moments. Knowing that

the standard moments are trigonometric polynomials

(Proposition 1) and the set of trigonometric polyno-

mials is a ring, we derive that Hu moments are also

trigonometric polynomials. Let Mh(ϕ, θ) be the h-th

Hu moment of the projection P(ϕ, θ, ψ), h = 1 . . . 7.

The value of Mh(ϕ, θ) is calculated as follows (omit-

ting the argument (ϕ, θ, ψ)):

M1 = µ2,0 + µ0,2 ,

M2 = (µ2,0 − µ0,2)2 + 4µ2
1,1 ,

M3 = (µ3,0 − 3µ1,2)2 + (3µ2,1 − µ0,3)2 ,

M4 = (µ3,0 + µ1,2)2 + (µ2,1 + µ0,3)2 ,

M5 = (µ3,0 − 3µ1,2)(µ3,0 + µ1,2)((µ3,0 + µ1,2)2

− 3(µ2,1 + µ0,3)2) + (3µ2,1 − µ0,3)(µ2,1 + µ0,3)(

3(µ3,0 + µ1,2)2 − (µ2,1 + µ0,3)2) ,

M6 = (µ2,0 − µ0,2)((µ3,0 + µ1,2)2 − (µ2,1 + µ0,3)2)+

4µ1,1(µ3,0 + µ1,2)(µ2,1 + µ0,3) ,

M7 = (3µ2,1 − µ0,3)(µ3,0 + µ1,2)((µ3,0 + µ1,2)2

− 3(µ2,1 + µ0,3)2)− (µ3,0 − 3µ1,2)(µ2,1 + µ0,3)(

3(µ3,0 + µ1,2)2 − (µ2,1 + µ0,3)2) .

Note that the order ofMh is the degree of the trigono-

metric polynomial. In order to select the pairs of neigh-

boring projections, for each momentMh(ϕ, θ) of a pro-

jection P(ϕ, θ, ψ), an interval Mh(ϕ, θ) ± εMh(ϕ, θ) is

calculated for finding at least one other Hu moment

Mh(ϕ′, θ′) corresponding to a neighbor of P(ϕ, θ, ψ).

The value of εMh(ϕ, θ) is calculated as follows.

Proposition 5

Let f : R3 → [0, 1] be a 3D object and let p ∈ [0, 1].

Assuming that the projection directions are uniformly

distributed on the hemisphere, then for each Hu moment

Mh
i of a projection Pi taken at the direction vPi , h =

1 . . . 7, there exists an interval bounded byMh
i ±εMh in

which can be found, with probability p, at least one Hu

moment Mh
j of a projection Pj taken at the direction

vPj , Mh
i 6=Mh

j and vPj is close to vPi . The half-width

εMh is such that

εMh = π
(
1− (1− p)

1
n−1
) 1

3 ξh , (19)

where ξh = k max
1≤j≤n

(|Mh(ϕj , θj)|, k = 2, 4, 6, 6, 12, 8, 12

being the order of Mh for h = 1 . . . 7, respectively.

The proof of Proposition 5 is given in B.2.

Remark 2 As in 2D, the proof of Proposition 5 can be

adapted in order to drop the angle uniform distribution

assumption. Let λ1, λ2 be the p.d.f. of the angles ϕ and

θ. Then, in Equation (19), the term
(
1− (1− p)

1
n−1
) 1

3

should be replaced by α ∈ Λ−1
(

1
4

(
1− (1− p)

1
n−1
))

where Λ is the non decreasing function

δ 7→
∫ δ

0

(
(λ1 ? λ̃1)|t≥0 ? (λ2 ? λ̃2)|t≥0

)
(t) dt ,

with λ̃1 = λ1 ◦ (−id) (resp. λ̃2 = λ2 ◦ (−id)) and ? is

the convolution.

After finding the neighbors, we build a neighbor-

hood graph whose vertices are the projections, whose

edges connect the neighboring projections and are weighted

by the angular differences estimated from Equation (18).

Finally, the angular difference between any two projec-

tions on the neighborhood graph can be calculated us-

ing a shortest path algorithm.
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Recall that our method in 2D linearizes the Salz-

man’s formula (6) in order to reduce the noise effect.

However, since the linearization of the corresponding

3D equation (18) is not as simple as in 2D, this step

is skipped. As in the 2D case, the value of µmax, µmed

and µmin used in (18) and (19) can only be estimated

from the finite set of projections. Nevertheless, thanks

to Proposition 3, which is still valid in 3D, we can ne-

glect the errors on µmax, µmed and µmin. With noisy

projections, the Wu-Singer denoising method is used to

denoise the projection set but the maximum likelihood

estimation of µmax, µmed and µmin is also skipped due

to the high computational complexity. However, even

if the linearization of Salzman’s Formula and the ex-

tremum estimation are not applied in 3D, the experi-

mental results (Section 5) show that our method out-

performs the Euclidean distance for the angular differ-

ence estimation.

