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Abstract: The aim of this study was to develop an inversion approach to estimate surface soil 19 

moisture from X-band SAR data over irrigated grassland areas. This approach simulates a 20 

coupling scenario between Synthetic Aperture Radar (SAR) and optical images through the 21 

Water Cloud Model (WCM). A time series of SAR (TerraSAR-X and COSMO-SkyMed) and 22 
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optical (SPOT 4/5 and LANDSAT 7/8) images were acquired over an irrigated grassland region 23 

in southeastern France. 24 

An inversion technique based on multi-layer perceptron neural networks (NNs) was used to 25 

invert the Water Cloud Model (WCM) for soil moisture estimation. Three inversion 26 

configurations based on SAR and optical images were defined: (1) HH polarization, (2) HV 27 

polarization, and (3) both HH and HV polarizations, all with one vegetation descriptor derived 28 

from optical data. The investigated vegetation descriptors were the Normalized Difference 29 

Vegetation Index "NDVI", Leaf Area Index "LAI", Fraction of Absorbed Photosynthetically 30 

Active Radiation "FAPAR", and the Fractional vegetation COVER "FCOVER". These 31 

vegetation descriptors were derived from optical images. For the three inversion configurations, 32 

the NNs were trained and validated using a noisy synthetic dataset generated by the WCM for a 33 

wide range of soil moisture and vegetation descriptor values. The trained NNs were then 34 

validated from a real dataset composed of X-band SAR backscattering coefficients and 35 

vegetation descriptor derived from optical images. The use of X-band SAR measurements in HH 36 

polarization (in addition to one vegetation descriptor derived from optical images) yields more 37 

precise results on soil moisture (Mv) estimates. In the case of NDVI derived from optical images 38 

as the vegetation descriptor, the Root Mean Square Error on Mv estimates was 3.6 Vol.% for 39 

NDVI values between 0.45 and 0.75, and 6.1 Vol.% for NDVI between 0.75 and 0.90. Similar 40 

results were obtained regardless of the other vegetation descriptor used. 41 

Keywords: grassland; TerraSAR-X; COSMO-SkyMED; neural networks; inversion; soil 42 

moisture; vegetation indices 43 
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1. Introduction 44 

Monitoring the spatio-temporal evolution of soil moisture over irrigated grassland areas is of 45 

crucial importance for effective irrigation and crop management (Allen et al., 1998; Brereton and 46 

Hope-Cawdery, 1988; Hong et al., 2013; Leenhardt et al., 2004; Merot et al., 2008). In situ 47 

sensors to measure soil moisture are costly and provide only local information. Thus, these 48 

sensors are not sufficient for monitoring the soil moisture in huge irrigated grassland areas 49 

because the soil moisture presents large heterogeneities due to environmental characteristics and 50 

irrigation practices. SAR (Synthetic Aperture Radar) data have shown great potential to provide 51 

spatially distributed surface soil moisture measurements over bare and vegetated soil (Aubert et 52 

al., 2011; Baghdadi et al., 2012a; Gherboudj et al., 2011; Paloscia et al., 2008, 2013; Prevot et 53 

al., 1993; Santi et al., 2013).  Due to their ability to operate in all weather conditions, SAR 54 

sensors offer the opportunity to monitor and quantify the surface soil moisture at a large scale 55 

with high spatial and temporal resolution. 56 

SAR remote sensing was widely and primarily used to estimate the soil moisture and surface 57 

roughness. Over bare soil (or soil with little vegetation cover) the estimation of soil moisture was 58 

performed using either a physical (e.g the Integral Equation Model, Fung et al., 1992) or 59 

statistical (e.g Dubois and Oh models, Dubois et al., 1995; Oh, 2004) model in an inversion 60 

scheme. In contrast to physical models, statistical models need to be calibrated using in situ 61 

measurement and SAR observation acquired over the study area. Moreover, the use of statistical 62 

models is limited to the ranges of data variation used for calibration. Most of the studies used 63 

radar data in the X- and C-bands to estimate the soil moisture of bare soil and have shown good 64 

results, with an accuracy between 3 and 6 Vol.% (Aubert et al., 2011; Baghdadi et al., 2012a; 65 

Srivastava et al., 2003, 2009; Zribi et al., 2005).  66 
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The presence of vegetation cover complicates soil moisture retrieval from SAR data because 67 

vegetation canopy not only introduces two-way attenuation in SAR backscatter from soil, but 68 

also contributes its own backscatter (He et al., 2014; Srivastava et al., 2011). Most studies used 69 

the Water Cloud Model (WCM) in an inversion scheme for soil moisture estimation over areas 70 

with vegetated cover. In the WCM the total reflected radar signal is modeled as a function of the 71 

vegetation and soil contribution. The vegetation contribution, direct scattering and attenuation, is 72 

computed mainly using one biophysical parameter representing the vegetation effect. This 73 

biophysical parameter could be estimated from optical data. Therefore, it is important to combine 74 

SAR and optical data for operational mapping of soil moisture over areas covered by vegetation 75 

(Fieuzal et al., 2011; He et al., 2014; Hosseini and Saradjian, 2011; Notarnicola et al., 2006; 76 

Prakash et al., 2012). Currently, the high temporal repetitiveness of X-band (at  least one day in 77 

case of TSX and CSK) and optical (between 16 and 26 days for Landsat-7/8 and SPOT-4/5 data, 78 

respectively) data makes the combined use of SAR and optical data for soil and vegetation 79 

parameter monitoring more reliable in near real time. 80 

Optical data have shown a great potential to estimate biophysical parameters of vegetation. 81 

These parameters can be derived from optical data using physical and statistical models. Physical 82 

models (e.g PROSAIL, and SAFY) invert the vegetation spectral reflectance and estimate the 83 

biophysical parameters of the vegetation (Botha et al., 2010; Ceccato et al., 2001; Darvishzadeh 84 

et al., 2008; Fieuzal et al., 2011). Most statistical models are based on direct relationships 85 

between the Normalized Differential Vegetation Index (NDVI) and the measured biophysical 86 

parameters of vegetation, such as the LAI of wheat, grasslands, maize, corn and rice (Baret and 87 

Guerif, 2006; Baret et al., 2007; Bsaibes et al., 2009; Courault et al., 2008, 2010) 88 
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The possibility of retrieving soil parameters from vegetated surfaces was widely investigated 89 

using C-band configurations, whereas few studies were carried out using X-band data. Hajj et al. 90 

(2014) showed that the radar signal penetration depth in the X-band (incidence about 30°) is 91 

high, even in dense grass cover (HVE "Vegetation Height"  about 1m, BIO "Biomass" up to 3.9 92 

kg/m
2
). These results encourage the use of X-band with medium angle (about 30°) in both HH 93 

and HV polarizations for soil moisture estimates over grassland. For C and X-bands SAR data, 94 

studies showed that it is possible to estimate the soil moisture with accuracy from 2 to 8 Vol.% 95 

(RMSE "Root Mean Square Error") (Gherboudj et al., 2011; He et al., 2014; Notarnicola et al., 96 

2006; Prévot et al., 1993; Sikdar and Cumming, 2004; Wang et al., 2011; Yang et al., 2012; Yu 97 

and Zhao, 2011; Zribi et al., 2011). 98 

The aim of this study is to evaluate the potential of X-band SAR data combined with optical 99 

data to estimate soil moisture over irrigated grassland areas located in southeastern France. An 100 

approach based on the inversion of the WCM using multi-layer neural networks (NNs) was 101 

developed.This approach relies on four main steps: (1) parameterize the WCM, (2) simulate 102 

learning the SAR synthetic dataset, (3) train the neural networks according to three inversion 103 

configurations using a part of the synthetic dataset, and finally (4) apply the trained NNs on 104 

synthetic and real datasets to validate the inversion approach. In this paper, section 2 presents the 105 

study areas and the ground-truth measurements performed in situ. Section 3 describes the 106 

methodology. The results are shown in section 4. Finally, section 5 presents the principal 107 

conclusions. 108 
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2. Study area and in situ measurements 109 

2.1 Study area 110 

The study area, named "Domaine de Merle", is an experimental farm located in southeastern 111 

France (centered at 43.64° N, 5.00° E). Its extent is approximately 400 hectares, among which 112 

150 hectares are irrigated grassland for hay production (Figure 1). The produced hay is high-113 

value with a Certified Origin Product label (COP) thanks to the specific environmental 114 

conditions and conventional irrigation guidelines.  115 

The climate is Mediterranean with a rainy season between September and November. The 116 

average cumulative rainfall collected at the study site reached 457.5 mm in 2013, and in general 117 

varies between 350 mm and 800 mm over the past 20 years (Courault et al., 2010). The mean air 118 

temperature is approximately 8°C and 24°C during winter and summer, respectively (Courault et 119 

al., 2010). The in situ measured evaporation rate (potential evapotranspiration) can reach 10 120 

mm/day during the summer due to high temperatures associated with dry and windy conditions. 121 

Meteorological instruments installed in the study area allow for recording hourly temperature 122 

and precipitation.  123 

The topsoil texture of irrigated plots is stony loam (15% to 20% pebbles) with the depth 124 

varying from 30 cm to 80 cm, depending on the plot age (between 10 years and 3 centuries) 125 

(Bottraud et al., 1984; Mérot, 2007). The soil is always very smooth thanks to regular irrigation 126 

(approximately every 10 days) by gravity. Moreover, the soil has a moderate retention capacity, 127 

with concentrated vegetation roots in the upper 30 cm (Merot et al., 2008).  128 

Plots were leveled with a very gentle slope to allow irrigation by gravity (border irrigation). 129 

Irrigation is applied by means of canals which bring water to the highest extremities of the plots. 130 
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Each plot is irrigated every 10 days on average from April to September. Plots are harvested 131 

three times a year, in May, July, and September. 132 

 133 

Figure 1. Location of the study site (Domaine du Merle). Black polygons delineate training 134 

irrigated grassland plots where ground measurements were made. 135 

2.2 SAR Images 136 

Twenty three X-band SAR images were acquired by the COSMO-SkyMed (CSK) and 137 

TerraSAR-X (TSX) sensors between April and October 2013. All SAR images are in dual-138 

polarization mode (HH and HV) with incidence angles between 28.3° and 32.5° (Table 1). 139 

Moreover, TSX and CSK images are in Stripmap (pixel spacing of 3 m) and Stripmap Pingpong 140 