The proposed method for estimating the angular

differences between tomographic projections in 2D and

3D is now called Moment-based Angular Difference

Estimation (MADE) method. All steps of the MADE

method is summarized below.

Step 1 : Denoising of the projection set using the

Wu-Singer denoising method [22].

Step 2 : Computation of the projection moments from

the projection set. In 2D, the moments µd, 2 ≤ d ≤ 5,

are calculated by Equation (1). In 3D, the moments

µc,d, 0 ≤ c, d ≤ 3, are calculated by Equation (5). Then

the seven Hu moments Mh, 1 ≤ h ≤ 7, are calculated

from µc,d.

Step 3 : Estimation of the extremum moments: this

step is only available in 2D where µmin2 and µmax2 is

estimated as shown in Section 3.5.

Step 4 : Selection of the neighbors of each projection

by thresholding. In 2D, the threshold εd is calculated

by Equation 7. In 3D, the threshold εMh
i

is calculated

by Equation 19.

Step 5 : Computation of the angular differences be-

tween the neighboring projections. In 2D, the formulae

in Definition 3 are used. In 3D, Formula (18) is used.

Step 6 : Construction of the neighborhood graph whose

vertices are the projections and whose edges link the

neighboring projections found in Step 4 and are weighted

by the angular differences calculated in Step 5.

Step 7 : Computation of the angular difference be-

tween any two projections using a shortest path algo-

rithm on the neighborhood graph.

5 Experimental results

5.1 Experiments in 2D

Our method is tested on a set of fifty 2D phantom im-

ages at resolutions 322, 642, 1282 and 2562 pixels. The

phantoms are generated automatically using our pro-

gram. Examples of the phantoms are shown in Figure 5

and their 1D projections at different levels of noise are

shown in Figure 6.

5.1.1 Noiseless case

A first experiment aims at testing the robustness of the

MADE estimation formulae given in Definition 3, in

case the angular difference between two projections is

small (e.g. neighboring projections). In this first exper-

iment, 200 pairs of angular values (θ,∆θ) are randomly

generated for each phantom, where θ ∈ [−90◦, 90◦) and

∆θ ∈ [1◦, 2◦]. The projections P(θ) and P(θ + ∆θ)

are computed for each pair (θ,∆θ). The angular dif-

ference between P(θ) and P(θ+∆θ) is then estimated

using the MADE estimation formulae. Note that the

two extreme projection moments µmax2 and µmin2 are

calculated from the set of moment values provided by

the 200 pairs (µ2(θ), µ2(θ + ∆θ). We also apply the

Salzman’s Method (SM) presented in Section 3.1 to es-

timate the angular difference between each projection

pair (P(θ),P(θ + ∆θ)). The Euclidean Distance (ED)

between P(θ) and P(θ + ∆θ) is also computed. The

purpose of this experiment is to measure the dispersion

of the estimated angular difference using MADE (resp.

SM) and ED w.r.t the ground truth of the angular dif-

ference dang(P(θ), P(θ + ∆θ)) = ∆θ. We used in [18]

the Variance-to-Mean Ratio to measure the variation,

but here we prefer to employ the Root Mean Squared

Deviation (RMSD) since the result obtained from the

RMSD is more accurate. The RMSD is defined as fol-

lows

RMSD(X̂) =
100

X̂max − X̂min

√∑n
i=1(Xi − X̂i)

2

n
(in %),

where X̂ is the estimator of X, X̂max = max1≤i≤n(X̂i),

X̂min = min1≤i≤n(X̂i). Lower values of the RMSD in-

dicate less residual variance of X̂. The results of this

first experiment are shown in Figure 7. It is clear that

the dispersion of ED (a) is much higher than that of SM

(b) and MADE (c). Moreover, the dispersion of SM is

slightly lower than that of MADE. This is understand-

able since our method MADE is the linearization of the

SM formula.
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(a) 322 pixels (b) 642 pixels (c) 1282 pixels (d) 2562 pixels

Fig. 5: Examples of 2D phantoms with different resolutions.
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Fig. 6: Examples of 1D projections at different levels of noise.

Table 1: RMSD (%) of Salzman’s Method (SM) and

our method MADE in 2D w.r.t the phantom resolu-

tions (in pixels) for the noiseless case. The local case

(a) is for two neighboring projections and the global

case (b) is for any two projections.

322 642 1282 2562

a) Local

SM 5.2± 2.8 4.1± 1.5 4.0± 1.6 3.9± 1.5
MADE 5.2± 2.5 5.1± 2.0 5.0± 1.6 4.5± 1.3

b) Global

SM 0.5± 0.5 0.4± 0.3 0.7± 1.8 0.3± 0.3
MADE 0.7± 0.4 0.6± 0.2 0.9± 1.7 0.5± 0.2

More quantitative results w.r.t the phantom resolu-

tions are shown in Table 1a (local case). We see that

the RMSDs of MADE and SM are less than 5.2% at all

resolutions.

In the second experiment, the angular difference es-

timation between any two projections is calculated. For

this, 200 angles θ ∈ [−90◦, 90◦) are randomly generated

for each phantom. The corresponding projections P(θ)

are then computed. The angular differences between

any two projections are estimated by MADE with all

the steps described in Algorithm 1. ED and SM are also

applied and compared with MADE. As shown in Fig-

ure 8, the dispersion of ED (a) is again much higher

than that of SM (b) and MADE (c). The dispersions of

SM and MADE are not very different. The estimation

results w.r.t the phantom resolutions are shown in Ta-

ble 1b (global case). The RMSD of SM and MADE are

very low (< 1%) for all resolutions. Also note that the

RMSD of the global case decreases significantly com-

pared to the local one. This can be explained by the

fact that in 2D the shortest path algorithm allows to

reduce the global error compared to the sum of the

local errors. In addition, the RMSD is averaged over

the angle interval which is very small in the local case

(∼ [0◦, 2◦]) compared to the global one (∼ [0◦, 90◦]).

The first two experiments show that the methods

MADE and SM give a good angular difference estima-

tion between projections, with small dispersions com-

pared to those of ED. In addition, since MADE is ob-

tained as an approximation of SM, the result of SM is

better than the result of MADE for the noiseless case.

5.1.2 Noisy case

The noise robustness of SM and MADE is now tested

in the third experiment without using the denoising

method described in Step 1 of Section 4. White noise is

added to projections with different values of the signal-

to-noise ratio (SNR). The SNR is defined by

SNR = 10 log10

(
V ar(S)

V ar(N)

)
,

where V ar(S) is the signal variance and V ar(N) is the

noise variance. Then, a similar procedure to that used

in the second experiment is applied. Moreover, we also

test in this experiment a variation of MADE in which

the edges of the graph G are weighted by Salzman’s For-

mula (6) rather by its linearization. This new version is

named MADES to distinguish it from the original one.

The extremum moment estimations µ̂min2 and µ̂max2 are

obtained using Maximum Likelihood (see Section 3.5

for details). For that, we set µ̂min2 ∈ [min M̂,med M̂ ]
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Fig. 7: 1st experiment (local case): dispersion of ED

(a), SM (b) and MADE (c) between two neighboring

projections in 2D for phantom of 1282 pixels.

and µ̂max2 ∈ (med M̂,max M̂ ] thanks to the observa-

tion shown in Figure 4, where M̂ is the set of noisy

moments. Then, the candidates for µ̂min2 and µ̂max2 are

selected based on Equation (14). Also note that, the in-

tegral in Equation (13) is approximated using the func-

tion integral() in MATLAB.

Figure 9 shows the RMSD of SM, MADES and

MADE for SNR varying from 40 dB to 5 dB without

(a) and with (b) maximum likelihood estimation of the
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Fig. 8: 2nd experiment (global case): dispersion of

ED (a), SM (b) and MADE (c) between any two

projections in 2D for phantom of 1282 pixels.

extremum moments. Lower values of SNR will be tested

in the next experiment.

In Figure 9a, that is without maximum likelihood

estimation of the extremum moments, we see that the

dispersion of SM is higher than the ones of MADES and

MADE. Especially, the RMSD of SM is much higher

than the others when the SNR is lower than 25 dB.

Also note that, the RMSD of MADE is smaller than

the RMSD of MADES. This shows that the lineariza-
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Fig. 9: 3rd experiment. RMSD (%) of ED, SM, MADES, MADE w.r.t. the SNR in 2D. Test with phantoms of

1282 pixels, without (a) and with (b) maximum likelihood estimation of the extremum moments µ̂min2 and µ̂max2 .

Table 2: 3rd experiment: RMSD (%) of SM, MADES,

MADE in 2D w.r.t. the phantom resolutions (in

pixels) in 2D. Test at SNR = 25 dB, the extreme

moments µmin2 and µmax2 are estimated by maximum

likelihood.

322 642 1282 2562

SM 14.1± 5.6 10.2± 4.7 8.3± 3.0 7.5± 4.7
MADES 6.7± 1.2 6.1± 1.9 6.0± 1.7 4.9± 1.6
MADE 6.4± 1.1 5.8± 1.8 5.6± 1.6 4.6± 1.5

tion of Salzman formula gives us a better result when

the projections are corrupted by noise. Then, in Fig-

ure 9b, that is with maximum likelihood estimation of

the extremum moments, the RMSD of all methods, SM,

MADES and MADE, are smaller than without the esti-

mation (∼ 2%), but the dispersion of SM is still higher

than the ones of MADE and MADES. Again, MADE is

better than MADES when the noise is high. In Table 2,

the RMSD of all methods w.r.t the phantom resolutions

are given at a SNR of 25 dB. The RMSD of MADE at

all the resolutions is the smallest. The comparison of

MADE with MADES shows that the SM formula lin-

earization slightly improves the estimation results.