(pixel spacing of 8 m) imaging modes, respectively.  141 

Radiometric calibration of SAR images was performed using algorithms developed by the 142 

German Aerospace Center (DLR) and the Italian Space Agency (ASI). The radiometric 143 

calibration transforms the digital number of each pixel (DNi) to a radar backscattering coefficient 144 
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(σi°). For the seven TSX MGD (Multi Look Ground Range Detected), the radiometric 145 

calibrations were performed according to the following equation (Eineder et al., 2008): 146 

σi° = Ks . DNi². sin(θ) – NESZ     (Eq. 1) 

where Ks is the calibration constant, θ is the reference incidence angle, and NESZ is the Noise 147 

Equivalent Sigma Zero.  148 

For the sixteen CSK images, σi° was computed from the DNi using the following equation: 149 

  

expR2

ref
2

ii R)(sin
²FK

1
DN


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


  (Eq. 2) 150 

where Rref is the reference slant range, Rexp is the reference slant range exponent, K is the 151 

calibration constant, and F is the rescaling factor.  152 

Values of parameters given in Equations 1 and 2 are given in the metadata associated with 153 

each TSX and CSK image. The σi° were then averaged for each grassland plot and converted to 154 

the decibel scale according to the following equation: 155 

σ
o
dB = 10 . log10 (∑σi°)    (Eq. 3) 

The number of looks used to generate a pixel spacing of 3 m x 3 m is one look in both the 156 

range and the azimuth. However, to generate a pixel spacing of 8 m x 8 m, the number of looks 157 

is one look in the range and four in the azimuth. The radar image pixel count in the training plots 158 

is between 521 and 1686 pixels for the CSK images, and between 3425 and 11320 for the TSX 159 

images. 160 
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For training plots, a comparison was performed between the backscattering coefficients (in 161 

both HH and HV polarizations) derived from one TSX and one CSK image, both acquired on the 162 

same day (08/07/2013) with about 40 minutes time interval. For such time interval the soil and 163 

vegetation conditions remain unchanged. For both HH and HV polarizations, results showed 164 

unbiased comparison with low Root Mean Square Error (RMSE ~ 0.4 dB), low Mean Absolute 165 

Percentage Error (MAPE < 5 %) and high correlation coefficient (R
2
~0.9).   166 

2.3 Optical Images 167 

Thirty optical images were acquired by SPOT-4, SPOT-5, LANDSAT-7 and LANDSAT-8 168 

between April and October 2013 at dates very close to the SAR images (Table 1). The 169 

calibration of optical images includes correction for atmospheric effects and ortho-rectification. 170 

SPOT-4 images were calibrated by the CESBIO (Centre d'Etudes Spatiales de la BIOsphère) in 171 

the framework of the Take 5 experiment (http://www.cesbio.ups-tlse.fr/). Atmospheric correction 172 

of SPOT-4 images was performed according to the method described in the study of Hagolle et 173 

al. (2008). SPOT-5 and LANDSAT-8 were corrected for atmospheric effects using the 174 

Simplified Method of Atmospheric Correction (SMAC) (Rahman and Dedieu, 1994). The 175 

SMAC model transforms the TOA reflectance (Top Of Atmosphere) to an atmospherically 176 

corrected reflectance. Input data to the SMAC model, the Aerosol Optical Thickness (AOT) at 177 

550 nm, the water vapor content (g/m
2
), and Ozone, were obtained from the AERONET 178 

(AErosol Robotic NETwork) website (http://aeronet.gsfc.nasa.gov/). LANDSAT-7 images, 179 

already corrected for atmospheric effects, were downloaded directly from the website of the 180 

USGS (http://earthexplorer.usgs.gov/). The atmospheric correction of LANDSAT-7 images 181 

were carried out by NASA (National Aeronautics and Space Administration) by applying the 6S 182 

(Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer model data as 183 

http://www.cesbio.ups-tlse.fr/
http://www.cesbio.ups-tlse.fr/
http://aeronet.gsfc.nasa.gov/
http://earthexplorer.usgs.gov/
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described by Masek et al. (2013) . Finally, LANDSAT-7/8 images were already ortho-rectified, 184 

whereas SPOT-5 images were ortho-rectified using the terrain correction module implemented in 185 

the ERDAS imaging software. The optical image pixel count in the training plots is between 39 186 

and 108 for LANDSAT images, and between 79 and 223 for SPOT images. 187 

The NDVI was computed from the optical images. Then, NDVI pixel values were averaged 188 

for each plot. For all training plots, a comparison was performed between NDVI derived from 189 

images acquired by different sensors (LANDSAT-7/8, SPOT-4/5) with time interval less than 190 

four days. Results showed unbiased comparison with low RMSE (≤ 0.04), low MAPE (< 5%), 191 

and good correlation coefficient (R
2 

between 0.70 and 0.98). Thus, NDVI derived from different 192 

sensors were comparable. 193 

  194 
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Table 1. Acquisition dates of SAR and optical images (in 2013). Ground measurements are soil 195 

moisture and roughness, LAI, FAPAR, FCOVER, BIO, VWC, and HVE (described in section 196 

below). 197 

 

 

  

April May Jun July 

14 17 19 24 25 30 03 04 11 14 22 27 03 04 06 10 11 12 13 14 18 26 28 30 05 08 12 14 16 19 22 29 30 

TSX   X   X    X X               X       X 

CSK               X X X   X  X    X X  X     

SPOT-4 & 5 X   X    X  X      X   X  X   X X         

LANDSAT-7 

& 8 

 X `  X  X  X   X  X    X     X     X   X  X 

In situ 

measurement 

  X   X X   X X  X  X X X   X  X    X X  X X  X X 

  

August September October 

01 09 13 15 20 21 22 23 26 29 31 02 03 04 10 16 22 24 01 04 06 11 16 

TSX                   X     

CSK X X       X X  X   X     X   X 

SPOT-4 & 5 X    X            X    X X  

LANDSAT-7 & 

8 

   X    X   X     X  X      

In situ 

measurement 

X X X X  X X  X X  X X X X    X X X  X 

2.4 In situ measurements 198 

In situ campaigns were conducted simultaneously with SAR acquisitions to collect ground-199 

truthed measurements of soil and vegetation parameters in twelve training plots (plots 200 
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completely flooded or under harvest were not considered). These plots are well levelled and have 201 

enough size to be considered as sampling unit (Patel and Srivastava, 2013). The dimension of 202 

sampled plot ranges between 2.9 ha and 8.80 ha.  203 

2.4.1 Soil moisture and roughness 204 

Due to the high irrigation frequency and evapotranspiration rates, soil moisture measurements 205 

were performed close in time (within a window of 2 hours) to the satellite overpass. For each 206 

training plot, twenty five to thirty measurements of volumetric soil moisture approximately 207 

evenly distributed in space (on average every 20 m) were conducted in the top 5 cm of soil by 208 

means of a calibrated TDR (Time Domain Reflectometry) probe. Soil moisture was measured in 209 

the top 5 cm of soil because the radar penetration depth is assumed to be a few centimeters in the 210 

X-band (Ulaby et al., 1986). The soil moisture of each plot was represented by the mean of all 211 

soil moisture measurements performed in that plot, except when high spatial variability of soil 212 

moisture was observed. This variability is the result to current or recent (few hours before) 213 

irrigation events. In this case, many homogenous sub-plots were defined using hand-held GPS 214 

(brand: GARMIN, model: OREGON 550, location precision < 2m). The soil moisture was 215 

approximately 12 Vol.% when the plot was not supplied by water (irrigation or rainfalls) for 10 216 

days during the summer, and it reached approximately 45 Vol.% approximately 10 hours after 217 

irrigation ended. The standard deviation of soil moisture measurements within a plot was 218 

between 1 and 5 Vol.%. 219 

Soil roughness measurements were conducted only once because soil roughness remains 220 

stable, using a needle profile-meter (total length of 1 m, and needle spacing of 2 cm). Ten 221 

roughness profiles (five parallels and five perpendiculars to SAR’s line of sight) were recorded 222 

for each plot couple of days after the third harvest, when the vegetation was very short. The root 223 



13 
 

mean square height (Hrms) which represents the vertical scale of roughness, and the correlation 224 

length (L), representing the horizontal scale, were derived by processing the roughness profile. 225 

The individual autocorrelation functions are averaged, to produce a mean autocorrelation 226 

function representing each training plot (exponential function). Then, this mean autocorrelation 227 

function was used to derive Hrms and L. The Hrms values varied between 0.35 and 0.55 cm, and 228 

the correlation length (L) ranged from 2.00 to 4.60 cm.  229 

2.4.2 Vegetation parameters 230 

Additionally, in situ measurement of vegetation parameters were performed to estimate the 231 

fresh Biomass (BIO), Vegetation Water Content (VWC), Vegetation Height (HVE), leaf area 232 

index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and Fractional 233 

vegetation COVER (FCOVER). The vegetation characteristics within each plot are relatively 234 

homogeneous. To determine the BIO, two vegetation samples over a 50 cm x 50 cm square were 235 

clipped using shears at the center of each plot, and then weighed (wet biomass). Later, these 236 

samples were dried at 70°C for three days to calculate the VWC (VWC = wet biomass – dry 237 

biomass). The VWC is well correlated to the BIO (VWC = 0.80 BIO, R
2
=0.99), it increases as 238 

BIO increases (i.e. growing season progresses). A poor correlation was found between VWC and 239 

soil moisture. Twenty measurements of vegetation heights were performed for each plot (the 240 

standard deviation of HVE measurements within a plot was between 5 and 10 cm). Finally, 241 

twenty to thirty hemispherical images were acquired for each plot by means of a fish eye lens. 242 

These photos were processed using CanEye software (http://www6.paca.inra.fr/can-eye) to 243 

estimate the LAI, FAPAR and FCOVER. Figure 2 showed photos for plots at different 244 

vegetation growth stage. For HVE, LAI, FAPAR, and FCOVER the measurements location 245 

within each plot were approximately evenly distributed in space (on average every 20 m). All 246 

http://www6.paca.inra.fr/can-eye


14 
 

vegetation measurements within each plot were averaged to provide a mean value for each plot.  247 