We have shown the performance of MADE in 2D

compared to SM. The angular difference can also be ob-

tained by means of the projection direction estimation.

The Wu-Singer method developped in [22] is known as a

good method for the estimation of projection directions.

A comparison between our method MADE and the Wu-

Singer method is shown in Figure 10. Note that all the

steps of MADE described in Section 4 are now fully ap-

plied. We see that globally MADE performs better than

Wu-Singer, especially when the number of projections

is small. For a large number of projection (≥ 1000),

the Wu-Singer method is a bit more robust to noise

than MADE when the SNR is higher than 5dB. But,

when the noise level increases, the RMSD of the Wu-

Singer method grows up more rapidly than the RMSD

of MADE.

In conclusion, the experiments in 2D show that our

method MADE performs better than SM in case of

noise and than the Wu-Singer method when the number

of projections, or the SNR, is small. The linearization

of Salzman formula (6) combined with the extremum

moments estimation are useful in case of noise. The

pre-processing step allows our method to obtain good

results for SNR greater than 0 dB.

5.2 Experiments in 3D

The method MADE is now tested in 3D. A set of fifty

3D phantom images at different resolutions — 323, 643,

1283 and 2563 voxels — is generated by our program.

Examples of the 3D phantoms and their 2D projections

with different levels of noise are shown in Figure 11 and

Figure 12.

5.2.1 Noiseless case

In this fourth experiment, a set of 1000 triples (ϕ, θ, ψ)

is generated uniformly and randomly on the hemisphere

for each phantom, where ϕ, θ, ψ ∈ [−90◦, 90◦). A set

of corresponding projections P(ϕ, θ, ψ) and projection

moments µc,d(ϕ, θ, ψ) are then calculated. The extreme

values of µc,d(ϕ, θ, ψ) are taken from the set of projec-

tion moments µc,d(ϕ, θ, ψ). The neighbors of each pro-

jection are found using the Hu moment thresholds de-

fined in Equation (19). The angular differences between

these neighboring projections are then estimated using

Formula (18). Finally, the angular differences between
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Fig. 10: 3rd experiment: RMSD (%) of MADE (a) and the angular difference derived from [22] (b) in 2D w.r.t.

the SNR and the numbers of projections for images of 2562 pixels.

any two projections are calculated using a shortest path

algorithm on the neighborhood graph. ED is also com-

puted and compared with MADE regarding the disper-

sion.

The results are illustrated in Figure 13 for two neigh-

boring projections (local case) and Figure 14 for any

two projections (global case). The reader can see that

ED (a) varies much more than MADE (b) in both cases.

Moreover, the estimation errors of MADE displayed in

Figure 13b are the results of projections lying in dif-

ferent octants of the hemisphere. The number of error

cases is small w.r.t the total number of estimated cases

and does not affect the estimation results as shown in

Table 3, where the RMSD of MADE is lower than 5.5%

for the local case and lower than 6.9% for the global

case. Also note that the RMSD of the global case does

not decrease compared with the local one as in 2D due
to two reasons : first the shortest path algorithm does

not run well in 3D, second the angle interval in local

case is not small as in 2D (∼ [0◦, 15◦]) and yields more

significant errors than in 2D (including the errors from

different octants). Thus the behavior of the global error

in 3D is more complicate than in 2D.

This fourth experiment shows that ED in 3D has

a high dispersion w.r.t the angular differences between

projections, whereas MADE is good for estimating the

angular difference with a smaller dispersion.

5.2.2 Noisy case

The noise robustness of MADE in 3D is then evalu-

ated in the fifth experiment. White noise with a given

SNR is added to projections. Again, the Wu-Singer de-

noising method is applied to denoise projections. The

estimation results for the different number of projec-

tions and at the different levels of noise are shown in

Table 3: RMSD (%) of MADE in 3D w.r.t the

phantom resolutions (in voxels) for the noiseless case.

The local case is for two neighboring projections and

the global case is for any two projections.

323 643 1283 2563

Local 5.4± 2.2 4.7± 1.2 4.2± 1.3 4.0± 1.2

Global 6.8± 2.3 6.4± 1.5 6.1± 1.7 6.1± 1.6

Figure 15 for phantoms of 1283 voxels. Good results are

obtained with a RMSD less than 10% at SNR ≥ 10 dB

for the number of projections equals to 1000 and at

SNR ≥ 0 dB for the number of projections equals to

10000. As in 2D, the angular difference in 3D can also

be calculated by means of the projection direction es-

timation. In particular, the method proposed in [23]

gives good estimation results at very low SNR (smaller

than −10 dB) and clearly outperforms the results of

MADE. Nevertheless, the advantage of our method is

that it can be used with a small number of projections,

whereas the method in [23] needs a sufficiently large

number of projections (≥ 10000) in order to obtain a

good result.

Another family of direction estimation methods uses

the common line technique [27,8,17,15]. The common

line based method proposed more recently in [21] is ro-

bust to noise and can be used in case of a small number

of projections. The method is combined with several de-

noising methods that allow to improve significantly the

estimation result. The pre-processing steps are a weak

point of our method and need to be more investigated

in our further work. However, one of the drawback of

these common-line based methods are the runtime com-

plexity. Indeed, the runtime of the method in [21] is a
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(a) 323 voxels (b) 643 voxels (c) 1283 voxels (d) 2563 voxels

Fig. 11: Examples of 3D phantoms with different resolutions.
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Fig. 12: Examples of 2D projections at different levels of noise.

O(p3 n2+n3) where p is the dimension of the projection

space and n is the number of projections. On the other

hand, the runtime of our method is faster with a time

complexity in O(p2 n+ n2).

All the experiments in this section were performed

on a Linux machine with Xeon 3.20 GHz and 16GB of

RAM. All steps of our method were executed only with

one core and were not parallelized. The runing time for

testing our method on each phantom varies from several

seconds to several minutes, depending on the number

of projections and the projection dimension.

6 Conclusion

This article addresses the angular difference estimation

between tomographic projections.

We propose a new method, MADE, based on the

projection moments. The first stage of MADE is to

identify the projections that are close, not with respect

to the Euclidean distance, but relative to their projec-

tion directions. Then, the angular differences between

the neighboring projections are evaluated. The process

of these two steps involves the calculation of the pro-

jection moments with several orders and the estimation

of the extreme moments, which intervene in the angle

computation. The experimental results on a simulated

database with different resolutions shows that MADE

performs better the selection of the neighboring projec-

tions than the Euclidean distance. Regarding the angu-

lar difference estimation, the accuracy and the noise ro-

bustness of MADE is also better than the other tested

methods up to -5dB. Our method can be considered

as a potential measure for the projection refinement

or the projection classification in the tomographic re-

construction process. As a perspective, we plan to test

the method on a real database –especially in the case

where the distribution of the projection directions is

not uniform–, to improve the noise robustness in the

3D case by incorporating more pre-processing steps and

to combine MADE with another technique such as the

common line.

Acknowledgements The authors would like to thank both
of the anonymous reviewers for their insightful comments on
the paper.
The authors would like to thank Hau-Tieng Wu and Zhi-Zhen
Zhao for sharing their codes on projection direction estima-
tion in 2D [22] and in 3D [23].
This work was supported by RHODES project ANR-14-CE27-
0012.

A Proofs in 2D

A.1 Recall of Bernstein’s inequality

Theorem 1 (Bernstein’s inequality [19]) Let f(x) =
n∑
i=0

ai cos(ix) + bi sin(ix), a trigonometric polynomial of de-

gree n. We have

max
x∈R

{∣∣∣∣dfdx

∣∣∣∣} ≤ n max
x∈R
{|f(x)|} . (20)
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Fig. 13: 4th experiment. Dispersion of the angular

differences between neighboring projections (local

case) in 3D for an phantom of 1283 voxels. (a) ED.

(b) MADE.

A.2 Proof of Proposition 2

Proposition 2 relies on Lemma 1 which gives, at a given level
of confidence, the maximum distance between two successive
angles from a set of realizations of an equidistributed random
variable on the circle R/πZ.

Lemma 1 Let θ1, . . . , θi, . . . , θn be independent and uniformly
distributed random variables in [−π/2, π/2). Let1 Zi,j =
min

(
|θi − θj |, π − |θi − θj |

)
. Then, for any i ∈ [1, n],

Prob

(
min
j 6=i

Zi,j ≤ δ
)
> p ⇐⇒ δ ≥ π

2

(
1− (1− p)

1

n−1

)
.

Proof Let (Xi)ni=1 be independent random variables, uni-
formly distributed in [0, 1]. We set Yi,j = |Xi −Xj | for any
pair (i, j), i 6= j. Let p ∈ (0, 1). We want to find a posi-
tive real δ as small as possible such that, for each i ∈ [1, n],
∃j 6= i,min

(
Yi,j , 1−Yi,j

)
≤ δ with a probability greater than

or equal to p.

Note that for a given fixed i ∈ [1, n], the random vari-
ables Yi,j , 1 ≤ j ≤ n, j 6= i, are independent. Furthermore,

1 The variable Zi,j is the distance between the variables θi
and θj on the circle R/πZ.
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Fig. 14: 4th experiment. Dispersion of the angular

differences between any two projections (global case)

in 3D for an phantom of 1283 voxels. (a) ED.