Figure 2 showed photos for plots at different vegetation growth stage. 248 

In our study site, HVE reaches a value between 80 cm and 120 cm (BIO ~ 4.2 kg/m
2
, LAI ~ 5 249 

m
2
/m

2
) five to seven days before harvest. About ten days after harvest, the HVE reaches a value 250 

of about 30 cm (BIO ~0.80 kg/m
2
, LAI ~2.5 m

2
/m

2
). 251 

 252 

 

Training plot 2e (Jun 10, 2013)  

 

BIO= 0.89 kg/m
2
 

HVE = 0.25 m 

LAI = 1.01 m
2
/m

2
 

 

Training plot 1l (April 19, 2013)  

BIO= 1.90 kg/m
2
 

HVE =  0.50 cm 

LAI = 3.98 m
2
/m

2
 

 

Training plot 1m (May 14, 2013)  

BIO= 3.56 kg/m
2
 

HVE = 1.13 m 

LAI = 4.71 m
2
/m

2
 

 
Figure 2. Ground-based photographs of study sites illustrating variations in grass growth stages 253 

along with in situ measurements. 254 

  255 
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The in situ campaigns, frequently performed along each of the three growth cycles, capture 256 

full range of soil moisture and vegetation conditions (Table 2). Table 2 shows the number of 257 

sampled plots that correspond to soil and vegetation conditions.  258 

Table 2 :  The number of sampled plots for each soil moisture and vegetation conditions 259 

 
Low  

(HVE ≤ 25 cm) 

Medium 

 (25  < HVE ≤ 60 cm) 

High 

(HVE > 60 cm) 

Low 

 (Mv ≤ 20 Vol.%) 
10 17 13 

Medium 

(20 < Mv ≤ 30 Vol.%) 
19 40 20 

High  

(Mv > 30 Vol.%) 
20 21 18 

    

 
Low  

(VWC ≤ 0.7 kg/m
2
) 

Medium 

 (0.7  < VWC ≤ 1.3 kg/m
2
) 

High 

(VWC  > 1.3 kg/m
2
)
 

Low 

 (Mv ≤ 20 Vol.%) 
12 13 15 

Medium 

(20 < Mv ≤ 30 Vol.%) 
30 26 23 

High  

(Mv > 30 Vol.%) 
20 22 17 

 260 

3. Methods 261 

3.1 Radar signal modeling 262 

In this study, the Water Cloud model (WCM), developed by Attema and Ulaby (1978),  was 263 

used for modeling the total backscattered radar signal according to soil moisture and vegetation 264 

parameters. This semi-empirical model is widely used over soil with vegetation cover because it 265 

can be easily performed in an inversion scheme to estimate soil moisture and vegetation 266 

parameters (Gherboudj et al., 2011; Prevot et al., 1993; De Roo et al., 2001; Sikdar and 267 

Cumming, 2004; Soon-Koo Kweon et al., 2012; Wang et al., 2011; Yang et al., 2012; Yu and 268 

Zhao, 2011; Zribi et al., 2011). The significant variables in the WCM are the medium height and 269 
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dielectric cylinder density (Attema and Ulaby, 1978). The latter was assumed to be proportional 270 

to the volumetric water content of the canopy. Very few studies have compared different 271 

vegetation parameters to define the optimal one for use in the WCM. Champion (1991) and 272 

Champion and Guyot (1991) found that the LAI (m
2
/m

2
) better represents the wheat canopy in 273 

the WCM than the VWC per unit volume (kg/m
3
). Said et al. (2012) compared the use of LAI 274 

(m
2
/m

2
), VWC (kg/m

2
), and HVE and found that the use of LAI as the vegetation descriptor 275 

allows the accurate simulation of the vegetation volume contribution (sugarcane, cherry, rice, 276 

and grassland). 277 

In this context, the WCM represents the total backscattered radar signal (σ
0

tot) in linear scale 278 

as a sum of the direct vegetation contribution (σ
0

veg) and soil contribution attenuated by the 279 

vegetation volume  (T
2
 σ

0
 sol). 280 

σ
0

tot= σ
0
 veg + T

2
 σ

0
 sol  (Eq. 4) 

σ
0

veg = A.V1.cos θ  (1- T
2
)  (Eq. 5) 

T
2
 = Exp (-2.B.V2.sec θ)  (Eq. 6) 

σ
0

sol = C(θ) exp (D.Mv)  (Eq. 7) 

 281 

  282 
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Where:  283 

 V1 and V2 are vegetation descriptors (BIO (kg/m
2
), VWC (kg/m

2
), HVE (m), LAI 284 

(m
2
/m

2
), FAPAR, FCOVER, and NDVI) 285 

 θ is the radar incidence angle 286 

 A and B are parameters that depend on the canopy descriptors and radar 287 

configurations  288 

 T
2
 is the two way attenuation 289 

 C is dependent on the roughness and incidence angle 290 

 D is the sensitivity of the radar signal to volumetric soil moisture in the case of 291 

bare soils, which is dependent on radar configurations 292 

 Mv is the volumetric soil moisture (expressed in Vol.%).  293 

 294 

3.2 Soil moisture retrieval 295 

In this study, soil moisture was estimated by means of multi-layer perceptron neural networks 296 

(NNs). The Levenberg-Marquardt optimization algorithm (Marquardt, 1963) was used to train 297 

the NNs. The NNs architecture is composed of three layers: input, one hidden, and output. The 298 

NNs have a two dimensional input vector when using one polarization (HH or HV) in addition to 299 

one vegetation descriptor. Using two polarizations (HH and HV) in addition to one vegetation 300 

descriptor, the NNs have a three dimensional input vector. The one dimensional output vector 301 

contains soil moisture. The numbers of neurons associated with the hidden layer was determined 302 

by training the NNs using different numbers of neurons. 20 hidden neurons provided accurate 303 

estimates of reference parameters (Baghdadi et al., 2012a; Chai et al., 2009). Sigmoidal and 304 

linear transfer functions were associated with the hidden and output layer, respectively. These 305 
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functions allow non-linear transformations from input to output (Del Frate and Solimini, 2004; 306 

Del Frate et al., 2003; Paloscia et al., 2008). To study the performance of the inversion approach, 307 

the NNs were trained and validated on the synthetic datasets.  308 

A Synthetic dataset of SAR backscatter data was generated from the parameterized WCM to 309 

be used in the procedures leading to the estimation of soil moisture by means of the neural 310 

networks (NNs) technique. The parameterized WCM is able to simulate the backscattering 311 

coefficients at both HH and HV polarizations using the volumetric soil moisture, one vegetation 312 

descriptor, and incidence angle values as input variables. Only parameters easily estimated from 313 

optical images such as NDVI, LAI, FAPAR and FCOVER were considered in the synthetic 314 

datasets generation. Indeed, only few studies showed that the optical data could be used for 315 

estimating the biomass, vegetation water content, and the vegetation height. Four synthetic 316 

datasets have thus been generated using NDVI, LAI, FAPAR and FCOVER as vegetation 317 

descriptors (V1 and V2 in equations 4 and 5) to evaluate the most adequate vegetation descriptor 318 

for vegetation layer characterization in the WCM, and to open a perspective for future works 319 

based on SAR and optical data coupling. Indeed, several studies have developed methods to 320 

correct atmospheric effects in optical images, allowing the accurate estimation of the NDVI 321 

(Agapiou et al., 2011; Masek et al., 2013; Rahman and Dedieu, 1994; Saastamoinen, 1972; 322 

Vermote et al., 2002). Regarding the other vegetation descriptors,  many studies have developed 323 

methods to estimate LAI, FAPAR, and FCOVER from optical images (Baret and Guyot, 1991; 324 

Bsaibes et al., 2009; Carlson and Ripley, 1997; Carlson et al., 1994; Claverie et al., 2013; 325 

Courault et al., 2008; Darvishzadeh et al., 2008b; Duveiller et al., 2011; Fensholt et al., 2004; 326 

Guerschman et al., 2009; Li et al., 2014; North, 2002). In addition, in the framework of our 327 

study, LAI, FAPAR, and FCOVER of our studied grassland were derived from optical images 328 
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(SPOT-4, SPOT-5, LANDSAT-7, LANDSAT-8) using the BV-NNET (Biophysical Variables 329 

Neural NETwork) tool developed based on algorithms proposed by Baret et al. (2007) and then 330 

optimized through the SIRRIMED project (http://www.sirrimed.org/index.php). A comparison 331 

was performed between the LAI, FAPAR and FCOVER derived from BV-NNET (using optical 332 

images) and those derived from hemispherical photos. Results showed unbiased estimations of 333 

LAI, FAPAR, and FCOVER by the BV-NNET. Moreover, the BV-NNET estimates the LAI 334 

with an RMSE of 0.66 m
2
/m

2
 and an RRMSE (as well as MAPE) around 29%. For FAPAR and 335 

FCOVER, an RMSE around 0.13 and an RRMSE (as well as MAPE) around 19% were obtained. 336 

The synthetic dataset based on NDVI as the vegetation descriptor comprises 80 elements (8 x 337 

10, Table 3). Each element of the dataset contains radar signals in HH and HV polarizations for a 338 

given NDVI and volumetric soil moisture (Table 3). Moreover, synthetic dataset based on LAI 339 

and FAPAR (as well as FCOVER) comprised 248 (8 x 31, table 3) and 168 (8 x 21, table 3) 340 

elements, respectively. 341 

Table 3. The minimum, maximum, and step values of WCM inputs. 342 

Parameter Min value Max value Step Total elements 

NDVI 0.45 0.90 0.05 10 

LAI (m
2
/m

2
) 0.0001 6 0.20 31 

FAPAR 0.0001 1 0.05 21 

FCOVER 0.0001 1 0.05 21 

Mv (Vol.%) 10 45 5 8 
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To make WCM simulations more realistic, uncertainties of SAR measurements were added to 343 

the simulated radar response. The uncertainties range is between 0.6 and 1 dB for CSK and TSX 344 

sensors (Agenzia Spaziale Italiana, 2007; Coletta et al., 2007; Iorio et al., 2010; Schwerdt et al., 345 

2008; Torre et al., 2011). Thus, we considered two absolute uncertainties values (±0.75, and 346 

±1.00 dB) to be added to the simulated radar response. Moreover, relative uncertainties were 347 

added on our reference vegetation descriptor values (NDVI, LAI, FAPAR, and FCOVER) to 348 

handle the associated uncertainty. For NDVI, Simoniello et al. (2004) reported a relative 349 

uncertainty of approximately 8% on NDVI values estimated from AVHRR (Advanced Very 350 

High Resolution Radiometer) calibrated data over pasture and cultivated areas. El Hajj et al. 351 

(2008) found that the relative uncertainty on NDVI computed from SPOT-5 surface reflectance 352 

data over sugarcane fields is approximately 13%. For the other vegetation descriptors, studies 353 

showed for crop canopies (corn, grass, sunflower, maize, wheat, rapeseed and sunflower) relative 354 

uncertainty between 10% and 30% for LAI, and between 5% and 20% for FAPAR and FCOVER 355 

(Bsaibes et al., 2009; Claverie et al., 2013; Courault et al., 2008; Duveiller et al., 2011; North, 356 

2002). In addition, the uncertainty on the vegetation descriptor estimates depends on crop type 357 

(Bsaibes et al., 2009; Claverie et al., 2013). Moreover, the comparison between derived LAI, 358 

FAPAR, and FCOVER from our optical images with ground-truthed measurements yields a 359 

relative RMSE (Root Mean Square Error) of 29.12, 19.24, and 18.14%, respectively. Therefore, 360 

in our study we considered a relative additive noise of 15, 30, and 20% on the NDVI, LAI, and 361 

FAPAR (as well as FCOVER), respectively.  362 

Zero-mean Gaussian noise with a standard deviation equal to absolute and relative 363 

uncertainties were added to the radar signal simulated by the WCM and reference vegetation 364 

descriptors, respectively. Finally, to obtain statistically significant datasets, 500 random 365 

http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html
http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html
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samplings of zero-mean Gaussian noise was added to each simulated radar response and each 366 

vegetation descriptor value. 367 

Three case studies to estimate soil moisture using X-band SAR data were evaluated: 368 

 Case 1: Noisy radar signal at HH polarization and noisy vegetation descriptor as the 369 

inputs to NNs, and soil moisture as the target.  370 

 Case 2: Noisy radar signal at HV polarization and noisy vegetation descriptor as the 371 

inputs to NNs, and soil moisture as the target.  372 

 Case 3: Noisy radar signal at HH and HV polarizations and noisy vegetation descriptor as 373 

the inputs to NNs, and soil moisture as the target.  374 

Finally, the calibrated NNs were used to invert real SAR measurements for estimation of the 375 

soil moisture. The inversion was performed according to the configurations above, but using 376 

SAR and a vegetation descriptor (LAI, FAPAR, and FCOVER) derived from optical images 377 

instead of the noisy radar signal and vegetation descriptors. 378 

4. Results and discussions 379 

4.1 Water Cloud Model parameterization, and modelling results 380 

This section presents the results of the Water Cloud Model (WCM) parameterization, and shows 381 

the radar signal modelling results as a function of soil and vegetation parameters. 382 

4.1.1 Water Cloud Model parameterization 383 

The real dataset composed of SAR data and measurements of soil moisture and vegetation 384 

descriptors was divided into two sub-datasets. The first sub-dataset (training dataset) was used to 385 

fit the WCM model, whereas the second (validation dataset) was used to validate the soil 386 
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moisture estimation of the WCM model. The training dataset contains the SAR and the ground-387 

truthed data obtained during the three cycles for the half of training plots, whereas the validation 388 

dataset comprises the data collected for other half of plots. These two real sub-datasets contain a 389 

wide range of soil moisture (Mv) and vegetation descriptor values measured in situ (BIO, VWC, 390 

HVE, LAI, FAPAR, FCOVER) and derived from optical images (NDVI, LAI, FAPAR, and 391 

FCOVER) (Table 4). The two real sub-datasets have almost the same ranges of variation. 392 

 393 

Table 4: ranges of variation of real training and validation datasets 394 

R
ea

l 
tr

ai
n
in

g
 d

at
as

et
 

 
Min Mean MAX Unit 

Mv 10.9 25.6 39.0 Vol.% 

In situ BIO 0.28 1.41 4.14 Kg/m
2
 

In situ VWC 0.15 1.12 3.35 Kg/m
2
 

In situ HVE 0.08 0.48 1.20 m 

In situ LAI 0.10 2.64 5.88 m
2
/m

2 

In situ FAPAR 0.20 0.79 1.00 - 

In situ FCOVER 0.12 0.63 0.96 - 

LAI (BV-NNET) 0.20 2.63 5.04 m
2
/m

2 

FAPAR (BV-NNET) 0.16 0.77 0.98 - 

FCOVER (BV-NNET) 0.16 0.66 0.96 - 

NDVI 0.47 0.73 0.88 -
 

 
    

 

R
ea

l 
v
al

id
at

io
n
 d

at
as

et
 

Mv 14.1 27.0 47.0 Vol.% 

In situ BIO 0.30 1.31 3.46 Kg/m
2
 

In situ VWC 0.03 1.02 2.87 Kg/m
2
 

In situ HVE 0.08 0.45 1.15 m 

In situ LAI 0.26 2.23 4.00 m
2
/m

2 

In situ FAPAR 0.20 0.73 0.93 - 

In situ FCOVER 0.09 0.57 0.88 - 

LAI (BV-NNET) 0.26 2.16 5.10 m
2
/m

2 

FAPAR (BV-NNET) 0.09 0.69 0.98 - 

FCOVER (BV-NNET) 0.09 0.58 0.94 - 

NDVI 0.48 0.69 0.87 -
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WCM parameterization consists of first estimating the sensitivity parameter D before fitting 395 

the model against ground-truthed measurements to estimate parameters A, B, and C (equations 4, 396 

5, and 6).  397 

 To estimate parameter D, SAR backscattering coefficients in HH and HV 398 

polarizations (dB scale) were linearly related to soil moisture (Vol.%) for 18 plots 399 

recently harvested (vegetation very short), to have the minimum vegetation effect on 400 

the backscattering coefficients (Figure 3). The slopes of these linear regressions 401 

represent the sensitivity of the backscattered radar signal to volumetric soil moisture 402 

on the dB scale (Figure 3). Results showed a good correlation between radar signal 403 

and volumetric soil moisture (R
2
 = 0.87 and 0.71 for HH and HV, respectively). 404 

Moreover, results showed that the HH polarization is slightly more sensitive (0.172 405 

dB/Vol.%) to volumetric soil moisture rather than HV (0.135 dB/Vol.%) polarization 406 

(Figure 3). In the WCM model, the sensitivity parameter D is represented on a linear 407 

scale. In linear unit, these sensitivities DHH and DHV are 0.03971 [m
2
/m

2
]/[Vol.%] and 408 

0.03116 [m
2
/m

2
]/[Vol.%] for HH and HV polarizations, respectively 409 

 A, B and C parameters were then estimated for each radar polarization and each 410 

vegetation descriptor (NDVI and ground-truthed BIO, VWC, HVE, LAI, FAPAR, and 411 

FCOVER) by minimizing the sum of squares of the differences between the simulated 412 

and measured radar signal. Therefore, the WCM was parameterized according to 413 

seven vegetation descriptors (Table 5).  With A, B and C parameters, it becomes 414 

possible to predict WCM components (σ
0

veg, T
2
, and σ

0
sol) and consequently the total 415 

backscattering coefficient (σ
0

tot) using one vegetation descriptor and the soil moisture 416 

values as inputs in the WCM.   417 
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(a) 

 

(b) 

Figure 3. Sensitivity of radar signal in both HH and HV polarization to volumetric soil moisture. 418 

 419 

To validate the fitted WCM, a comparison was performed between the radar backscattering 420 

coefficients predicted by the mean of the parameterized WCM (using the soil moisture and 421 

ground-truthed vegetation descriptors of the real validation dataset) and the observed 422 

backscattering coefficients of the real validation dataset. Results showed that the fit of the WCM 423 

was slightly better in HH polarization than in HV polarization (Table 5).  The limited correlation 424 

coefficient (R
2
)
 
is not due to difficulty of model to simulate radar data but particularly to limited 425 

range of radar data dynamic for different moisture and vegetation conditions. In addition, the 426 

quality of the fit is approximately the same for all the used vegetation descriptors with the RMSE 427 

(Root Mean Square Error) on the predicted backscattering coefficients between 0.76 and 0.86 dB 428 

in HH, and between 0.85 and 0.94 dB in HV polarization, depending on the used vegetation 429 

descriptor. Water cloud model is considered adequately fitted because the RMSE on simulated 430 

radar signal in both HH and HV polarizations is less than 1 dB, which is the same magnitude as 431 

the CSK and TSX sensors precision (Agenzia Spaziale Italiana, 2007; Coletta et al., 2007; Iorio 432 

et al., 2010; Schwerdt et al., 2008; Torre et al., 2011). Several studies used the WCM model to 433 

predict radar backscattering coefficients (Attema and Ulaby, 1978; Gherboudj et al., 2011; 434 
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Prevot et al., 1993; Ulaby et al., 1984). Attema and Ulaby, (1978) simulated the X-band 435 

backscattering coefficients for crops fields (alfalfa, corn, milo, and wheat) in HH and VV 436 

polarizations for a wide range of incidence angles (0
o
-70

o
) with a RMSE of simulated 437 

backscattering coefficients ranging between 1.5 and 2 dB, depending on the crop type. Ulaby et 438 

al, (1984) simulated the radar backscattering coefficients in the X-band (VV polarization and 50
o 439 

incidence angle) for wheat fields with a RMSE of 1.6 dB.  Prevot et al. (1993) obtained a RMSE 440 

for wheat fields on the simulated backscattering coefficients of 1.24 and 0.72 dB in the C-band 441 

(HH, 20
o
) and X-band (VV, 40

o
), respectively. Gherboudj et al. (2012) predicted the 442 

backscattering coefficients in the C-band, in quad-polarization mode with a 30
o
 incidence angle 443 

for wheat and pea fields. The RMSE on the predicted backscattering coefficients in HH and VV 444 

polarizations was approximately 1 (for wheat) and 0.7 dB (for peas), respectively. In cross 445 

polarization, the backscattering coefficient was simulated with a RMSE of 1.2 and 0.2 dB for 446 

wheat and pea fields, respectively. 447 

  448 
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Table 5. Fit of WCM parameters for HH and HV polarizations (real validation dataset). 449 

V1=V2 AHH BHH CHH DHH AHV BHV CHV DHV 
R

2
HH 

(R
2

HV) 

RMSEHH  

(RMSE HV) 