(b) MADE.

recall that the absolute difference between two standard uni-
form variables has a triangular distribution with a cumulative
distribution function x 7→ 1− (1− x)2, for x ∈ [0, 1].

For each i ∈ [1, n], one has

Prob

(
min
j 6=i

(
min

(
Yi,j , 1− Yi,j

))
≤ δ

)
> p

⇐⇒
∏
j 6=i

Prob
(
min(

(
Yi,j , 1− Yi,j

)
> δ

)
≤ 1− p

⇐⇒
∏
j 6=i

Prob
(
δ < Yi,j < 1− δ

)
≤ 1− p

⇐⇒ (1− δ)2 − δ2 ≤ (1− p)
1

n−1

⇐⇒ δ ≥ 1
2

(
1− (1− p)

1

n−1

)
.

We conclude straightforwardly, setting Xi = 1/π(θi + π/2).

Proof (Proof of Prop. 2) From the mean value theorem and
the Bernstein’s inequality, we have for any θ, θ′ :∣∣∣∣ |µd(θ)| − |µd(θ′)|

θ − θ′

∣∣∣∣ ≤ max
θ∈R

{∣∣∣∣dµddθ

∣∣∣∣} ≤ d max
θ∈R
{|µd(θ)|}. (21)

Hence, we derive from Lemma 1 and Eq. (21), that setting

εd = π
2

(
1− (1− p)

1

n−1

)
× d max

θ∈R
{|µd(θ)|}
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Fig. 15: 5th experiment: The RMSD (%) of MADE in

3D at different levels of noise and with different

numbers of projections. The test is performed with

images of 1283 voxels. The Wu-Singer method is

applied to denoise projections.

ensures that, for any angle θ, we will find with a probability
greater than p at least one moment |µd(θ′)|, θ′ 6= θ, in the
band |µd(θ)| ± εd.

A.3 Proof of Proposition 4

Proof Let define Π = {θ1, ..., θn} where θ1 < θ2 < · · · < θn.
We set M = {µ2(θ) | θ ∈ Π} and we put

∆1,n = max
µ∈M

min
µ′ 6=µ

|µ− µ′| ,

∆2,n = max{µmax2 − µ̃max2 , µ̃min2 − µmin2 } and

∆3,n = max{θi+1 − θi | 0 ≤ i < n} where θ0 = θn .

Note that

∆1,n ≤ ∆3,nmax
θ∈R

∣∣∣∣ dµ2

dθ

∣∣∣∣ .
(i.e. ∆1,n = O(∆3,n)). Indeed,

∆1,n = min
µ′∈M and µ′ 6=µ2(θk)

|µ2(θk)− µ′|

= |µ2(θk)− µ2(θl)|

for some θk, θl ∈ Π.
Thus, there are two cases:

• k < l (actually we can assume that µ2(θk) 6= µ2(θk+1)
because if µ2(θk) = µ2(θk+1), then we take k+ 1 instead
k and so on), then

|µ2(θk)− µ2(θl)| ≤ |µ2(θk)− µ2(θk+1)|

< (θk+1 − θk) max
θ∈R

∣∣∣∣ dµ2

dθ

∣∣∣∣ .
• the case where l < k is proved in a symmetrical way

Thus, in the all cases we have ∆1,n ≤ ∆3,nmaxθ∈R

∣∣∣∣ dµ2

dθ

∣∣∣∣.
Furthermore, from Proposition 3, ∆2,n = O(∆3,n

2).
We also have from the hypothesis,

C∆1,n
α ≤ µ̃max2 − b(M), a(M)− µ̃min2 ≤ D∆1,n

α ,

for some C,D > 0 and 0 < α < 2/3.

Then, since µmax2 − µmin2 = (µmax2 − µ̃max2 ) + (µ̃max2 −
b(M)) + b(M)− a(M) + (a(M)− µ̃min2 ) + (µ̃min2 − µmin2 ) ,
we derive that

b(M)− a(M) ≥ µmax2 − µmin2 − 2∆2,n − 2D∆1,n
α

≥ µmax2 − µmin2 −O
(
∆3,n

2
)
−O

(
∆3,n

α
)
.

So, assuming ∆3,n → 0 as n → 0 and n large enough, we
can assert that b(M)− a(M) is lower-bounded by a positive
constant.

The following calculation assume that ∆1,n, ∆2,n, ∆3,n

are small (less than 1). For this, simply take n large enough.

Let θi, θj in Θ such that |θi − θj | = O(∆3,n). Firstly,
we consider the case in which θi or θj lies between a(M) and
b(M).

We define ξ ∈ {i, j} such that |µ2(θξ)− µ̃
max
2

+µ̃min
2

2
| is minimal

(thereby, θξ ∈ [a(M), b(M ]).

From the finite Taylor series of µ2 at θξ, we get

θi−θj =
(
µ2(θi)−µ2(θj)+O(|θi−θj |2

)( dµ2

dθ
(θξ)

)−1
. (22)

From (6), we derive∣∣∣∣ dµ2

dθ
(θξ)

∣∣∣∣ = 2(µmax
2 −µmin

2 )|sin(θξ)| cos(θξ) = 2
√
f(µ2(θξ)),

where f(x) = (µmax
2 − x)(x − µmin

2 ). We also set f̃(x) =
(µ̃max

2 − x)(x− µ̃min
2 ). We have

f(µ2(θξ)) = f̃(µ2(θξ)) +O(∆2,n)

and, since θξ ∈ [a(M), b(M)],

f̃(µ2(θξ)) ≥ min(f̃(a(M)), f̃(b(M)) ≥ k(b(M)−a(M))∆1,n
α.

We derive that∣∣∣∣ dµ2

dθ

∣∣∣∣−1

=
1

2

(
f̃(µ2(θξ))

)−1/2
+O(∆2,n ∆1,n

−3α/2) , (23)

where the constant in the Big O depends on f and k.
We obtain from (22), (23)

|µ2(θi)− µ2(θj)|

2

√
f̃(µ2(θξ))

= |θi − θj |+O(∆2,n ∆1,n
−3α/2) +O(∆3,n

2 ∆1,n
−α/2)

= |θi − θj |+O(∆3,n
2 ∆1,n

−3α/2)

= |θi − θj |+O(∆3,n
2−3α/2) .

We recall that α < 2/3, so 2− 3α/2 > 1 and we are done.

Next, we develop the estimation formula of |θ| in the case
of µ2(θ) > b(M) (the case µ2(θ) < a(M) is similar). From (6),
we have√
µmax2 − µ2(θ)

µmax2 − µmin2

= |sin(θ)| .

Thus,∣∣∣∣∣
√
µmax2 − µ2(θi)

µmax2 − µmin2

−

√
µmax2 − µ2(θj)

µmax2 − µmin2

∣∣∣∣∣
=
∣∣|sin(θi)| − |sin(θj)|

∣∣ . (24)
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Since
∣∣|a|− |b|∣∣ ≤ |a− b| in any case, we derive from (24) that∣∣∣∣∣

√
µmax2 − µ2(θi)

µmax2 − µmin2

−

√
µmax2 − µ2(θj)

µmax2 − µmin2

∣∣∣∣∣
≤ |sin(θi)− sin(θj)| ≤

∣∣2 sin
θi − θj

2

∣∣ ≤ |θi − θj | .
As we assume |θi − θj | ∈ O(∆3,n), the result holds.

B Proofs in 3D

B.1 Proof of Proposition 1

Proof Let recall the formula of projection moments in 3D:

µc,d(ϕ, θ, ψ) =

∫
R

∫
R

xc ydPf (ϕ, θ, ψ)(x, y) dxdy . (25)

Setting R(ϕ,θ,ψ) =
(
rji
)
1≤i,j≤3

, it can be rewritten as

µc,d(ϕ, θ, ψ) =

∫
R

∫
R

∫
R

α1
c α2

d g(α1, α2, α3) dα1 dα2 dα3 ,

where g(α1, α2, α3) = f

(
3∑
j=1

r1j αj ,
3∑
j=1

r2j αj ,
3∑
j=1

r3j αj

)
.

By changing the variables

βi =

3∑
j=1

rij αj (1 ≤ i ≤ 3) , (26)

then reversing (26) as

αj =

3∑
i=1

rij βi (1 ≤ j ≤ 3) ,

we obtain

µc,d(ϕ, θ, ψ) =

∫
R

∫
R

∫
R

(
3∑
i=1

ri1 βi

)c( 3∑
i=1

ri2 βi

)d
f (β1, β2, β2) dβ1dβ2dβ3.

(27)

By using the trinomial expansion and the multi-index nota-
tion with rj = (r1j , r2j , r3j) and β = (β1, β2, β3), we have
for j ∈ {1, 2} and any integer n:(

3∑
i=1

rij βi

)n
=

∑
|k|=n

(n
k

)
rkj β

n−k .

Eq. (27) is then rewritten as

µc,d(ϕ, θ, ψ) =∫
R

∫
R

∫
R

∑
|k|=c

∑
|l|=d

(c
k

)(d
l

)
rk1 r

l
2 β

n−(k+l) f(β) dβ

=
∑
|k|=c

∑
|l|=d

(c
k

)(d
l

)
rk1 r

l
2 µf,n−(k+l) , (28)

where µf,n−(k+l) is the moment of f with order n− (k+ l).
Since the coefficients rij are trigonometric polynomials, we
are done.