(dB) 

Ground-

truthed 

BIO 

0.0345 0.0995 0.0334 0.03971 0.0068 0.1850 0.0093 0.03116 
0.49 

(0.39) 

0.85  

(0.86) 

Ground-

truthed 

VWC 

0.0438 0.1047 0.0324 0.039711 0.0084 0.1927 0.0088 0.03116 
0.49 

(0.39) 

0.86  

(0.86) 

Ground-

truthed 

HVE 

0.1045 0.4314 0.0357 0.03971 0.0207 0.7882 0.0105 0.03116 
0.52 

(0.40) 

0.79  

(0.85) 

Ground-

truthed 

LAI 

0.0205 0.0613 0.0338 0.03971 0.0041 0.0856 0.0088 0.03116 
0.48 

(0.29) 

0.86  

(0.95) 

Ground-

truthed 

FAPAR 

0.0911 0.3275 0.0354 0.03971 0.0177 0.4662 0.0096 0.03116 
0.47 

(0.25) 

0.80  

(0.93) 

Ground-

truthed 

FCOVER 

0.1021 0.3696 0.0355 0.03971 0.0203 0.5212 0.0095 0.03116 
0.48 

(0.27) 

0.82  

(0.94) 

NDVI 0.0767 0.7944 0.0644 0.03971 0.016474 1.134 0.0221 0.03116 
0.51 

(0.33) 

0.76  

(0.93) 

 450 

4.1.2 Modelling results 451 

Modelling results obtained by using the NDVI as the vegetation descriptor in the WCM 452 

model will be presented first because (i) the best fit of water cloud model was obtained with 453 

NDVI as vegetation descriptor, and (ii) it is easier to derive NDVI from optical data than LAI, 454 

FAPAR, and FCOVER. Next, results with the LAI, FAPAR, FCOVER, BIO, VWC, and HVE as 455 

vegetation descriptors will be briefly discussed.   456 
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The WCM components (T
2
σ°sol and σ°veg) were simulated for wide ranges of soil moisture 457 

(Mv) and NDVI values using the WCM with the NDVI as the vegetation descriptor. For both HH 458 

and HV polarizations, the vegetation contribution (σ°veg), soil contribution (σ°sol), two-way 459 

attenuation (T
2
), and consequently, the total backscattered signal (σ°tot) were generated in a linear 460 

scale using the parameterized equations (3) to (6). NDVI values ranging from 0.45 to 0.90 were 461 

used to simulate the vegetation contribution and the two-way attenuation (V1=V2=NDVI in 462 

equations 4 and 5). In addition, the soil contribution was simulated using Mv-values ranging from 463 

10 to 45 Vol.%
 
(equation 6). The maximum values of NDVI and Mv correspond to the highest 464 

values derived from optical images and measured in situ, respectively. 465 

Figure 4 shows the modelled σ°veg, T
2
σ°sol and σ°tot in dB units as a function of Mv using 466 

different values of NDVI (0.5, 0.7, and 0.9). In addition, the modelled σ°veg, T
2
σ°sol and σ°tot 467 

were also plotted according to NDVI for Mv values of 15, 20, 30 and 40 Vol.%
 
(Figure 5). 468 

Figure 4 shows that σ°tot in both HH and HV polarizations are always sensitive to soil 469 

moisture even for high NDVI values. The sensitivity of σ°tot to soil moisture decreases with the 470 

NDVI for NDVI between 0.45 and 0.90.
 
For NDVI value equal to 0.50 this sensitivity is about 471 

0.14 dB/% and 0.10dB/% for HH and HV, respectively. Moreover, for a NDVI value equal to 472 

0.9, this sensitivity is approximately 0.08 and 0.04 dB/Vol.% in HH and HV, respectively. For 473 

each case in figure 4 statistical index were provided in table 6. Results showed that the WCM 474 

adequately simulates SAR real validation dataset observations (0 <Bias < 0.3, RMSE < 1dB, 475 

RRMSE and MAPE < 7%). 476 

Figure 5 shows that σ°tot in both HH and HV polarization is slightly sensitive to the NDVI (for 477 

NDVI between 0.45 and 0.90). Indeed, as the vegetation grows, the decreasing soil contribution 478 

is similar to the increasing vegetation contribution. σ°tot shows slight decreases with increases in 479 
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the NDVI until reaching a minimum, and starts to slightly increase. In both HH and HV 480 

polarizations, σ°tot decreases with NDVI for a NDVI lower than  0.60, 0.75, and 0.90 for Mv of 481 

15, 20, and 30 Vol.%, respectively. However, the σ°tot  in both HH and HV polarizations always 482 

decreases with NDVI  (NDVI between 0.45 and 0.90) for MV equal to 40 Vol.% due to the high 483 

soil contribution (Figures 5 d and h).  This decrease of σ°tot with the NDVI is related to an 484 

increase in the attenuation of the soil contribution (T
2
), which is more important than the 485 

enhanced contribution from the vegetation canopy (Balenzano et al., 2011; Brown et al., 2003; 486 

Mattia et al., 2003). Beyond these values of NDVI thresholds, σ°tot increases slightly with NDVI 487 

for Mv values between 15 and 30 Vol.%. This increase of σ°tot with NDVI results in the increase 488 

of the vegetation contribution combined with the decrease in the soil contribution. Moreover, the 489 

decrease and increase of σ°tot according to the NDVI are slightly more pronounced in HV than in 490 

HH polarization. Regarding vegetation contribution (σ°veg), results showed that the modelled 491 

σ°veg in HH polarization increases from -17.7 dB for NDVI of 0.45 to -13.2 dB for NDVI of 0.90. 492 

For HV polarization, σ°veg increases from -23.5 dB to -18.8 dB for NDVI between 0.45 and 0.90.  493 

For each case in figure 5, statistical index were provided in table 7. Results showed that the 494 

WCM adequately simulates SAR real validation dataset observations (0 < Bias < 0.7, RMSE ≤ 495 

1dB, RRMSE and MAPE < 8%). 496 

  497 
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 (a) 
 

(b)  (c) 

 (d) 
 

(e)  (f) 

Figure 4. Behavior of WCM components (σ°veg, T
2
σ°sol, and σ°tot) in both HH and HV 498 

polarizations according to Mv. Black points represent the SAR data (σ°tot: real validation dataset) 499 

associated with NDVI measurements within ± 0.1 of the NDVI used in the modelling.   500 

Table 6: Statistical index for each case in figure 4 501 

Case Polarization NDVI  Bias (dB) RMSE (dB) RRMSE (dB) MAPE (dB) R
2
 Nb 

Figure 4a HH 0.50 0.3 0.6 6.0 5.4 0.71 23 

Figure 4b HH 0.70 0.0 0.9 8.0 6.7 0.45 52 

Figure 4c HH 0.90 0.1 0.8 7.0 4.8 0.12 14 

 

Figure 4d HV 0.50 0.1 1.0 5.7 5.1 0.30 23 

Figure 4e HV 0.70 0.2 0.8 4.3 3.3 0.26 52 

Figure 4f HV 0.90 0.1 1.1 6.4 5.5 0.03 14 

 502 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 5. Behavior of WCM components (σ°veg, T
2
σ°sol, and σ°tot) in both HH and HV 503 

polarizations according to NDVI. Black points represent the SAR data (σ°tot: real validation 504 

dataset) associated with Mv measurements within ± 5 vol. % of the Mv used in the modelling. 505 

Table 7: Statistical index for each case in figure 5 506 

Case 

Polarizatio

n 

MV 

(Vol.%)  

Bias 

(dB) 

RMSE 

(dB) 

RRMSE 

(%) 

MAPE 

(%) R
2
 Nb 

Figure 5a HH 15 -0.3 0.8 6.8 5.6 0.13 17 

Figure 5b HH 20 -0.1 0.9 7.7 6.7 0.00 36 

Figure 5c HH 30 0.1 0.7 7.1 5.4 0.16 37 

Figure 5d HH 40 0.6 0.8 8.7 7.6 0.32 12 

 

Figure 5e HV 15 -0.1 0.8 4.3 3.6 0.05 17 

Figure 5f HV 20 0.0 0.8 4.5 3.7 0.01 36 

Figure 5g HV 30 0.1 1.0 5.5 4.7 0.18 37 

Figure 5h HV 40 0.6 1.1 6.3 5.0 0.41 12 

Table 8 shows NDVI thresholds from which the T
2
σ°sol is dominated by σ°veg (T

2
σ°sol < σ°veg). 507 

In HH polarization, these thresholds are approximately 0.69, 0.74, 0.85, 0.97 for soil moisture of 508 
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15, 20, 30 and 40 Vol.%, respectively. In HV polarizations and for Mv values of 15, 20, 30 and 509 

40 Vol.%, σ°veg dominates T
2
σ°sol for NDVI values greater than 0.62, 0.65, 0.71, and 0.79, 510 

respectively. Thus, for a given soil moisture value, the thresholds of NDVI for which the 511 

vegetation contribution dominates the soil contribution are lower in HV than in HH (Table 8). 512 

Table 8. Threshold values of vegetation descriptors at which σ°veg dominates T
2
σ°sol at both HH 513 

and HV polarizations. Dash symbols mean that the σ°veg is always dominated by T
2
σ°sol. 514 

 Mv (Vol.%) 

HH polarization HV polarization 

15 20 30 40 15 20 30 40 

NDVI 0.69 0.74 0.85 0.97 0.62 0.65 0.71 0.79 

LAI (m
2
/m

2
) 4.22 4.60 5.43 - 3.69 3.94 4.47 5.05 

FAPAR 0.87 0.95 - - 0.77 0.82 0.93 - 

FCOVER 0.78 0.84 0.99 - 0.68 0.72 0.82 0.92 

BIO (kg/m
2
) 2.55 2.77 3.28 3.85 1.95 2.07 2.34 2.64 

VWC (kg/m
2
) 2.20 2.40 2.84 3.35 1.70 1.82 2.06 2.32 

HVE (m) 0.70 0.76 0.90 - 0.55 0.58 0.65 0.73 

WCM components were also modelled using the LAI, FAPAR, FCOVER, BIO, VWC and 515 

HVE as vegetation descriptors. Similar results on the behavior of modelled total backscattered 516 

radar signal (σ°tot) were obtained with all vegetation descriptors. Table 8 shows the values of the 517 

vegetation descriptors at which σ°veg dominates T
2
σ°sol. As an example, for soil moisture of 20 518 

Vol.%, σ°veg in HH polarization dominates T
2
 σ°sol for LAI values higher than 4.60 m

2
/m

2
. In 519 

addition, for some soil moisture and vegetation descriptor conditions, the vegetation contribution 520 

is always dominated by the soil contribution (dash symbol in Table 8). As an example, for soil 521 
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moisture of 40 Vol.%, the vegetation contribution in HH polarization is always dominated by the 522 

soil contribution for HVE values between 0 and 1.2 m (maximum value of HVE obtained by 523 

ground-truthed measurements and used in modelling). In addition, Table 8 shows that the 524 

vegetation contribution in HV polarization dominates the soil contribution at threshold values of 525 

vegetation descriptors which are lower than those observed in HH polarization. 526 

4.2 Soil moisture retrieval 527 

Synthetic and real datasets were used to estimate the soil moisture for the three inversion 528 

configurations defined in section 3.2: (1) using the radar signal in HH and one vegetation 529 

descriptor, (2) using the radar signal in HV and one vegetation descriptor, and (3) using the radar 530 

signal in both HH and HV and one vegetation descriptor. The estimated soil moistures were 531 

compared to reference soil moisture values to evaluate the accuracy of the soil moisture 532 

estimates of each inversion configuration. 533 

Before the use of neural networks for soil moisture estimation, the WCM model was 534 

numerically inverted. For some points of the synthetic and real datasets where the SAR 535 

backscattering coefficient is lower than the vegetation contribution simulated by the WCM, the 536 

direct inversion of the WCM is not numerically possible (about 10% of the datasets). Such 537 

limitation is overcome when using the NNs for both synthetic and real datasets. In addition, the 538 

Root Mean Square Error on Mv estimates was better with the NNs than using the direct inversion 539 

of the WCM (precision on Mv two times better). For these reasons, the neural networks inversion 540 

technique for soil moisture estimation was considered. 541 
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To estimate the soil moisture, neural networks were built for each inversion configuration 542 

using a part of the synthetic dataset. The quality of inversion approaches were studied using both 543 

the other part of the synthetic dataset and the real validation dataset. 544 

4.2.1 Synthetic dataset  545 

The synthetic dataset was composed of 2.10
7
 elements (10 NDVI values x 8 Mv values x 500 546 

random sampling values of the NDVI x 500 random sampling values of the simulated radar 547 

signal). According to the radiometric accuracy of the TerraSAR-X and COSMO-SkyMed 548 

signals, the radar signal simulated by the WCM model was noised using an additive Gaussian 549 

noise with zero mean and a standard deviation of 0.75 and 1 dB. The synthetic dataset was 550 

randomly divided into 80% training and 20% validation data samples. The prediction error based 551 

on a 5-fold cross-validation was estimated for each inversion configuration to assess the 552 

performance of the neural networks. Analysis of the results obtained with NDVI as the 553 

vegetation descriptor will be provided in detail whereas the results based on LAI, FAPAR, and 554 

FCOVER as the vegetation descriptors will be briefly described. 555 

The Root Mean Square Error (RMSE), the Relative Root Mean Square Error (RRMSE), the 556 

Mean Absolute Percentage Error (MAPE), the associated mean deviation (bias = estimated Mv - 557 

reference Mv), and the correlation coefficient (R
2
) were used to evaluate the performance of each 558 

inversion configuration. Table 9 presents statistical indexes (RMSE, RRMSE, MAPE, bias, and 559 

R
2
) on Mv estimates computed from the validation dataset for reference Mv between 10 and 45 560 

Vol.% and NDVI values between 0.45 and 0.90. Table 9 shows that the RMSE (as well as 561 

RRMSE, and MAPE) on Mv estimates is lower with HH polarization than with HV polarization 562 

(configuration 1 in comparison to configuration 2, Table 9). For a noise condition on the radar 563 

signal of ±0.75 dB, the RMSE is 4.5 Vol.% (RRMSE and MAPE about 17 %) with HH 564 
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compared to 5.1 Vol.% (RRMSE and MAPE 19 %) with HV. In addition, results showed that the 565 

use of both HH and HV (in addition to the NDVI, configuration 3) slightly decreases the RMSE 566 

on Mv estimates (lower than 1 Vol.%). With configuration 3, the RMSE on Mv estimates reaches 567 

3.7 Vol.% (RRMSE and MAPE about 14%) for a noise on the modeled radar signal of ±0.75 568 

(Table 9). Table 9 also shows that the RMSE on Mv increases when the noise added to the 569 

modeled radar signal increases. This increase is approximately 1 Vol.% when the noise on the 570 

radar signal increases from ±0.75 dB to ±1.00 dB (Table 9). Finally, Table 9 also shows that the 571 

three inversion configurations provide un-biased Mv estimates and significant correlation 572 

coefficient (R
2
 between 0.77 and 0.90). 573 

Table 9. Statistical indexes on Mv estimates according to the three inversion configurations 574 

(RMSE (Vol.%) | RRMSE (%) | MAPE (%) | bias (Vol.%) | R
2
). Configuration 1 uses HH and 575 

NDVI, configuration 2 uses HV and NDVI, and configuration 3 uses HH, HV and NDVI. 576 

Relative noise of the NDVI=15%. 577 

 
Noise on σ

0
tot: 

 ±0.75 dB 

Noise on σ
0

tot: 

±1.00 dB 

Configuration 1 (HH and NDVI) 4.5|16.5|17.1|0.0|0.85 5.5|19.8|21.0|0.0|0.78 

Configuration 2 (HV and NDVI) 5.1|18.5|19.2|0.0|0.81 5.7|20.7|21.8|0.0|0.77 

Configuration 3 (HH, HV and NDVI) 3.7|13.6|13.7|0.0|0.90 4.5|16.2|16.7|0.0|0.85 

Figure 6 illustrates the RMSE evolution of  Mv estimates as a function of NDVI for values 578 

between 0.45 and 0.90 for each inversion configuration. For each value of NDVI, statistics were 579 

calculated using all Mv values. The results showed that the RMSE of Mv estimates increases with 580 

NDVI for all inversion configurations. As an example, in configuration 3 (HH, HV and NDVI), 581 
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the RMSE of soil moisture estimates increases from 3.0 Vol.% for NDVI of 0.45 to 4.8 Vol.% 582 

for a NDVI of 0.9 for a noise condition on the radar signal of ± 0.75 dB (Figure 6a). The results 583 

showed that for a given NDVI value between 0.45 and 0.90, the RMSE is in same order in 584 

configurations 1 and 2 (configuration 1 is slightly better than configuration 2) (Figure 6). In 585 

addition, results obtained with HH were worse than those obtained with HH and HV.  586 

 

(a) 

 

(b) 

Figure 6. Evolution of RMSE of Mv estimates according to the three inversion configurations as 587 

a function of NDVI for noise conditions on the modeled radar signal of ±0.75 dB (a), and ± 1 dB 588 

(b).  589 

Moreover, the performances of neural networks for estimating soil moisture were analyzed 590 

according to NDVI for given Mv values (Figure 7). The results showed that the relative RMSE 591 

(RRMSE=RMSE/ Mv) of Mv estimates increases with the NDVI for the three inversion 592 

configurations. Indeed, as the vegetation grows (i.e., increasing NDVI values) the soil 593 

contribution decreases and the backscattering coefficients become less sensitive to soil moisture. 594 
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In addition, for a given NDVI between 0.45 and 0.90
 
the RRMSE decreases when Mv increases 595 

(Figure 7) because for a given NDVI value the soil contribution is more important for high than 596 

for low soil moisture conditions, and consequently, the errors on Mv estimates decrease when Mv 597 

increases. As an example, in configuration 1 (HH and NDVI), for a NDVI of 0.75 (LAI about 3 598 

m
2
/m

2
), the RRMSE values are approximately 28.3, 20.0, 16.3, and 12.0% for reference Mv of 599 

15, 20, 30 and 40 Vol.%, respectively. For low Mv (lower than 20 Vol.%), the RRMSE increases 600 

significantly with NDVI for high NDVI values (higher than 0.75, LAI about 3 m
2
/m

2
) in 601 

comparison to the RRMSE observed for higher Mv values (higher than 20 Vol.%). As an 602 

example, in configuration 3 (HH, HV and NDVI), the RRMSE on Mv estimates increases for Mv 603 

of 15 Vol.% and noise condition on the simulated radar signal of 0.75 dB from approximately 604 

21% for NDVI=0.45 to 30% for NDVI=0.90. This increase in the RRMSE is only approximately 605 

5% for Mv of 30 Vol.% (RRMSE increases from approximately 11% for NDVI=0.45 to 16% for 606 

NDVI=0.90) (Figure 7).  607 
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(a) 

 
(b) 

 
(c) 

 

Figure 7. Evolution of the relative RMSE (in percent) of Mv estimates (RRMSE=RMSE/ Mv) 608 

according to NDVI and Mv. (a) configuration 1: HH and NDVI, (b) configuration 2: HV and 609 

NDVI, and (c) configuration 3: HH, HV and NDVI. 610 

The difference between the estimated and reference Mv were also analyzed as a function of 611 

NDVI using for each NDVI and all Mv values (Figure 8). For a given NDVI between 0.45 and 612 

0.90, the bias on Mv estimates is similar for radar signal noise of ±0.75 and ±1 dB. The results 613 

showed a slight underestimation (lower than approximately 1 Vol.%) of Mv estimates for NDVI 614 
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values between 0.60 (LAI about 1m
2
/m

2
) and 0.90 (LAI about 6 m

2
/m

2
). In addition, a slight 615 

overestimation of Mv is observed for a NDVI lower than 0.60 (lower than approximately 1 Vol. 616 

%). 617 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8. Evolution of the bias (estimated Mv – reference Mv) of Mv estimates according to 618 

NDVI values. (a) Inversion configuration 1, (b) inversion configuration 2, and (c) inversion 619 

configuration 3. 620 
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Figure 9 shows the evolution of bias on Mv estimates obtained for the three inversion 621 

configurations as a function of the NDVI for some Mv values (15, 20, 30 and 40 Vol.%). For 622 