B.2 Proof of Proposition 5

Proof Assuming that the distribution of the projection direc-
tions is uniform on the sphere, we first find the distribution
of ϕ and θ ∈ [−π/2, π/2). The area element of the sphere is

dS = dθ cos θ dϕ . (29)

It should be constant in order to obtain the uniform distribu-
tion on the sphere. However, dS in (29) is a function of cos θ
and is not constant if ϕ and θ are uniformly distributed in
[−π/2, π/2). Instead, ϕ and θ can be generated as follows:

ϕ = π u− π/2 , θ = arcsin(2v − 1) ,

where u, v is uniformly distributed in [0, 1). Then, dS is uni-
form:

dS = d(sin θ) dϕ = 2π dv du .

Now, for simplicity, we write M instead of Mh, where h ∈
{1, . . . , 7}, since the following steps are similar for any Hu
moment. Let consider a closed subinterval K of [−π/2, π/2)2

and two Hu moments M(ϕ, θ) and M(ϕ′, θ′) where (ϕ, θ)
and (ϕ′, θ′) lie in K. We have

|M(ϕ′, θ′)−M(ϕ, θ)| ≤

max
(ϕ,θ)∈K

(
max

(∣∣∣∣dMdϕ
∣∣∣∣ , ∣∣∣∣dMdθ

∣∣∣∣)) (|δϕ|+ |δθ|) ,

where δϕ = ϕ′ − ϕ and δθ = θ′ − θ.
Let u, v be such that ϕ = π u− π/2, θ = arcsin(2v − 1) and
δu, δv be such that ϕ + δϕ = π (u + δu) − π/2, θ + δθ =
arcsin(2(v + δv)− 1).
Then, |δϕ| = π |δu| and, observing the slope of the sine curve,

|δv| =
1

2

∣∣ sin(θ + δθ)− sin(θ)
∣∣ ≥

1

2
(sin(−π/2 + δθ)− sin(−π/2)) = sin2(δθ/2) ≥

1

π2
|δθ|2.

We derive that

|M(ϕ′, θ′)−M(ϕ, θ)| ≤

π max
(ϕ,θ)∈K

(
max

(∣∣∣∣dMdϕ
∣∣∣∣ , ∣∣∣∣dMdθ

∣∣∣∣)) (|δu|+√|δv|) .

Thus,

Prob
(
|M(ϕ′, θ′)−M(ϕ, θ)| < ε

)
≥ Prob (|δu|+ h(|δv|) < δ) ,

where h(x) =
√
x and

δ = ε/

(
π max
(ϕ,θ)∈K

(
max

(∣∣∣dMdϕ ∣∣∣ , ∣∣dMdθ ∣∣))).

Now, given 2n independent random variables (Ui, Vi)ni=1, uni-
formly distributed in [0, 1] and a real p ∈ (0, 1), let find a pos-
itive real δ as small as possible such that, for each i ∈ [1, n],
∃j 6= i, |Ui−Uj |+h(|Vi−Vj |) ≤ δ with a probability greater
than or equal to p (recall that the absolute difference between
two standard uniform variables has a triangular distribution
with a probability distribution function g : x 7→ 2(1− x), for
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x ∈ [0, 1]).

Prob

(
min
j 6=i

(
|Ui − Uj |+ h(|Vi − Vj |)

)
≤ δ

)
≥ p

⇐⇒
∏
j 6=i

Prob
(
|Ui − Uj |+ h(|Vi − Vj |) > δ

)
< 1− p

⇐⇒
∫ δ

0

(
g ∗
(
(g/h′) ◦ h−1

))
(t) dt ≥ 1− (1− p)

1

n−1

⇐⇒
4

3
δ3
(
1−

δ

20
(5 + 6δ − δ2)

)
≥ 1− (1− p)

1

n−1

⇐= δ3 ≥ 1− (1− p)
1

n−1 assuming δ < 1/2

⇐= δ ≥
(

1− (1− p)
1

n−1

) 1

3 .

Eventually, we have to get a bound for

max
(ϕ,θ)

(
max

(∣∣∣∣dMdϕ
∣∣∣∣ , ∣∣∣∣dMdθ

∣∣∣∣)) .

Bernstein’s inequality is now applied to derive upper bounds
for | dM/dϕ| and | dM/dθ|:

max

(∣∣∣∣dMdϕ
∣∣∣∣ , ∣∣∣∣ dM

dθ

∣∣∣∣) ≤ k max
(ϕ,θ)∈R

|M(ϕ, θ)| , (30)

where k is the order of M.
Thereafter, we set

εM(ϕ, θ) = kπ max
1≤i≤n

(|M(ϕi, θi)|)
(
1− (1− p)

1

n−1
) 1

3 .
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