NDVI values lower than approximately 0.65 (LAI about 1.5 m
2
/m

2
), the bias on Mv estimates is 623 

lower than 1.5 Vol.% for Mv between 15 and 40 Vol.%, in the case of configurations 1 and 3. For 624 

the inversion configuration 2, the bias reaches 5.4 Vol.% (for Mv= 40 Vol.%). In addition, results 625 

showed that the bias increased when the NDVI increased, regardless of the Mv values. This 626 

increase was mainly observed when the NDVI was greater than 0.75 (LAI about 3 m
2
/m

2
)
 
for 627 

low Mv values (Figure 9). An overestimation of Mv estimates is mainly observed for Mv values 628 

lower than 20 Vol.%, while an underestimation is mainly observed for Mv values higher than 30 629 

Vol.%. Figure 9 also showed that for a given Mv, the bias is lower for configurations 1 and 3. 630 

The bias reaches 3.5 Vol.% for configurations 1 and 3 compared to 5 Vol.% for configuration 2 631 

for NDVI = 0.9 
 
and Mv =15 Vol.%. Figure 10 shows an example of box plots calculated for the 632 

inversion of configuration 3 and some NDVI values (0.6, 0.7, 0.8 and 0.9).  633 

  634 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 9. Evolution of the bias (estimated Mv – reference Mv) on Mv estimates according to 635 

NDVI and Mv values for noise on the modeled radar signal of 0.75 dB. (a) configuration 1, (b) 636 

configuration 2, and (c) configuration 3. 637 
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Figure 10. Box plots of Mv estimates retrieved from the synthetic dataset. Neural networks were 638 

trained and validated according to configuration 3 (using HH, HV and NDVI). Noise on the 639 

modeled radar signal is ±0.75 dB, and noise on NDVI is 15% of the NDVI value. Values to the 640 

right of the box plots represent the RMSE on Mv estimates for a given reference Mv. 641 
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Moreover, 5-fold cross-validation was used to predict errors on Mv estimates for each 642 

inversion configuration performed using the synthetic dataset with LAI, FAPAR, and FCOVER 643 

as vegetation descriptors. Table 10 shows statistics (RMSE, RRMSE, MAPE, bias, and R
2
) on 644 

Mv estimates computed from the validation dataset for reference Mv values between 10 and 45 645 

Vol.% and a LAI between 0 and 6 and FAPAR (as well as FCOER) between 0 and 1. The results 646 

show that regardless of the vegetation descriptor used, the RMSE on Mv estimates is lower using 647 

HH compared to HV polarization (configuration 1 in comparison to configuration 2). In addition, 648 

the use of HH and HV polarizations slightly decreases the RMSE on Mv estimates. Table 10 also 649 

shows that the RMSE on Mv estimates increases approximately 1 Vol.% when noise added to the 650 

radar signal increases. For each inversion configuration and for a given noise condition on the 651 

modeled radar signal, the RMSE on Mv estimates is in the same order with the use of NDVI, 652 

LAI, FAPAR, or FCOVER as a vegetation descriptor (Table 10). Finally, the results showed that 653 

whatever the vegetation descriptor used, the three inversion configurations provide un-biased Mv 654 

estimates.  655 
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Table 10. RMSE and Bias on Mv estimates according to the three inversion configurations 656 
(RMSE (Vol.%) | RRMSE (%) | MAPE (%) | bias (Vol.%) | R

2
). Configuration 1 uses HH and 657 

vegetation descriptor, configuration 2 uses HV and vegetation descriptor, and configuration 3 658 
uses HH, HV and vegetation descriptor. 659 

 

Noise on σ0
tot :  

±0.75 dB 

Noise on σ0
tot :  

±1.00 dB 

V1=V2=NDVI 

 Relative noise = 15 % 

Configuration 1 4.5|16.5|17.1|0.0|0.85 5.5|19.8|21.0|0.0|0.78 

Configuration 2 5.1|18.5|19.2|0.0|0.81 5.7|20.7|21.8|0.0|0.77 

Configuration 3 3.7|13.6|13.7|0.0|0.90 4.5|16.2|16.7|0.0|0.85 

V1=V2=LAI 

 Relative noise = 30 % 

Configuration 1 5.6|20.5|20.6|0.0|0.76 6.7|24.5|25.4|0.0|0.65 

Configuration 2 7.1|26.0|26.9|0.0|0.61 8.1|29.3|31.2|0.0|0.50 

Configuration 3 5.2|0.0|18.9|18.8|0.79 5.8|21.1|21.3|0.0|0.74 

V1=V2=FAPAR 

 Relative noise = 20 % 

Configuration 1 5.2|18.9|18.8|0.0|0.79 6.4|23.1|24.1|0.0|0.69 

Configuration 2 6.3|22.8|23.3|0.0|0.70 7.3|26.7|28.0|0.0|0.59 

Configuration 3 4.4|16.0|15.7|0.0|0.85 5.4|19.7|19.9|0.0|0.78 

V1=V2=FCOVER 

 Relative noise = 20 % 

Configuration 1 5.2|18.7|18.8|0.0|0.80 6.5|23.8|24.4|0.0|0.67 

Configuration 2 7.1|25.7|26.7|0.0|0.62 7.8|28.3|30.0|0.0|0.54 

Configuration 3 4.7|16.9|16.8|0.0|0.84 5.7|20.7|20.9|0.0|0.75 
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4.2.2 Real dataset  660 

The capacity of the developed Neural Networks (NNs) to correctly estimate the soil moisture 661 

was then tested using the real dataset. The NNs applied to the real validation dataset are those 662 

which have been trained and validated using the synthetic dataset. NDVI, LAI, FAPAR and 663 

FCOVER derived from optical images were used as the input vegetation descriptors for the 664 

trained NNs. Inversion results obtained with the NDVI derived from optical images as the 665 

vegetation descriptor will be provided in detail, whereas the results based on the LAI, FAPAR, 666 

FCOVER derived from optical images as the vegetation descriptor will be briefly described. 667 

First, statistics (RMSE, RRMSE, MAPE, bias, R
2
) on Mv estimates were also computed for 668 

all NDVI observations (Table 11). Slightly better statistics were observed with the noise on a 669 

modeled radar signal of ±1.00 dB. With the noise of ±1.00 dB, the RMSE is 4.5, 6.0 and 5.5 670 

Vol.% in configuration 1, 2 and 3, respectively. Moreover, a slight underestimation (about -0.1 671 

Vol.%) was observed in configuration 1 for the noise conditions of ±0.75 dB and ±1.00 dB. For 672 

configurations 2 and 3, an underestimation of Mv estimates was observed (about -1.4 Vol.% in 673 

configuration 2 and -1 Vol.% in configuration 3).  674 
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Table 11. statics on Mv estimates according to the three inversion configurations (RMSE 675 

(Vol.%) | RRMSE (%) | MAPE (%) | bias Vol.% | R
2
 | samples). Configuration 1 uses HH and 676 

NDVI, configuration 2 uses HV and NDVI, and configuration 3 uses HH, HV and NDVI. 677 

Relative noise on the NDVI=15%. Real SAR measurements and the LAI derived from optical 678 

images were used to estimate Mv. 679 

 Noise on σ
0

tot : ±0.75 dB Noise on σ
0

tot : ±1.00 dB 

 NDVI = [0.45-0.90] 
 

NDVI = [0.45-0.90] 

Configuration 1 (HH and NDVI) 4.9|18.4|16.4|-0.1|0.60|93 4.5|17.0|15.5|-0.1|0.63|93 

Configuration 2 (HV and NDVI) 6.8|25.7|23.1|-1.3|0.37|93 6.0|22.6|19.8|-1.3|0.42|93 

Configuration 3 (HH, HV and NDVI) 6.2|23.5|21.2|-0.8|0.49|93 5.5|20.5|18.0|-0.9|0.53|93 

Next, the statistics were computed from the real dataset of validation for NDVI classes of 0.05 680 

(NDVI was derived from optical images are between 0.45 and 0.9). The results showed that the 681 

RMSE on Mv estimates was in the same order for NDVI classes between 0.45 and 0.75 (LAI 682 

about 3m
2
/m

2
) on the one hand (difference lower than 1 Vol.%), and on the other hand for NDVI 683 

classes between 0.75 (LAI about 3 m
2
/m

2
) and 0.90 (LAI about 6 m

2
/m

2
). Therefore, the results 684 

of Mv estimates were presented for two classes of NDVI: NDVI lower and higher than 0.75 685 

(Table 12). The comparison between estimated Mv and Mv ground-truthed measurements is 686 

given in Figures 11 and 12. RMSE and bias on Mv estimates are lower with the noise condition 687 

on the modeled radar signal of ±1 dB. 688 

RMSE of 3.6 (RRMSE and MAPE about 12%), 5.4 (RRMSE and MAPE about 18%), and 4.4 689 

(RRMSE and MAPE about 15%) Vol.% were observed for configurations 1, 2 and 3, 690 

respectively, in the case of a NDVI lower than 0.75 and for modeled radar signal noise of ±1 dB 691 
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(Table 12, Figure 11). For a NDVI higher than 0.75, the RMSE on Mv estimates is  6.1 (RRMSE 692 

and MAPE about 24%), 7.1 (RRMSE and MAPE about 28%) and 7.3 (RRMSE and MAPE 693 

about 29%) Vol.%, respectively, for configurations 1, 2 and 3 and for the noise on the modeled 694 

radar signal of ±1 dB (Table 12, Figure 11). Moreover, results showed that for a NDVI < 0.75 695 

the trained NNs provide Mv estimates with slight bias (0.2, -1.7, and -0.9 Vol.% in 696 

configurations 1, 2 and 3, respectively) (Table 12, Figure 11). For a NDVI > 0.75, an slight bias 697 

(between -1 and 0.1 Vol.%) was observed for the noise on the radar signal of ±1 dB, with the 698 

lower value for the inversion using HH and NDVI (0.1 Vol.%) (Table 12, Figure 11). 699 

Table 12. RMSE and bias on Mv estimates according to the three inversion configurations 700 

(RMSE (Vol.%) | RRMSE (%) | MAPE (%) | bias Vol.% | R
2 

| samples). Configuration 1 uses 701 

HH and NDVI, configuration 2 uses HV and NDVI, and configuration 3 uses HH, HV and 702 

NDVI. Relative noise on the NDVI=15%. Real SAR measurements and NDVI derived from 703 

optical images were used to estimate Mv. 704 

 
Noise on σ0

tot : ±0.75 dB Noise on σ0
tot : ±1.00 dB 

NDVI < 0.75 NDVI > 0.75 NDVI < 0.75  NDVI > 0.75  

Configuration 1 
3.8|13.9|12.4 

|0.0|0.77|64 

6.6|27.3|25.3 

|-0.3|0.07|29 

3.6|13.1|11.8 

|-0.2|0.79|64 

6.1|24.9|23.5 

|0.1|0.10|29 

Configuration 2 
6.0|21.7|19.8 

|-1.5|0.52|64 

8.4|34.5|30.6| 

-0.8|0.04|29 

5.4|19.7|17.0| 

-1.7|0.56|64 

7.1|29.2|26.1 

|-0.5|0.07|29 

Configuration 3 
5.0|18.2|16.8 

|-0.7|0.67|64 

8.3|34.2|30.9 

|-1.1|0.04|29 

4.4|15.8|13.9 

|-0.9|0.71|64 

7.3|30.1|26.9 

|-1.0|0.06|29 

Moreover, the SAR real validation dataset was inverted to estimate soil moisture by means of 705 

trained NNs with the use of each of the vegetation descriptors derived from optical images LAI, 706 
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FAPAR, and FCOVER). Table 13 shows the (RMSE, RRMSE, MAPE, bias, R
2
) on Mv 707 

estimates in the three inversion configurations for two classes of NDVI: NDVI lower and higher 708 

than 0.75 (LAI about 3m
2
/m

2
). The results showed that the RMSE (as well as RRMSE, MAPE)  709 

on Mv estimates are almost similar, regardless of which vegetation descriptors derived from 710 

optical images were used (NDVI, LAI, FAPAR, or FCOVER) (Table 13). 711 

In conclusion, the use of HH polarization in addition to a vegetation descriptor derived from 712 

optical images (Configuration 1) provides a better estimation of the soil moisture with a RMSE 713 

approximately 4.5 and 7.0 Vol.% for a NDVI lower and higher than  0.75 (LAI about 3 m
2
/m

2
), 714 

respectively. The use of HV in addition to HH slightly lowers the precision of Mv estimates. 715 

  716 
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Table 13. Statics on Mv estimates according to the three inversion configurations (RMSE 717 

(Vol.%) | RRMSE (%) | MAPE (%) | bias Vol.% | R
2 

| samples). Configuration 1 uses HH and 718 

NDVI, configuration 2 uses HV and NDVI, and configuration 3 uses HH, HV and NDVI. Real 719 

SAR measurements, and NDVI, LAI, FAPAR and FCOVER derived from optical images were 720 

used to estimate Mv. 721 

  
Noise on σ

0
tot : ±0.75 dB Noise on σ

0
tot : ±1.00 dB 

NDVI <0.75  NDVI > 0.75  NDVI < 0.75  NDVI> 0.75  

V1=V2=NDVI 

Relative noise = 15 %    

Configuration 1 
3.8|13.9|12.4 

|0.0|0.77|64 

6.6|27.3|25.3 

|-0.3|0.07|29 

3.6|13.1|11.8 

|-0.2|0.79|64 

6.1|24.9|23.5 

|0.1|0.10|29 

Configuration 2 
6.0|21.7|19.8 

|-1.5|0.52|64 

8.4|34.5|30.6 

|-0.8|0.04|29 

5.4|19.7|17.0 

|-1.7|0.56|64 

7.1|29.2|26.1 

|-0.5|0.07|29 

Configuration 3 
5.0|18.2|16.8 

|-0.7|0.67|64 

8.3|34.2|30.9 

|-1.1|0.04|29 

4.4|15.8|13.9 

|-0.9|0.71|64 

7.3|30.1|26.9 

|-1.0|0.06|29 

V1=V2=LAI 

Relative noise = 30 %    

Configuration 1 
4.7|17.1|15.9 

|-0.0|0.65|64 

7.3|29.7|27.2 

|-1.5|0.02|29 

4.5|16.3|15.3 

|0.6|0.67|64 

7.5|30.6|28.9 

|0.3|0.00|29 

Configuration 2 
7.5|27.1|23.8 

|-1.1|0.36|64 

10.0|41.0|34.9 

|-3.2|0.00|29 

7.1|25.8|22.2 

|-1.1|0.35|64 

9.0|36.8|31.4 

|-2.5|0.00|29 

Configuration 3 
5.6|20.1|17.3 

|-0.9|0.57|64 

8.4|34.5|30.5 

|-2.5|0.00|29 

5.7|20.7|17.7 

|-0.5|0.55|64 

8.7|35.7|31.1 

|-2.2|0.00|29 

V1=V2=FAPAR 

Relative noise = 20 % 
   

Configuration 1 
5.0|18.1|16.2 

|0.5|0.63|64 

7.9|32.6|30.3 

|-0.7|0.00|29 

4.9|17.8|16.6 

|1.2|0.63|64 

7.4|30.4|29.0 

|0.7|0.00|29 

Configuration 2 
8.1|29.2|25.8 

|-0.0|0.34|64 

10.9|44.6|39.3 

|-3.1|0.00|29 

7.2|26.2|22.4 

|-0.1|0.34|64 

9.1|37.2|32.5 

|-1.7|0.00|29 

Configuration 3 
6.4|23.3|20.5 

|0.4|0.52|64 

9.5|38.9|34.2 

|-2.4|0.00|29 

6.2|22.4|19.5 

|0.9|0.51|64 

8.8|36.1|32.4 

|-1.3|0.01|29 

V1=V2=FCOVER 

Relative noise = 20 % 
   

Configuration 1 
5.1|18.6|16.5 

|0.8|0.62|64 

8.0|33.0|30.7 

|-0.7|0.01|29 

5.0|18.3|17.1 

|0.9|0.62|64 

6.8|27.5|25.2 

|-0.4|0.03|29 

Configuration 2 
7.6|27.5|23.7 

|-0.6|0.34|64 

10.0|40.9|35.1 

|-3.3|0.01|29 

7.2|25.9|21.8 

|-0.7|0.34|64 

9.1|37.2|31.9 

|-2.5|0.01|29 

Configuration 3 
6.0|21.6|19.0 

|0.3|0.55|64 

9.2|37.6|32.7 

|-2.5|0.01|29 

5.9|21.4|18.2 

|0.2|0.54|64 

8.4|34.5|30.1 

|-1.9|0.01|29 

 722 
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(a) 

 
(b) 

Figure 11. Retrieved soil moisture using configuration 1 versus ground-truthed measurements 723 
for NDVI lower and higher than 0.75 (a, and b respectively). Noise on radar signal = ±1dB. Bias 724 

= estimated Mv - reference Mv.  725 
 726 

5. Conclusion 727 

Inversion results of the synthetic dataset showed that the best Mv estimates were obtained 728 

with the use of the X-band radar signal in HH polarization or in using both HH and HV 729 

polarizations, in addition to one vegetation descriptor derived from optical images. However, the 730 

use of HV in addition to one vegetation descriptor derived from optical images degrades the 731 

precision on Mv estimates. Moreover, results showed that the RMSE on Mv estimates is slightly 732 

sensitive to additive noise on the modelled radar signal. The RMSE increases approximately 1 733 

Vol.% when the noise of the radar signal increases from ±0.75 dB to ±1.00 dB. For all NDVI 734 

values, the RMSE on Mv estimates (Mv between 10 and 45 Vol.%) was approximately 5.0 Vol.% 735 

(RRMSE and MAPE about 19 %) in configurations 1 and 3. Similar values of the RMSE (as well 736 

as RRMSE and MAPE) on Mv estimates were obtained with the use of LAI, FAPAR, and 737 

FCOVER as the vegetation descriptor. The accuracy of Mv estimates degrades (i.e., an increase 738 

in the RMSE, RRMSE, and MAPE) with vegetation growth (i.e., an increase in the NDVI). As 739 

an example, in configuration 3 (HH, HV and NDVI), the RMSE on Mv estimates increases from 740 



50 
 

3.6 Vol.% (RRMSE about 13%) for NDVI of 0.45 to 5.7 Vol.% (RRMSE about 21 %) for a 741 

NDVI of 0.9. 742 

From the real validation dataset (53% of the real dataset), the soil moisture estimation using 743 

the X-band SAR data in addition to one vegetation descriptor derived from optical images allows 744 

better results with HH polarization than with HV or both HH and HV. With HH and NDVI 745 

information derived from optical images, the accuracy on the soil moisture estimation was 3.6 746 

Vol.% (RRMSE and MAPE about 13%) for NDVI between 0 and 0.75 (LAI about 3 m
2
/m

2
) and 747 

6.1 Vol.% (RRMSE and MAPE about 25%) when the NDVI of the grassland was between 0.75 748 

and 0.9 (LAI about 6 m
2
/m

2
). Similar results were obtained regardless the vegetation descriptor 749 

used.  750 

With the arrival of new satellites, such as SENTINEL-1A (launched on 3 April 2014), in 751 

addition to future satellites SENTINEL-1B, SENTINEL-2A (optical sensor), and SENTINEL-752 

2B, it will be possible to obtain SAR (C-band) and optical remote sensing data covering global 753 

areas with high spatial and temporal resolutions (2 days with 2 SENTINEL-1 satellites, and 5 754 

days for 2 SENTINEL-2 satellites at 10 m spatial resolution). Combining SENTINEL-1 data 755 

with optical images (SENTINEL-2, LANDSAT-7/8) will allow more precise estimation of Mv 756 

because the radar signal penetration depth into vegetation cover is higher in the C-band 757 

compared to the X-band. This work is in the context of preparing for SENTINEL 1 and 2 758 

missions. 759 

This study demonstrated that the use of NNs technique to invert X-band SAR backscattering 760 

coefficients allows the estimation of soil moisture with acceptable accuracy (RMSE of 3.6 Vol.% 761 

for a NDVI lower than 0.75). Current remote sensing sensors (optical and SAR) and those 762 

available in the near future (spatial resolution better than 10 m) will allow the estimation of soil 763 
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moisture at a field scale with high temporal resolution (better than weekly). Vegetation 764 

biophysical parameters (i.e., LAI) and soil moisture that can be derived from optical and SAR 765 

images could be useful to calibrate crop models for better irrigation management and crop 766 

growth monitoring. Indeed, combining optical and SAR data would enhance the relevance of 767 

remote sensing data for water and crop monitoring.  768 
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